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SUMMARY

Certain organizational features of brain networks
present in the individual are lost when central ten-
dencies are examined in the group. Here we investi-
gated the detailed network organization of four
individuals each scanned 24 times using MRI. We
discovered that the distributed network known as
the default network is comprised of two separate
networks possessing adjacent regions in eight or
more cortical zones. A distinction between the net-
works is that one is coupled to the hippocampal for-
mation while the other is not. Further exploration
revealed that these two networks were juxtaposed
with additional networks that themselves fractionate
group-defined networks. The collective networks
display a repeating spatial progression in multiple
cortical zones, suggesting that they are embedded
within a broad macroscale gradient. Regions con-
tributing to the newly defined networks are spatially
variable across individuals and adjacent to distinct
networks, raising issues for network estimation in
group-averaged data and applied endeavors,
including targeted neuromodulation.

INTRODUCTION

The cerebral cortex possesses a complex tapestry of networks

that interact and compete in the service of information process-

ing. Building on a history of assigning specialized functions to

brain regions, early seminal work by Norman Geschwind, Marsel

Mesulam, and others proposed ideas about how distributed re-

gions might interact to perform high-level tasks (e.g., Gesch-

wind, 1965a, 1965b; Mesulam, 1981, 1990). A leap in progress

occurred when networks began to be conceptualized within

the framework of anatomical connectivity patterns in the ma-

caque, following the availability of both retrograde (Mesulam
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et al., 1977) and anterograde (Cowan et al., 1972) tracers. For

example, by charting the laminar pattern of anatomical projec-

tions, a hierarchical pathway emerged from areas involved in

visual perception through to areas enabling motor actions

(Maunsell and van Essen, 1983; Ungerleider and Desimone,

1986; Andersen et al., 1990; Boussaoud et al., 1990; see Shadlen

and Newsome, 2001 for discussion). This canonical distributed

network comprises primary and secondary visual areas, parietal

association areas, andmotor areas. These interconnected areas

form a partially modular distributed network that interacts with,

but is anatomically distinguishable from, other processing hierar-

chies (Felleman and Van Essen, 1991; Ungerleider and Desi-

mone, 1986; Van Essen et al., 1992; see also Markov et al.,

2014). Notably, this canonical network involves areas distributed

across temporal, parietal, and frontal cortices. As will be illus-

trated below, this distributed pattern is a general motif that is

apparent across multiple large-scale networks (see Goldman-

Rakic, 1988).

Human neuroimaging studies are particularly useful for char-

acterizing distributed networks because they survey the whole

brain at once. Corbetta and Shulman (2002) highlighted a

network currently known as the ‘‘dorsal attention network’’

(dATN) in the human neuroimaging literature, which is likely ho-

mologous to later-stage components of the sensory-motor

hierarchy described above in the macaque (Vincent et al.,

2007; Patel et al., 2015). Network analysis based on intrinsic

functional connectivity (FC) consistently reveals the dATN (e.g.,

Fox et al., 2006; Vincent et al., 2008; see also Beckmann et al.,

2005). Detailed analysis in relation to retinotopic areas recapitu-

lates, to first approximation, the full hierarchical pathway

described in the macaque (Yeo et al., 2011). Thus, while there

are caveats to interpreting networks observed by FC (Buckner

et al., 2013; Murphy et al., 2013; Smith et al., 2013; Power

et al., 2014), the results can generate hypotheses about the orga-

nization of multiple large-scale networks that populate human

association cortex.

Group-based studies using FCsuggest that association cortex

comprises about five major distributed networks (e.g., Yeo et al.,

2011; Power et al., 2011; Doucet et al., 2011). These networks

have sufficiently modular properties to be consistently identified
, July 19, 2017 ª 2017 The Authors. Published by Elsevier Inc. 457
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as isolated networks, even when constraints are relaxed to

emphasize interactions between networks (Yeo et al., 2014).

Among these, the ‘‘default network’’ (DN) has been extensively

studied. The DN is anatomically separate from the dATN and is

estimated to have expanded in hominin evolution (Buckner and

Krienen, 2013; Margulies et al., 2016; see also Hill et al., 2010).

Regions across the DN are correlated to a level akin to the local

sensory and motor networks despite being widely distributed

(Power et al., 2011; see also Greicius et al., 2003). Tracer studies

suggest that the DN discovered in the human may have an

anatomically connected homolog in the macaque (Buckner

et al., 2008; Binder et al., 2009; see also Margulies et al., 2009;

Buckner and Krienen, 2013). Several other networks, near the

dATN and DN, each have their own distributed organization

(Yeo et al., 2011; Power et al., 2011; Doucet et al., 2011).

Several principles emerge through examining relations among

multiple large-scale networks. First, the distributed networks all

have an organization that is similar to the dATN and DN, with

each network possessing frontal, temporal, posterior parietal,

frontal midline, and posterior midline components. Depending

on how the network is estimated, certain components can be

underemphasized, e.g., the dATN is sometimes described

without a frontal midline component, especially when ‘‘winner-

take-all’’ network assignments are used (e.g., Yeo et al., 2011).

Targeted analyses often reveal there is a midline component

(e.g., Figure 5 in Fox et al., 2006; Figure 32 in Yeo et al., 2011).

The distributed networks follow a general motif that is roughly

conserved even though each network contains spatially distinct

regions. Power et al. (2011) further noted that the networks have

similar spatial arrangements at their interfaces in multiple zones

of cortex (e.g., temporal, parietal, frontal). That is, if a network lies

side by side with another network in parietal cortex, it is also

likely to do so in frontal cortex. This echoes features proposed

by Goldman-Rakic (1988) (her Figure 4) and Mesulam (1981)

(his Figure 4) based on anatomical data. Second, while the broad

architecture follows a general motif, there are differences that

distinguish the networks. For example, while the dATN is

coupled to visual and motor regions, the DN is instead coupled

to the hippocampal formation, perhaps reflecting a mnemonic

functional anchor (Greicius et al., 2004; Vincent et al., 2006;

Buckner et al., 2008; Andrews-Hanna et al., 2010).

The discovery that cerebral association cortex possessesmul-

tiple distributed networks is a major milestone for the field. How-

ever, reliance on group-averaged estimates raises questions. A

first open question concerns whether the present convergence

on major networks reflects the correct level of description. Simi-

larities between human neuroimaging and monkey anatomical

findings suggest that the major networks described to date cap-

ture true organizational features. Nonetheless, several reports

note distinctions that fractionate the largermajor networks, either

locally within a region or in complex ways across distributed re-

gions. For example, Smith et al. (2013) presented a clustering

analysis that illustrated both high-level structure that recapitu-

lated themajor networks and a substructure that included spatial

distinctions between nearby regions of cortex (see also Smith

et al., 2012). In the study by Yeo et al. (2011), they showed that

the major networks broke down further when more fine-grained

network structure was examined (their 17-network parcellation).
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Power et al. (2011) noted at least two network subcomponents

(‘‘subgraphs’’ within their framework) that were not captured in

the major network descriptions. In detailed analysis of the DN,

there have been several proposed schemes to delineate subnet-

works (e.g., Andrews-Hanna et al., 2010, 2014; Leechet al., 2011,

2012; Braga and Leech, 2015). We do not attempt to integrate

these various findings here but point out that analyses of group

datahavealwayspossessed features that arenot fully accommo-

dated by assuming a small number of major networks.

A second open question is whether there are global properties

of organization that span across the networks. Margulies et al.

(2016) recently proposed a macroscale organization of networks

that moves outward from sensory-motor networks on one end

to the DN on the other end. This echoes an idea advanced by

Mesulam (1998) that the cortex exhibits a hierarchical organiza-

tion progressing from unimodal areas to integrative transmodal

areas (see also Jones and Powell, 1970). The repeating motif

and spatial juxtaposition of multiple networks suggest that the

macroscale organization of the distributed networks might be

partially explained by developmental anchors or gradients

(Buckner and Krienen, 2013; Margulies et al., 2016; Krienen

and Buckner, 2017). Detailed analysis of cortical network archi-

tecture may provide evidence for or against macroscale gradi-

ents that span networks.

