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Introduction: Acoustic radiation is one of the most important white matter

fiber bundles of the human auditory system. However, segmenting the

acoustic radiation is challenging due to its small size and proximity to several

larger fiber bundles. TractSeg is a method that uses a neural network to

segment some of the major fiber bundles in the brain. This study aims to

train TractSeg to segment the core of acoustic radiation.

Methods: We propose a methodology to automatically extract the acoustic

radiation from human connectome data, which is both of high quality and

high resolution. The segmentation masks generated by TractSeg of nearby

fiber bundles are used to steer the generation of valid streamlines through

tractography. Only streamlines connecting the Heschl’s gyrus and the medial

geniculate nucleus were considered. These streamlines are then used to create

masks of the core of the acoustic radiation that is used to train the neural

network of TractSeg. The trained network is used to automatically segment

the acoustic radiation from unseen images.

Results: The trained neural network successfully extracted anatomically

plausible masks of the core of the acoustic radiation in human connectome

data. We also applied the method to a dataset of 17 patients with unilateral

congenital ear canal atresia and 17 age- and gender-paired controls acquired

in a clinical setting. The method was able to extract 53/68 acoustic radiation

in the dataset acquired with clinical settings. In 14/68 cases, the method

generated fragments of the acoustic radiation and completely failed in a single

case. The performance of the method on patients and controls was similar.

Discussion: In most cases, it is possible to segment the core of the acoustic

radiations even in images acquired with clinical settings in a few seconds using

a pre-trained neural network.
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1. Introduction

The acoustic radiation (AR) is a white matter fiber bundle
that connects the Heschl’s gyrus (HG) in the cortex with the
medial geniculate nucleus (MGN) in the mid-brain (1, 2). The
AR is one of the most important fiber bundles of the auditory
system (3), and its analysis is relevant for understanding the
mechanisms of acoustic stimuli processing and how they are
affected by different diseases. For example, diseases such as
tinnitus (4, 5), schwannoma (6), and putaminal hemorrhage
(7, 8) have been associated with changes in the AR. Reliable
methods for extracting the AR are crucial for performing
such analyses.

Extracting the AR with tractography from diffusion MRI
(dMRI) is challenging (9). First, the AR is a relatively short
bundle of approximately 4–6 cm (2), making it especially
sensitive to the low resolution of standard imaging acquisitions
used in clinics. Second, the AR is very close to other bundles
such as the cortico-spinal tract (CST), arcuate fasciculus (AF),
the middle longitudinal fasciculus (MLF), the inferior fronto-
occipital fasciculus (IFOF), and the optic radiation (OR) (10–
12). We have also found that the AR is close to the inferior
longitudinal fasciculus (ILF) in some cases. This closeness to
other bundles can make it difficult for the tractography method
to extract streamlines only related to the AR. Low-resolution
dMRI might be unable to disentangle the crossing and kissing
fiber bundles from the intersection regions along the AR. This
has also been reported as a problem for segmenting neighboring
fiber bundles (12). Moreover, MGN, HG, and AR have a large
variability among subjects (2, 9, 11, 13).

The fiber bundle connecting the MGN with the HG can be
considered the core of the AR. In their review, Maffei et al. (9)
discussed that, in addition to the core of the AR, there is evidence
from ex vivo studies on macaque monkeys that the AR might
have extra layers of fibers that create a “belt” that can go beyond
the HG and reach the superior temporal gyrus (STG) (14, 15).
The core and this belt of the AR are thought to have different
functions. The core of the AR might be involved in basic tone
processing. In contrast, the belt might be involved in integrating
auditory information with other sensory information. Since
their purpose is different, neurological and auditory conditions
can affect the core and the belt of the AR differently. Thus,
having independent segmentation masks for the core and the
belt is relevant for further analyses. In this article, we focus on
generating segmentation masks of the core of AR.

Different atlases of AR have been proposed in the literature.
For example, Bürgel et al. (2) used histology to create a high-
resolution atlas of different fiber bundles of the white matter
from ten donors, including the AR. More recently, Maffei
et al. (16) created an atlas using dMRI acquisitions with ultra-
high b-values (up to 10,000 s/mm2) and high resolution (1.5
mm isotropic) from the MGH adult diffusion dataset of the
human connectome project (HCP) (17, 18). However, as already

mentioned, the use of atlases of AR is not ideal due to its
reported anatomical variability (1, 2, 9, 16, 19).