To make progress on these questions, we need to move from

group-level description to the finer spatial scale that is acces-

sible when studying organization within the individual. The

majority of the literature on network architecture is based on

averaging data from groups of spatially normalized individuals.

Group averaging was necessary in positron emission tomogra-

phy (PET) studies as radiation places severe restrictions on

repeat imaging. A major technical breakthrough came with the

ability to average brain volumes across individuals to boost

signal to noise (e.g., Fox et al., 1985; Evans et al., 1992; Friston

et al., 1995). However, group-averaging approaches are limited

due to blurring over anatomical and functional variability (Stein-

metz and Seitz, 1991; Silbersweig et al., 1993).

Anatomical variability refers to the complex geometry of the

brain’s gross structural morphology (e.g., sulci and gyri) that

must be normalized across subjects. Surface-based normaliza-

tion has improved this technical hurdle for the cerebral cortex

(Fischl et al., 1999; Van Essen, 2005; Robinson et al., 2014),

but misregistration is still a challenge. Functional variability refers

to the spatial arrangement of functional zones on the cortical sur-

face. Functional organization is likely derived from microscopic

anatomical features, such as areal organization or anatomical

subdomains that possess distinct connections. The point here

is that these local organizational properties are not fully ac-

counted for by gross anatomical differences between individ-

uals. Histological data have illustrated that the border locations,

size, and shape of architectonic areas vary on the surface be-

tween individuals (e.g., Rademacher et al., 1993; Rajkowska

and Goldman-Rakic, 1995; Amunts et al., 1999, 2000; Caspers

et al., 2006; Fischl et al., 2008; Henssen et al., 2016). Thus,

even if individuals could be brought into complete anatomical

alignment, spatial blurring across architectonically defined areas

would persist. An additional consideration is that cortical organi-

zation may possess complex topography that has side-by-side



juxtapositions and finely interleaved structure. Fine spatial

arrangements may reflect the complex geometry of small

cortical domains (e.g., Gordon et al., 2017a; Glasser et al.,

2016), such as has been hypothesized for face patches (Moeller

et al., 2008), or the fine-grained structure due to topographically

arranged projections such as is present for eccentricity in the

early visual system (e.g., Maunsell and van Essen, 1983).

Normalization across subjects may blur these spatial features.

Recent human neuroimaging studies focusing on individuals

have noted fine spatial details that are lost or attenuated by

group averaging. Fedorenko et al. (2012) demonstrated that a

language-preferential region in prefrontal cortex (PFC) appears

‘‘as an island’’ between regions showing domain-general

response properties. The exact positioning of the island moves

from person to person. Michalka et al. (2015) characterized inter-

digitated regions of PFC belonging to separate auditory and

visual networks whose exact positions vary considerably across

subjects (Figure S1 in Michalka et al., 2015). Laumann et al.

(2015) recently highlighted a network implication of closely juxta-

posed small regions. Two distinct networks were found in an in-

dividual using nearby seed regions in left PFC; however, when

the same two regions were applied to group-averaged data, a

single distributed network emerged (Figure 7 in Laumann et al.,

2015). In an analysis motivated by architectonic subdivisions of

nearby prefrontal areas BA 44 and BA 45, Jakobsen et al.

(2016) (their Figure 11) observed a similar separation of networks

in the individual. Glasser et al. (2016) noted that whereas in the

majority of cases a single contiguous region of lateral PFC was

found to belong to a left-lateralized language network (Figure S8

in Glasser et al., 2016), a minority of individuals displayed two

‘‘split’’ non-contiguous regions. In a comprehensive analysis of

individual-specific network features, Gordon et al. (2017b) iden-

tified numerous reliable features that were not captured in group

estimates of network organization. These features form a distrib-

uted set of patches across the cortical mantle that were ‘‘too

infrequently present and/or spatially variable relative to their

size to emerge in group-average data.’’ Thus, analysis of individ-

ual brains reveals regional and network features that are under-

emphasized in group-averaged analyses.

Motivated by these findings, we conducted an extensive set of

analyses focused on the individual. We discovered that the DN

could be reliably subdivided into parallel networks within the in-

dividual. Similar separations were made for other major net-

works. Regions of the separate networks lay side by side across

distributed zones of cortex and were sufficiently variable be-

tween individuals to obscure their existence in group-averaged

analyses. To make these observations, we analyzed data from

four individuals scanned repeatedly over 24 sessions.

RESULTS

High Signal-to-Noise and Full-Brain Coverage Was
Achieved in Each of Four Individuals
The present study acquired extensive data over many functional

MRI (fMRI) sessions in the same individuals. Two estimates of

data quality, slice-based temporal signal-to-noise ratio (tSNR)

and fractional amplitude of low-frequency fluctuations (fALFF;

Zou et al., 2008), were calculated for each participant. Across
each subject’s 24 scans, slice-based tSNR ranged between

127.2 and 336.3 for S1, 264.0 and 461.2 for S2, 123.2 and

286.6 for S3, and 204.7 and 493.1 for S4. Absolute motion

(i.e., the accumulated displacement in each run) ranged between

0.303 and 1.505 mm for S1, 0.209 and 1.181 mm for S2, 0.474

and 1.651 mm for S3, and 0.267 and 1.765 mm for S4. Spatial

properties of tSNR and fALFF are affected by susceptibility arti-

facts (e.g., Ojemann et al., 1997). Figure S1 displays voxel-based

tSNR and fALFF maps projected onto the cortical surface. High

voxel-based tSNR and fALFF were achieved across nearly the

entire cortical mantle, including ventral PFC and portions of the

anterior and ventral temporal lobe.

Distinct DistributedNetworks Fractionate theCanonical
Default Network within the Individual
The goal of the present study was to identify spatially detailed

features of network organization in the individual. For each

participant, half the data were used for discovery (n = 12) of

network features that were later tested in the remaining indepen-

dently collected sessions (n = 12). The discovery datasets were

analyzed blind to the hypothesis-testing datasets. An interactive

seed selection and FCmap viewing platformwas established us-

ing a bespoke high-resolution cortical mesh so as to minimize

spatial blurring during interpolation and allow networks to be

defined with high precision by selecting individual vertices.

In the discovery data, the observation was made in one sub-

ject that two similar, but distinct, networks could be observed

from two seed vertices selected from adjacent regions of left

lateral PFC (Figure 1). Both networks were distributed across

inferior parietal, lateral temporal, medial PFC, and posteromedial

cortices and resembled the canonical DN but with distinct

nodes. The two networks had components that were closely

neighboring but separate in numerous cortical zones, including

temporal and ventral medial PFC, suggesting that the DN may

be comprised of distinct neighboring networks.We refer to these

hypothesized networks as Network A and Network B (Figure 1).

Investigating additional participants yielded a similar distinction.

An important difference between the networks was that

Network A showed correlation with a region in parahippocampal

cortex (PHC),whereas no suchevidencewas found inNetworkB,

even when additional and more sensitive analyses were carried

out focused on this region (Figure S2). The presence of correla-

tion with medial temporal lobe structures is anticipated (e.g.,

Greicius et al., 2004; Vincent et al., 2006). However, that the

coupling was to one hypothesized network and not the other

was unexpected.

The recurrence of the distributed pattern of regions across the

four participants provided strong evidence for two dissociable

networks (Figure 1).

Double Dissociation of the Two Networks within the
Individual
The independent replication data were used to formally test the

hypothesis that Network A was dissociable from Network B.

Using only the discovery datasets, a priori regions (single

vertices) were selected that maximized the separation of the net-

works from the two lateral PFC seed regions in the main regional

zones of the cortex (temporal, inferior parietal, posteromedial,
Neuron 95, 457–471, July 19, 2017 459



Figure 1. Two Parallel Interdigitated Distributed Networks at or near the Canonical Default Network Are Revealed by Functional Connectivity

within Individuals

Each row illustrates functional connectivity (FC) maps from a single subject (S1–S4). Two networks were observed in each individual. Subject-specific seed

regions were placed in the left lateral PFC of the discovery dataset (white filled-in circle). The seed region labeled A* yielded Hypothesized Network A (left) and the

seed region labeled B* yielded Hypothesized Network B (right). Note that throughout the cortex, Networks A and B are adjacent to one another with slightly varied

positions from individual to individual. HypothesizedNetwork A includes posterior inferior parietal lobule, lateral temporal cortex, ventromedial PFC, retrosplenial/

ventral posteromedial cortex, and parahippocampal cortex. Hypothesized Network B includes the temporoparietal junction, lateral temporal cortex, an inferior

region of ventromedial PFC, a dorsal region of anteromedial PFC, and posterior cingulate cortex. Regions (hollow circles A and B) were selected to formally test

the distinction between the two networks in independent data. The surfaces are rotated by 19� along the y plane to better show the ventromedial PFC and

intraparietal sulcus. The same views are used in accompanying figures.
andmedial PFC) and a region in PHC. These a priori regions were

targeted within each subject to locations where contiguous

vertices could be observed in Network A and Network B (Fig-

ure 1). Using the independent replication dataset (n = 12 in

each subject), time courses were extracted from each subject’s

a priori regions. The r-to-z transformed Pearson’s product

moment correlation was computed between the two lateral

PFC seed regions and each distributed test region (Figure 2).

Two-way ANOVA was used to test the dissociation between

the two PFC seed regions and the regions in each cortical

zone. The critical test was whether there would be significant

interactions between seed and target regions belonging to
460 Neuron 95, 457–471, July 19, 2017
Networks A and B. The presence of interactions across all

distributed zones of the cortex would provide strong evidence

that there was a network dissociation across the cortex.

Critically, the multiple tests across cortical zones and subjects

targeted convergent evidence for network dissociation. Twenty

2 3 2 ANOVAs were carried out across four subjects and five

cortical zones (temporal, inferior parietal, posteromedial, medial

PFC, and PHC). The PHC region from Network A was paired

with the posteromedial region from Network B. All 20 ANOVAs

were individually significant (p < 0.01) with most showing

crossover interactions (Figure 2). One exception was the medial

PFC interaction that, while significant in all four subjects,



Figure 2. Parallel Distributed Networks Are

Statistically Dissociated Using Indepen-

dent Data

Functional correlation strength was computed

between the two PFC seed regions yielding

Network A and Network B and the pairs of adja-

cent seed regions in lateral temporal (Temporal),

inferior parietal (Parietal), Posteromedial, and

Medial PFC cortices (regions shown in Figure 1).

This yielded a 2 3 2 contrast for each zone of

cortex (e.g., Networks A and B’s PFC regions

against Networks A and B’s Temporal regions). An

additional seed region in PHC was grouped with

Network B’s posteromedial region. Correlations

with Network A’s PFC region are shown in yellow

and Network B’s in red. Bars represent the mean

from the 12 sessions of the hypothesis-testing

dataset with SEM. All 20 2 3 2 ANOVA tests

were significant (**p < 0.01), with most showing a

cross-over interaction.
demonstrated a clear crossover in two subjects and minimal dif-

ference for the most ventral region in two subjects. Another

exception was the PHC interaction, which did not show a clear

crossover interaction in S1. Note that, in most cases, the cross-

over interactions are present even where regions are extremely

close to one another.

While the above analyses formally test the double dissocia-

tion, another source of evidence is that the spatial patterns

replicate within individuals across discovery and replication

(hypothesis-testing) datasets (Figure S3). Additional analyses

examined alternative methods for identifying these separate

networks, including using data-driven clustering and estimation

of connectivity patterns in the volume in addition to the surface

(Figure S4). Visualization in the native volume is important

because projection to the cortical surface can induce fraction-

ations of single regions into multiple regions if they fall near

sulcal boundaries. The combined results illustrate a robust

double dissociation between two distributed networks that
fractionate the canonical DN across

numerous cortical zones (Figure 3).

The Importance of Examining
Network Organization within the
Individual
The organization of the dissociated net-

works suggests why they might evade

group-averaged analyses. Spatial ‘‘hur-

dles’’ to group averaging have been pre-

viously reported (e.g., Fedorenko et al.,

2012’s Figure 1; Laumann et al., 2015’s

Figure 7). To quantify the effect of spatial

misalignment between individuals, we

took an approach using spatial yoking

between the individuals. For each individ-

ual, her spatially optimized regions from

the discovery dataset were applied to

her independent replication data, yielding
an unbiased correlation matrix (Figure S5). Two clear clusters

of strong within-network and minimal between-network

correlations were observed in each individual, with S1 and S4

showing the strongest patterns. This illustrates that widely

distributed regions can show strong correlation with one

another, while spatially adjacent regions can be embedded in

distinct correlated clusters. The same correlation matrices

showed minimal structure when regions from one person were

applied to another (e.g., Subject 1’s regions were used to

generate a matrix using Subject 2’s fMRI data), highlighting the

importance of respecting the exact spatial details present within

an individual.

Topography of Multiple Distinct Networks within the
Individual
The above analyses establish evidence for two distinct

neighboring networks that are likely components of what has

been studied as the DN. This unexpected observation prompted
Neuron 95, 457–471, July 19, 2017 461



Figure 3. Parallel Distributed Networks

Contain Juxtaposed Regions in Numerous

Cortical Zones

The two dissociated networks near the canonical

default network, Network A and Network B, are

shown for two subjects (S1 and S4) in a schematic

form on the same cortical surface representation.

The dashed boxes highlight nine cortical zones

where neighboring representations of the two

networks were found including: (1) dorsolateral

PFC, (2) inferior PFC, (3) lateral temporal cortex,

(4) inferior parietal lobule extending into the tem-

poroparietal junction, (5) posteromedial cortex,

(6) midcingulate cortex, (7) dorsomedial PFC,

(8) ventromedial PFC, and (9) anteromedial PFC.

Some zones, including the dorsal region along

the PFC (labeled 7), are subtle, but consistent, in

all subjects, suggesting that there exists small,

closely juxtaposed components of the two disso-

ciated networks.
us to explore how these two networks relate to additional

large-scale networks, the frontoparietal control network (FPN)

and the dATN. Two questions drove these analyses. First, are

the other large-scale networks themselves fractionated and, if

so, how are the newly detected networks organized? Second,

taken as a group, do the multiple large-scale networks possess

consistent spatial relations between networks?
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For these analyses, all 24 data sessions

were combined to provide best estimate

maps for each participant. Seed regions

were placed in the left lateral PFC and

the frontal eye fields to identify the FPN

and dATN, respectively. For the FPN,

two seed regions were selected that

revealed networks that maximized the

following features: (1) the networks con-

tained strong representations in intra-

parietal, inferior temporal, and dorsome-

dial PFC, and (2) the networks occupied

neighboring, but distinct, regions in each

cortical location. For the dATN, similar

criteria were applied, but the distri-

bution instead included superior parie-

tal, occipitoparietal, and occipitotempo-

ral components.

As with the DN, both the FPN and

dATN were fractionated into two distinct,

parallel networks within the individual,

identifying a total of six networks with

close spatial arrangements (Figure 4).

The effects were clearest in S1 and S4

and suggestive in the other subjects. In

each case, the networks both resembled

the canonical group-average network but

inhabited separate subregions (Figure 5).

Important organizational details were

evident when all six networks were visu-
alized simultaneously. Figures 6 and 7 focus on the anterior

midline and parietal and temporal lobes to illustrate two organi-

zational features. First, regions from each network are often

located in distinct locations in each cortical zone. The white lines

in Figures 6 and 7 serve as landmarks to highlight non-overlap-

ping features of the networks. Second, the networks display a

fine-scale interdigitation. For example, in the anterior midline,



Figure 4. Multiple Parallel Interdigitated Distributed Networks at or

near the Canonical Frontoparietal Control and Dorsal Attention Net-

works Estimated by Functional Connectivity within Individuals

Best estimate maps (using all 24 sessions in each individual) of Networks A

and B that fractionate the default network are illustrated (top). Maps from two
a broad ventral to dorsal progression is observed (Figure 6);

however, particularly for the DN, the representations from

Network B were positioned in between representations from

Network A. Similarly in the temporal lobe, the representation

from Network A is largely surrounded by representations from

Network B (Figure 7). In the parietal lobe, a broad posteroventral

to anterodorsal progression is observed across the networks,

with each of the six networks inhabiting a distinct region (Fig-

ure 6). The fractionated Networks A and B of the canonical

dATN showed three or more separate regions, as visualized

on the surface, which sequentially alternated along the intrapar-

ietal arc of the canonical dATN (Figures 4, 5, and 6).

Figures 8 and S6 show a diagrammatic representation of the

six different networks in two subjects to highlight the close,

parallel nature of their organization within frontal, parietal, and

temporal lobes. For an additional analysis, which should be

considered descriptive, a correlation matrix was constructed

(Figure S7) using regions chosen from all six networks (Fig-

ure S8). Data from all 24 sessions were used to construct each

matrix. Given that the regions were defined and tested on the

same data, the specific quantitative values of the within-network

correlations should not be interpreted; however, the between-

network correlations reflect an unbiased estimate of interactions

between networks. Of interest, certain networks showed hints of

interactions with other networks. For example, the FPN-A

showed slightly elevated correlation with DN-A; the FPN-B

showed slightly elevated correlation with dATN-A. These sug-

gestive interactions may be due to spatial blurring or to biologi-

cally meaningful factors and are presented purely for their ability

to generate future hypotheses.

DISCUSSION

The present study examined the organization of large-scale

distributed networks within the individual. We discovered that

the canonical DN fractionates into two parallel networks that

have juxtaposed regions throughout the cerebral cortex. Moti-

vated by this discovery, we examined the dATN and FPN and

found that each of these canonical networks also fractionates

into two parallel networks. The organization of the six identified

networks was charted and found to have a spatial progression

in multiple zones of cortex. These results are consistent with

the ideas that the large-scale networks (1) share a conserved

motif and (2) are embeddedwithin a broadmacroscale organiza-

tion. As a technical point, the present results underscore a need

to move from group-based analyses to examination of detailed

anatomy within the individual.

Canonical Networks Fractionate into Distinct Networks
within the Individual
The most pressing finding reported here is that three major net-

works (DN, FPN, and dATN) are each subdivided into parallel

spatially juxtaposed networks (Figures 1, 3, 4, and 5). Regions
subjects (S1 and S4) are displayed. The canonical Frontoparietal Network

(middle) and Dorsal Attention Network (bottom) also each fractionate into two

juxtaposed networks. Seed regions are illustrated by filled white circles.
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Figure 5. Relationship of Parallel Interdigitated Networks to Canonical Networks from Group-Averaged Data

Each row illustrates how the networks identified in two individuals (S1 and S4) correspond to the well-characterized topography of group-derived networks. The

black border represents the outline of the canonical default, frontoparietal control, and dorsal attention networks (top to bottom) calculated using data from 1,000

subjects that were parcellated into seven networks (fromYeo et al., 2011). The correlationmaps from each seed (white filled circle) are shown in color. Broadly, the

networks can be seen to occupy separate, closely juxtaposed regions that fall within the canonical network borders in most cases. Exceptions can also be found,

such as in the inferior frontal cortex in Default Network A and in the parietal lobe in Frontoparietal Control Network B, where the individual’s connectivity map

strays outside the group network borders.
of the separate networks lay side by side to one another

across several cortical zones (Figure 3) and exhibited complex

topography, with one network’s region sometimes surrounded
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by another’s (Figures 6 and 7). It is thus unsurprising that

detailed within-subject analysis is needed to visualize the sepa-

rate networks. We focused on the DN first to show that the



Figure 6. Detailed Anatomy of Six Distinct Networks: Parietal and Medial Prefrontal Cortices

The fine-scale interdigitation of the six identified networks is highlighted in regions where the macroscale organization is evident. White lines serve as landmarks

so that the relative position of each network can be appreciated across panels: Networks A and B of the Default Network (DN-A, DN-B), Frontoparietal Control

Network (FPN-A, FPN-B), and Dorsal Attention Network (dATN-A, dATN-B). In each row, FCmaps from an individual are displayed for either medial frontal cortex

(top two rows) or lateral parietal cortex (bottom two rows).
within-subject network fractionation is reproducible across (Fig-

ure 1) and within individuals (Figure S3) and is statistically robust

in an independent sample (Figure 2). We next characterized frac-

tionations of the FPN and the dATN (Figures 4, 5, 6, and 7).

These findings raise the prospect that the canonical networks

studied in group-averaged data consist of distinct functional net-

works that are blurred together by spatial averaging. The six net-

works identified here appear to be fractionations of networks

identified in group studies (e.g., Yeo et al., 2011; Power et al.,

2011; Doucet et al., 2011). This point is important to emphasize:

it is not the case that more detailed analysis carved network

organization orthogonally to prior schemes, but rather fraction-

ated the existing lower-resolution frameworks (Figure 5). It re-

mains to be determined whether these different networks

mediate separable functions across different task contexts.

Such a finding could help explain the heterogeneity in cognitive

functions and clinical conditions ascribed to the canonical net-

works (e.g., Buckner et al., 2008; Spreng et al., 2009; Menon,
2011; Laird et al., 2011; Leech and Sharp, 2014; Andrews-Hanna

et al., 2014).

Relations to Prior Observations
There is growing consensus that idiosyncratic features exist

within individuals that are not captured (or are attenuated) by

examining group central tendencies (e.g., Fedorenko et al.,

2010, 2012; Mueller et al., 2013; Laumann et al., 2015; Glasser

et al., 2016; Huth et al., 2016; Jakobsen et al., 2016; Gordon

et al., 2017a, 2017b). The DN was originally hypothesized based

on the distributed pattern of regions that increase activity in pas-

sive relative to active non-self-referential tasks (Andreasen et al.,

1995; Shulman et al., 1997; Mazoyer et al., 2001; for review, see

Gusnard and Raichle, 2001). The DN was later estimated using

FC by placing a moderately sized seed region in the center of

posteromedial cortex (often labeled posterior cingulate cortex

or ‘‘PCC’’) and plotting the correlation pattern (Greicius et al.,

2003). One immediate feature of the resulting network that
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Figure 7. Detailed Anatomy of Six Distinct Networks: Lateral Tem-

poral Cortex

In a similar format to Figure 6, each column displays FC maps from an indi-

vidual to illustrate the fine-scale interdigitation in the lateral temporal cortex.
raises the possibility of further subdivision is its large size. For

example, the canonical group-averaged FC estimate of the DN

contains an extensive correlation pattern extending from the

dorsal extent of the frontal midline to ventromedial and orbito-

medial PFC (e.g., Fox and Raichle, 2007; Buckner et al., 2008).

A number of group-based studies, including our own, have

sought to fractionate the DN into subnetworks (e.g., Margulies

et al., 2007, 2009; Buckner et al., 2008; Fransson and Marrelec,

2008; Andrews-Hanna et al., 2010, 2014; Leech et al., 2011,

2012). While the present fractionation is not contained within

these past efforts, prior observations have noted juxtaposed
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nodes in different zones of cortex. There is evidence for a dorsal

to ventral separation in the posterior midline (Margulies et al.,

2009; Leech et al., 2011; see also Vogt et al., 2006) that likely cor-

responds to the present DN-A and DN-B networks, although the

topography is not fully captured by a simple linear axis in all in-

dividuals (e.g., see S2 in Figure 1). Prior reports have also noted

that a subnetwork of the DN is coupled to the hippocampal for-

mation (e.g., Andrews-Hanna et al., 2010), consistent with

anatomical connectivity in the macaque (see Kahn et al., 2008

for review). The present hypothesized DN-A aligns well to the

‘‘hippocampal’’ subnetwork of Andrews-Hanna et al. (2010),

while DN-B does not. This separation also informs our under-

standing of the IPL.

While many analyses of the DN, especially those based on

increased response during passive tasks, reveal a large region

covering much of IPL, social tasks involving mentalizing

(theory-of-mind tasks) activate the more anterior temporo-

parietal junction (TPJ; Saxe and Kanwisher, 2003) while

tasks involving episodic remembering activate a caudal region

(e.g., Andrews-Hanna et al., 2014) near what might be a monkey

homolog of Opt (Pandya and Seltzer, 1982; for discussion, see

Yeo et al., 2011). Group-level FC analyses have noted that the

posterior portion of IPL is preferentially coupled to the PHC,

while the anterior portion is not (see Yeo et al., 2011’s Figure 30).

Furthermore, monkey anatomical tracing studies consistently

show that PHC projects to a circumscribed portion of area 7A

within Opt (e.g., Lavenex et al., 2002, Case M-2-90; Blatt et al.,

2003, Cases 1 and 5). These collective findings are consistent

with the distinction between DN-A, which is coupled to the

PHC and posterior IPL, and DN-B, which involves a more ante-

rior IPL region. What is novel in the present work is that this

distinction is now shown to be one spatial component of a

much broader separation of two parallel large-scale distributed

networks.

We know of no precedent for one feature of our results. The

ventral portion of the frontal midline is considered a projection

zone of limbic structures, including the amygdala (Ong€ur and

Price, 2000) and hippocampal formation (Rosene and Van Hoe-

sen, 1977). However, in the present study, the most ventral rep-

resentation of DN-B is inferior to DN-A. This is unexpected

because DN-B is differentiated from DN-A by its absence of

coupling to the PHC and retrosplenial cortex (Figure S2). This

may indicate that a subregion of ventromedial PFC is tied to a

large-scale distributed network that is functionally separated

from a direct limbic influence. The fine interdigitation shown in

Figure 6 reveals why group averaging will likely blur the two net-

works. In each individual, there are multiple regions for each

network that are interposed and whose positions spatially shift

between individuals. Anatomical tracing in the monkey will be

needed to substantiate whether there exists a ventral midline

region that is minimally connected to limbic structures.

Parallel Large-Scale Distributed Networks Are an
Organizing Principle of Association Cortex
A notable feature of the identified networks is that each contains

components in frontal, parietal, temporal, and frontal midline re-

gions. This repeating pattern or motif has been discussed previ-

ously in group data (e.g., Yeo et al., 2011; Power et al., 2011).



Figure 8. Diagrammatic Representation of

Six Parallel Distributed Networks within

One Individual

The central figure shows an illustration of the six

networks overlaid on the same cortical surface.

The top panel shows the lateral view, and the

lower panel shows the medial view. The different

colors correspond to the canonical network that

each network resembles (red, Default Network,

DN-A and DN-B; blue, Frontoparietal Network,

FPN-A and FPN-B; green, Dorsal Attention

Network, dATN-A and dATN-B). The names of the

networks are based on prior literature, recognizing

that the novel organization identified here may

lead to a reconsideration of the functional do-

mains. Data shown are from S4 (see also

Figure S6).
What is striking is how well the same distributed pattern ac-

counts for much of the newly fractionated networks.

Goldman-Rakic (1988) suggested that this distributed motif

was a general organizing principle of association circuits. Based

on results from double-labeling tracer injections by Selemon and

Goldman-Rakic (1985, 1988), she posited (1) that prefrontal and

parietal areas are embedded within densely interconnected

distributed circuits that include midline and temporal areas and

(2) that this same motif repeats across nearby zones forming

closely adjacent parallel networks. Our results are consistent

with her ideas.

One interesting finding is that there can be clear distinctions

even between networks with closely juxtaposed regions. As
noted, DN-B does not couple to the hip-

pocampal formation, while DN-A does.

Similarly, dATN-B shows coupling to ret-

inotopic visual regions along the midline,

preferentially to the peripheral field repre-

sentation, while dATN-A does not (see

Figure S8). The presence of such differ-

ences may shed insight into the func-

tional role of the parallel networks and

their development. One possibility is

that there are broad constraints that

establish the same motif but, seeded by

competing inputs from limbic and sen-

sory systems, activity-dependent pro-

cesses differentiate the networks during

development.

A second important finding is the fine

spatial scale that differentiates neigh-

boring networks. The spatial interdigita-

tion of distinct regions was notable. In

the lateral temporal lobe, one network’s

region could be surrounded by another’s.

This fine-scale interdigitation has implica-

tions for interpreting prior network esti-

mations. For example, Mesulam (1981)

proposed a cortical network important

to spatial attention. Extensive findings
illustrate that certain areas near to the intraparietal sulcus form

part of a sensory-motor hierarchy, sharing reciprocal projections

with extrastriate visual cortex and the frontal eye fields (Maunsell

and van Essen, 1983; Ungerleider and Desimone, 1986; Ander-

sen et al., 1990; Boussaoud et al., 1990). However, Mesulam’s

ideas drew on injections within the IPL area 7a in or near Opt

(e.g., Mesulam et al., 1977). This specific parietal association

area is near to macaque area LIP but has a projection fingerprint

that spares distant extrastriate areas while including cingulate

and PHC (Andersen et al., 1990). Given the present results, it is

reasonable to suppose that past analyses of parietal association

cortex may have lumped together injections in separate parallel,

distributed networks.
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Evidence for a Macroscale Organization of Association
Cortex that Spans Networks
An intriguing finding is revealed when the spatial relations across

all the networks are considered together (Figures 8 and S6).

While the networks have complex interdigitated relationships,

there are also macroscale gradients that share the same general

progression in multiple zones of cortex. In parietal association

cortex, there is a caudal to rostral progression from DN-A

through to dATN-B (Figure 6). In temporal association cortex,

there is a rostral to caudal progression through the same net-

works (Figure 7). The axis is imperfect, and it is sometimes un-

clear which network should be ordered before the other, but

the general ordering that repeats across distinct zones suggests

a broad macroscale organizing principle.

Margulies et al. (2016) recently argued that association cortex

possesses a macroscale gradient of networks from sensory-

motor networks on one end to the DN on the other. In agreement,

the possibility was recently raised that association networks

evolved from a prototypical distributed sensory-motor network

followed by a period of cortical expansion, which freed up zones

of association cortex from the constraints of primary sensory

input (Buckner and Krienen, 2013; Krienen and Buckner, 2017).

The parallel and sequential nature of the presently defined net-

works adds further support to these ideas.

Limitations and Technical Considerations
An assumption behind our interpretation of the results is that FC

across distributed regions is sufficiently constrained by direct

andpolysynaptic anatomical circuits toprovide insight into theor-

ganization of distributed networks. Parallels with macaque anat-

omy reinforce this assumption. However, details of the results

may be revised to the degree that factors beyond stable anatom-

ical constraints contribute to the patterns. Exploration of monkey

anatomy using multiple tracer injections from adjacent regions in

the same animal would be a valuable complement to the present

work. The anatomical origin of the fine spatial details are impor-

tant to resolvebecauseof their implications for clinical endeavors,

including presurgical planning and targeted neuromodulation.

The present results suggest that targeted neuromodulation of

nearby cortical zones could have distinct effects because they

are embedded within anatomically separate networks. While

this general notion has been appreciated previously (e.g., Fox

et al., 2014), what is surprising is the fine spatial scale by which

cortical zonesparticipating in distinct networks are interdigitated.

Given that we were able to fractionate established large-scale

networks by pushing the practical resolution of fMRI by targeting

the individual, it seems likely that our present estimates might

also be fractionated further if higher resolution was achieved.

Despite efforts to minimize spatial blurring, we were unable to

confidently delineate all networks in all individuals. Two subjects,

S2 andS3, producedmaps that were noticeably blurrier. This dif-

ference may be due to several factors, such as differences in

head motion, SNR, and misregistration. The reported summary

measures do not clearly indicate a cause. The fractionation of

the DN into two parallel, distributed networks proved to be the

most robust finding observed clearly in all subjects.

The present study is also limited in that we studied only cere-

bral cortical organization. Ongoing work is characterizing the
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topography of these networks in subcortical and cerebellar

structures.

Conclusions
The present work reveals that there are parallel large-scale

distributed networks that are spatially juxtaposed across the

cerebral cortex. The spatial scale of these networks is such

that they become evident only when analyzed within the individ-

ual. Discovery of the presence and description of details of these

networks provide a foundation for future study of their functions.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Four healthy female right-handed young adults (ages 21 to 26) were recruited from the greater Boston community for a study that

involved 24 separate MRI scanning sessions as well as extensive behavioral monitoring over a period of approximately 16 weeks.

None of the participants were local (Harvard) students or institutional employees, and all were paid for participation with milestone

payments at the end of the trial period (two weeks), after 12 MRI sessions, and after all 24 MRI sessions. Participants were screened

to exclude a history of neurological or psychiatric illness, or ongoing use of psychoactive medications. Seven participants were

enrolled and three chose not to continue within the first two weeks (which were described to all participants as a trial period).

Four participants were enrolled for the full 24-session extended study and all of these individuals completed all intended sessions.

The present paper concerns only the fMRI data, but enrolled individuals also participated in extensive behavioral testing and daily

monitoring of behavior via smart phones (Beiwe; Torous et al., 2016), sleep and activity monitoring via an Actigraph 2 wrist wearable

(Philips Respironics, Murrysville, PA, USA), as well as hearing tests at several times during the study (Model 2500 Microprocessor

Audiometer, AMBCO, Tustin, CA, USA). One subject required vision correction using MRI compatible glasses. Participants provided

written informed consent in accordance with the guidelines set by the Institutional Review Board of Harvard University.

METHOD DETAILS

MRI Data Acquisition
Data were collected on a 3T Siemens Prisma-fit MRI scanner (Siemens Healthcare, Erlangen, Germany) using the vendor’s 64-chan-

nel phased-array head-neck coil. Heads were immobilized with Siemens small foam head coil wedges. Each of the 24 MRI sessions

included one 7m 2 s run of resting state data (passive fixation) to estimate intrinsic functional connectivity (Biswal et al., 1995) as well

as a number of other acquisitions (structural, ASL, and task-based functional runs). The resting state run was collected in the same

fixed order during every session near to the beginning of the session to optimize compliance. Participants were instructed to remain

still, stay awake and to fixate a centrally presented crosshair presented in black on a light gray background. The gray background

color was used instead of white to reduce glare, eye fatigue and discomfort. The position of the screen was adjusted at the beginning

of each session to ensure a comfortable, central viewing position to minimize muscle tension and head motion. Before each session

participants were encouraged to spend a fewminutes finding a comfortable lying position that they could maintain for the entire ses-

sion. The scanner room lights were kept on to deter participants from becoming drowsy.

Eye closures andmovements weremonitored using the Eyelink 1000 Core Plus with Long-RangeMount. A video of the eye tracker

output was recorded in order to quantify compliance and arousal. Additional in-scanner physiological monitoring (Biopac Systems

Inc, Goleta, CA, USA) included a respirator belt around the chest to monitor breathing (Biopac, TSD221-MRI), electrodermal elec-

trodes (Biopac, EL508) attached to participants’ right sole to measure galvanic skin response, and a band pulse-oximeter (Biopac,

OXY-MRI-SENSOR) attached to participants’ right middle toe to measure oxygen saturation and pulse rate. See Voyvodic et al.

(2011) for details. The oximeter and electrodes were place on participants’ feet to keep their hands free to make responses using

button boxes during the in-scanner tasks. Immediately before each run, participants were asked to remain still for the entirety of
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the upcoming run. Following each run, participants were given feedback about noted movements and encouraged to stay still, in

order to establish an expectation that their compliance and movement were being carefully watched.

Functional imaging data were acquired using a multi-band gradient-echo echo-planar pulse sequence (Setsompop et al., 2012)

with acquisition parameters: TR 1000 ms; TE 32.6 ms; flip angle 64�; 2.4 mm isotropic voxels; FOV 211 mm x 211 mm x 156 mm;

65 slices fully covering the cerebral cortex and cerebellum. Slice acquisition used interleaved simultaneous multi-slice 5x accelera-

tion. The sequence was a custom sequence generously provided by the Center for Magnetic Resonance Research (CMRR) at

University of Minnesota. Whole brain coverage and minimization of signal dropout due to magnetic susceptibility were achieved

by aligning slices to a plane 25 degrees from the anterior commissure-posterior commissure plane toward the coronal plane (Weis-

kopf et al., 2006; Mennes et al., 2014). This was implemented using an automated alignment procedure to ensure consistency across

sessions (van der Kouwe et al., 2005) and, in pilot acquisitions, was found to increase signal-to-noise in ventromedial prefrontal cor-

tex (PFC). A rapid T1-weighted structural image was also acquired in each session using a multi-echo MPRAGE three-dimensional

sequence (van der Kouwe et al., 2008) with acquisition parameters: TR 2200 ms; TE 1.57, 3.39, 5.21, 7.03 ms; flip angle 7�; 1.2mm

isotropic voxels; 144 slices; FOV 230mmx 230mmx 173mm, in-plane GRAPPA acceleration 4 (see Holmes et al., 2015 for empirical

results and discussion of comparability of this brief sequence to traditional longer acquisitions).

Data Preprocessing
Resting-state data were processed usingmethods similar to those previously described (Van Dijk et al., 2010; Yeo et al., 2011): (1) 12

initial volumes from each run were discarded to allow for T1-equillibration, (2) headmotion was corrected using rigid body translation

and rotation (FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/; Jenkinson et al., 2002; Smith et al., 2004), (3) data were temporally low-pass

filtered at a threshold of 0.08 Hz, and (4) nuisance variables (6 motion parameters, mean whole-brain signal, mean ventricular signal,

mean deep cerebral white matter signal) and their temporal derivatives were regressed. Structural data were processed using the

FreeSurfer version 4.5.0 software package (http://surfer.nmr.mgh.harvard.edu; Fischl, 2012). For each anatomical image (one per

session), a surface mesh representation of the cortex was reconstructed and registered to a common spherical coordinate system

by aligning the major sulcal patterns to the FreeSurfer average template (Fischl et al., 1999). The preprocessed functional images

from each session were aligned to the cortical surface mesh reconstructed from that session’s anatomical image using bound-

ary-based registration (Greve and Fischl, 2009). Functional data were then propagated to the common spherical coordinate system

via sampling (trilinear interpolation) from the middle of the cortical ribbon in a single interpolation step.

Functional data were sampled to the fsaverage6 surface mesh (Fischl et al., 1999) containing 40,962 vertices per hemisphere, and

a 2mm full-width-at-half-maximum (FWHM) smoothing kernel was applied to the data in the surface space. A mesh resolution of

40,962 vertices was chosen to reduce blurring during the trilinear interpolation step and hence maximize the potential for observing

network distinctions, while keeping the computational burden manageable. A bespoke cortical surface template containing 40,962

vertices per hemisphere was produced using the ConnectomeWorkbench’s command suite (Glasser et al., 2013). This was done so

that the functional connectivity analyses could be performed and visualized interactively within the Workbench’s flexible surface-

based visualization software, wb_view (Marcus et al., 2011). The bespoke template was created by combining the left and right

pial surfaces from the fsaverage6 freesurfer template into the CIFTI format using the Workbench commands. The pial surfaces

were then selectively inflated (smoothing cycles: 3, smoothing strength 0.7, smoothing-iterations 13, inflation factor 1.02) using

Workbench to allow visualization of the major cortical folds while maintaining the majority of the cortical surface visible.

Voxel-based tSNR maps were computed by taking the motion-corrected time series from each functional run and dividing the

mean signal at each voxel by its standard deviation over time. The tSNR maps were then averaged across functional runs within

the Discovery (n = 12), Replication (n = 12) and Full datasets (n = 24), and the resultingmean tSNRmapswere projected to the cortical

surface for visualization using FreeSurfer (Figure S1). An additional metric of data quality, fractional Amplitude of Low Frequency

Fluctuations (fALFF), was also computed (Figure S1). fALFF maps were produced by normalizing the total power in the low

(0.01 – 0.08 Hz) frequency range by the total power across all frequencies (Zou et al., 2008).

Discovery of Networks within the Individual
For each participant, half of her data were used in a discovery manner to identify networks that would be later tested in the remaining

independently collected data sessions. The odd-numbered sessions (i.e., 1st, 3rd, 5th, etc) formed the discovery dataset (n = 12) while

the even-numbered sessions (i.e., 2nd, 4th, 6th, etc) were set aside as the hypothesis-testing dataset (next section). The discovery

datasets in each of the four participants were analyzed blind to the hypothesis-testing datasets.

For the discovery analysis, Pearson’s product moment correlations between the fMRI time series at each cortical surface vertex

were computed. This resulted in an 81,924 3 81,924 element cross-correlation matrix (40,962 vertices per hemisphere) for each of

the 12 fMRI runs from the discovery dataset. Thematriceswere then r-to-z transformed and averaged to yield ameanmatrix with high

stability. These discoverymatrices were used to explore network organization. Themean cross correlationmatriceswere assigned to

the bespoke cortical template so that individual seed vertices could be selected and their functional connectivity maps interactively

viewed using wb_view (Marcus et al., 2011). Individual vertices were selected from the general vicinity of expected locations of target

networks in PFC (as estimated from independent group-averaged data; n = 1000 from Yeo et al., 2011) and expectations from the

literature (e.g., Power et al., 2011; Yeo et al., 2011).
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First, a seed vertex was selected from lateral PFC near regions which form part of the canonical default network, and the resulting

maps visualized. If the functional connectivity map revealed a network of distributed regions showing a robust correlation with the

seed region (z(r) z0.6), the seed vertex number was recorded for further analysis. If the map revealed no strong correlations, or a

diffuse network of correlations that were observably lower (z(r)z0.4), this was taken as evidence that the seed region was sampling

an area of signal dropout or containing amixture of signals, respectively, and a different seed region was selected. The colorbar scale

was set between 0.2 and 0.6, using the JET256 palette in wb_view, so that the correlation structure could be adequately represented

and these subtle differences observed. After a robust network was detected and recorded, a different seed vertex was selected that

satisfied 4 criteria: the second seed region i) was within the lateral PFC, ii) was in the vicinity of the previously identified network’s

seed, iii) was in a region of the cortical surface that showed low correlation (z(r)<0.3) with the previous network’s seed region, and

iv) also showed robust correlation with a distributed set of regions. Thus the analysis converged on robust networks that had closely

neighboring representations within the lateral PFC.

The goal of this discovery procedure was not to confirm expectations from the group data, but to allow the individual participant

maps to be extensively interrogated, moving outward from properties expected from the groupmaps. Given prior analyses of within-

subject data (e.g., Figure 4 from De Luca et al., 2006; Figure 3 from Vincent et al., 2006; Figure 9 from Van Dijk et al., 2010), it was

unsurprising that many maps constructed within the individual participants resembled canonical networks discovered in group-

analyzed data. The targets of our exploration were network features that are not fully captured by group analyses (e.g., Laumann

et al., 2015; Gordon et al., 2017a, 2017b; see also Fedorenko et al., 2012).

As the results will demonstrate, seed regions placed in nearby regions of lateral PFC revealed two important features that led to the

regions selected for the hypothesis-testing phase of analysis. The first feature was that, like typical group-based analyses, the result-

ing distributed networks contained inferior parietal, temporal, medial prefrontal, and posteromedial cortical components near to what

has been described as the ‘default network’ (DN). Second, nearby seed regions yielded distributed networks that were closely

neighboring but separate throughout much of the distributed organization of the network. That is, two distinct networks were closely

interdigitated throughout the topography of the canonical DN suggesting the hypothesis that the DN may be comprised of multiple

neighboring networks. We refer to these hypothesized networks as Network A and Network B (Figure 1).

Hypothesis Testing to Dissociate Networks within the Individual
The discovery phase of data analysis led to the hypothesis that two distinct interdigitated networks exist that each are within or near

to the canonical DN (Figure 1). The two networks were present in each individual participant. The goal of the hypothesis-testing phase

was to use independent data in each participant to support or refute the possibility of two dissociable networks. To conduct this anal-

ysis, two distinct neighboring lateral PFC seed regionswere selectedwithin each participant aswell as pairs of regions throughout the

cortex based only on the discovery datasets that maximized the separation of the distributed networks. A priori regions (single

vertices) were selected in each of the main regional zones of the cortex (temporal, inferior parietal, posteromedial, and medial pre-

frontal). These a priori regions were targeted to locations where contiguous vertices could be observed in Network A and Network B

(Figure 1). A seed region was also selected in parahippocampal cortex (PHC) to quantify the representation of Network A in this re-

gion, given a prior literature linking the hippocampal formation to the DN (Greicius et al., 2004; Vincent et al., 2006; Kahn et al., 2008).

These regions were then statistically tested in the independent data to formally dissociate the two networks.

The critical test was whether there would be significant interactions between the two lateral PFC seed regions and Network A and

Network B regions in each of the zones of cortex in the independent hypothesis-testing datasets. The presence of significant inter-

actions would be evidence for regional dissociations. The presence of interactions across all distributed zones of the cortex would be

strong evidence that there was a complete network dissociation across the cortex, in essence establishing dissociable but adjacent

networks. For each of the 12 hypothesis-testing data sessions within each participant, values representing the r-to-z transformed

Pearson’s product moment correlation for each of the two lateral PFC seed regions were computed in relation to each of the distrib-

uted test regions. Statistical tests were performed as a two-way ANOVA. In each ANOVA, the independent (classification) variables

were the PFC seed location (A and B) and the a priori test regions (A and B) within one of the separate zones of cortex. The dependent

variable was the r-to-z transformed Pearson’s product moment correlation between each seed and test region. Each cell contained a

correlation measure from each of the 12 sessions in the hypothesis-testing dataset, producing a balanced 2 X 2 factorial design with

12 elements in each cell. This 2-factor analysis was repeated for each of the separate cortical zones (temporal, inferior parietal, post-

eromedial, andmedial prefrontal). Statistical significance level was set at p < 0.01. Critically, themultiple tests across the network and

across subjects were not independent in the sense that they were targeting convergent evidence for network dissociation. Thus

multiple, repeated significant results in the ANOVA across regions and participants would provide a high level of certainty for disso-

ciation. Sporadic significance that occurred in 1 in 20 or 1 in 100 tests that showed no specific pattern might be indicative of false

positives. As the results will reveal, the data patterns and hypothesis-directed statistical tests were quite clear in the weight of their

evidence.

Effects of Misalignment between Individuals
The details of network organization that are revealed by our analyses within individuals suggest a level of spatial and anatomical

specificity that would likely be lost or underappreciated when central tendencies across participants are extracted in group-averaged

data or when details of anatomy in one participant are assumed to apply to another. That intuition can be appreciated visually by
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examining Figures 1, 3, 4, 5, 6, and 7, and also in results from other papers (e.g., Figure 7 from Laumann et al., 2015). To formally

explore this issue, we asked to what degree network structure present using individually-tailored regions is lost when one person’s

anatomy is assumed to apply to another person.

For these analyses, in each of the four participants we extracted the hypothesized cortical regions that were components of DN-A

and DN-B from the discovery datasets (lateral prefrontal, temporal, inferior parietal, posteromedial, andmedial prefrontal, but not the

parahippocampal region; Figure 1), yielding 10 individually-tailored regions per subject. These regions were then used to construct a

10 3 10 matrix of correlations in the hypothesis-testing dataset for each participant. To address the question of whether misalign-

ment between individuals affects the results, we recalculated the matrices in each participant using the regions defined in the other

three participants (Figure S5). The goal of this analysis is to provide some level of visualization of what is maintained and what is lost

when misalignment is present across individuals. Our focus here is on the specific dissociation between DN-A and DN-B as an

example of an important feature of functional-anatomical organization (see Gordon et al., 2017a for a conceptually similar analysis

performed for algorithmically defined individually-tailored patches). As can be seen in Figure S5, the clustering of individually tailored

regions into the two distinct networks breaks downwhen seed region locations from a different subject are used. This result illustrates

that the spatial variation between individuals is enough to obscure the clear and reproducible network dissociation that is uncovered

within the individuals.

Additional Explorations Targeting Adjacent Networks within the Individual
The main analyses explored and tested for dissociation of two distinct neighboring networks that fractionate the canonical DN. This

was an unexpected result and encouraged further exploration to determine whether there were further network fractionations. For

these additional, post hoc explorations the full dataset for each participant was used to dissociate networks. Results are reported

for network properties that were evident in at least two separate participants.

Confirmation of Interdigitated Network Representations in the Brain Volume
Surface projection provides a convenientmeans to visualize cortical organization and the juxtaposition of networks on the continuous

surface. However, projection to the surface involves a spatially-nonlinear transformation that can project nearby voxels in the volume

to distant positions on the surface (such as occurs when folds near the crowns of separate gyri abut one another). It is thus important

to check that the observed interdigitation between the dissociated networks is present in both surface and volume representations

and is not the result of the cortical sampling procedure used. Moreover, volume-based analysis will be required for many applied

endeavors including presurgical planning and localization for neuromodulation (e.g., transcranial magnetic and direct-current

stimulation).

To explore these issues, we reproduced the findings of two dissociated networks linked to the default network in the volume. The

functional data from each subject were preprocessed as described for the surface-based pipeline, with the exceptions that smooth-

ing was performed in the volume at 2mm FWHM prior to regression of nuisance variables and bandpass filtering, and that data were

not projected to the surface. The first 8 resting state runs from each subject were concatenated in time and AFNI’s InstaCorr (R. Cox

and Z. Saad, 2010, International Conference on Resting-State Functional Brain Connectivity, conference; https://afni.nimh.nih.gov/

afni) software was used to interactively select seed voxels and view the resulting FC maps. Two seed voxels were selected in left

lateral PFC that maximized the separation between the two FC map representations in posteromedial cortex, namely a ventral

representation in retrosplenial cortex for DN-A, and the dorsal posterior cingulate cortex representation for DN-B. When the two

candidate seed regions were identified, the seed voxel locations were recorded and FC maps were produced in all 24 runs of the

data for each subject.

Pearson’s product moment correlations were calculated between the fMRI time series at each voxel and the seed voxel. Themaps

were then r-to-z transformed and averaged to produce a single FC map for each of the two seed regions. The question was whether

the two parallel networks would retain the critical features observed in the cortical surface when viewed in the volume (Figure S4).

More broadly, while the surface-based visualization provedmost effective for discovering organizational details, volume-based anal-

ysis is important to fully understand the underlying organizational features, including the possibilities that complex geometry of the

sulcal patterns and also non-neuronal structures such as vessels may contribute to estimated features of cortical organization.

Confirmation of Observed Parallel Networks Using Data-Driven Network Parcellation
The network dissociations reported were discovered and replicated using seed-based methods within-subjects that generalized

across subjects. If the network dissociations are robust, they should also be observable using multiple approaches. That is, the

path we initially employed to uncover them should not be the only way to reveal their presence and their specific spatial organization.

To investigate whether the fractionation of the default network generalized across approaches, we explored network organization

within the individual participants using data-driven clustering techniques.

We concatenated the surface-projected timeseries data from the Discovery dataset (n = 12), and usedMATLAB’s kmeans function

(version R2015a; MathWorks, Natick, MA) to parcellate the vertex timeseries into clusters. As discussed extensively in our earlier

analysis of group-based network estimates (Yeo et al., 2011), clustering approaches yield multiple solutions to data parcellations

at many levels of clustering. Here we explored a relatively low dimensional fractionation (k = 12) that was able to yield the key disso-

ciated networks including many of their distributed subcomponents.
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Additional Exploration of Network Organization along Regions of the Medial Temporal Lobe with Low
Signal-To-Noise Ratio
As the results unfolded, the DN-Awas found to possess a clear representation in the PHC, while no such representationwas detected

for DN-B. As portions of the medial temporal lobe are susceptible to signal drop-out in fMRI (Ojemann et al., 1997), additional ana-

lyses were conducted to try to find evidence for a representation of DN-B in this region. Additional analyses were focused on the

subject that showed the most robust network dissociations (S4). First, the FC maps for DN-A and DN-B from the PFC seeds were

disattenuated by using the reliability of the functional connectivity maps across runs as an estimate of the signal dropout (Mueller

et al., 2015; Figure S2A). This revealed two representations belonging to DN-B in the inferior temporal lobe along zones of suscep-

tibility artifact, but in regions located well outside the PHC. Second, seed vertices were selected in a posterior to anterior progression

along the medial temporal lobe, and the resulting FCmaps were observed (Figure S2B). This analysis also did not reveal evidence for

a representation of DN-B in the vicinity of the representation of DN-A. We also further explored whether other networks might be

detected along the inferior and anterior temporal lobe, once signal dropout was partially accounted for. We describe these additional

observations as potential avenues for further more detailed investigations as well as a reminder that, even with our numerous steps to

increase signal-to-noise through signal averaging and our use of small voxels and acceleration during acquisition, signal loss due to

susceptibility artifacts is still a problem in certain zones of cortex.

Test-Retest Reliability of Parallel Interdigitated Networks
The FC maps for DN-A and DN-B were produced from the Discovery and Replication datasets (Figure S3). Additionally, the mean

connectivity matrix from the Discovery (n = 12) and Replication (n = 12) datasets were correlated to show the consistency of the con-

nectivity patterns within each subject (S1: r = 0.88; S2: r = 0.95; S3: r = 0.87; S4: r = 0.94, all p < 0.001).

QUANTIFICATION AND STATISTICAL ANALYSIS

This study includes n = 4 participants, each of which were scanned over 24 fMRI sessions. Each participant’s imaging data were

divided into discovery (n = 12; odd-numbered runs) and replication (n = 12; even-numbered runs) samples to allow for data explo-

ration and statistical testing using independent data points. Functional connectivity between brain regionswas calculated inMATLAB

(version 7.4; http://www.mathworks.com; MathWorks, Natick, MA) using Pearson’s product moment correlations which were r to z

transformed prior to averaging or comparison. Statistical tests were performed as a two-way ANOVA using MATLAB’s anova2 func-

tion (version R2015a). Statistical significancewas set to p < 0.01. Network parcellation was performed usingMATLAB’s kmeans func-

tion (version R2015a).
e5 Neuron 95, 457–471.e1–e5, July 19, 2017

http://www.mathworks.com

	Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity
	Introduction
	Results
	High Signal-to-Noise and Full-Brain Coverage Was Achieved in Each of Four Individuals
	Distinct Distributed Networks Fractionate the Canonical Default Network within the Individual
	Double Dissociation of the Two Networks within the Individual
	The Importance of Examining Network Organization within the Individual
	Topography of Multiple Distinct Networks within the Individual

	Discussion
	Canonical Networks Fractionate into Distinct Networks within the Individual
	Relations to Prior Observations
	Parallel Large-Scale Distributed Networks Are an Organizing Principle of Association Cortex
	Evidence for a Macroscale Organization of Association Cortex that Spans Networks
	Limitations and Technical Considerations
	Conclusions

	Supplemental Information
	Author Contributions
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Participants

	Method Details
	MRI Data Acquisition
	Data Preprocessing
	Discovery of Networks within the Individual
	Hypothesis Testing to Dissociate Networks within the Individual
	Effects of Misalignment between Individuals
	Additional Explorations Targeting Adjacent Networks within the Individual
	Confirmation of Interdigitated Network Representations in the Brain Volume
	Confirmation of Observed Parallel Networks Using Data-Driven Network Parcellation
	Additional Exploration of Network Organization along Regions of the Medial Temporal Lobe with Low Signal-To-Noise Ratio
	Test-Retest Reliability of Parallel Interdigitated Networks

	Quantification and Statistical Analysis