Two automatic tools include the segmentation of the AR:
XTRACT (20, 21) and TRACULA (22). XTRACT is a tool of
the FMRIB Software Library (FSL) (23) that can segment 42
fiber bundles, including the AR. In order to segment the AR,
XTRACT runs probabilistic tractography between the HG and
the MGN and defines exclusion masks to remove anatomically
implausible streamlines. In particular, it uses two coronal planes
and an axial plane around the thalamus, a region covering the
optic tract and the brainstem as exclusion masks. XTRACT also
provides an atlas of the AR based on the HCP young adult
dataset (24, 25) and the UK Biobank dataset (26). One potential
issue of XTRACT is that its exclusion criteria might be too liberal
with respect to knowledge from neuroanatomists (9, 10). Thus,
there is a risk that segmentation masks might cover areas that
should not be part of the AR.

TRACULA (27) is a tool of FreeSurfer (28) for fiber
bundle segmentation. This method uses prior anatomical
information of the fiber bundles to steer a Bayesian-based
global tractography. The original method included 18 main fiber
bundles and did not include the AR. Maffei et al. (22) extended
the number of fiber bundles to 42, including the AR. For this,
they manually segmented the 42 fiber bundles in 16 subjects of
the MGH adult diffusion dataset of the HCP (17, 18).The new
definitions weremade available in the latest version of FreeSurfer
(version 7.2, release date: July 2021).

Regarding the AR, Maffei et al. (22) used a subset of the
segmentation masks used by Maffei et al. (16) to create their
atlas of AR. One of the issues of TRACULA for segmenting
the AR is that the manual dissections in the 16 subjects include
too few streamlines. More specifically, the mean number of
streamlines extracted per subject in the MGH dataset was 26
(ranging between 2 and 91) for the left side and 32 (ranging
between 6 to 70) for the right side. As a comparison, TRACULA
uses an average of 1,250 streamlines per subject (ranging
between 333 and 2,726) for the left arcuate fascicle. This low
number of streamlines used for the AR has the risk of making
TRACULA less specific with respect to anatomical variations of
the AR. An additional issue of TRACULA is that it uses global
tractography, which makes it very time-consuming compared to
other methods. Moreover, TRACULA requires the parcellation
generated by FreeSurfer, which usually takes several hours.

Wasserthal et al. (29) proposed TractSeg, a method based
on artificial intelligence (AI) that is able to segment 72 main
fiber bundles from dMRI automatically. The advantages of this
method are that it works with standard dMRI acquisitions, even
with low b-values, is fast (takes a few seconds), does not require
a previous registration of images, and, unlike atlases, the results
are subject-specific. Due to the aforementioned difficulties in
segmenting the AR, the original method did not include the
AR. More recently, Wasserthal et al. (29) trained the original
neural network using the masks generated by XTRACT (20,
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21), including the AR. Thus, since version 2.2. of TractSeg,
it is possible to obtain these segmentations with the option
“–tract_definition xtract”.

Both XTRACT and TRACULA allow the streamlines to go
beyond the HG and reach the STG. This means that these
methods are not designed to extract the core of the AR. Thus,
the main goal of this paper is to assess the possibility of using
TractSeg for the segmentation of the core of the AR in datasets
acquired in clinical settings.

2. Methods

2.1. Datasets

We used two datasets in this study. The first one consists
of dMRI data from 125 subjects of the HCP young adult
dataset (24, 25). A total of 105 of these subjects are exactly
the same used by Wasserthal et al. (29) and were used for
training the TractSeg (29) models with masks generated using
the segmentation methodology proposed in this paper, while
the remaining 20 were used for independent testing. The dMRI
data of HCP consists of 90 directions for each of the three b-
values: 1,000, 2,000, and 3,000 s/mm2, and the spatial resolution
is 1.25 mm isotropic. These images were acquired in Siemens
3T scanners using a spin-echo EPI sequence with a multiband
factor of 3, TR/TE is 5,520/89.5 ms, a flip angle of 78 degrees,
and a refocusing flip angle of 160 degrees. The images were
acquired using a head coil with 32 channels. More details on
imaging parameters are available on the website of HCP1. The
second dataset consists of dMRI data of 34 subjects acquired
with the following parameters: isotropic resolution of 2.3 mm

and 60 directions at b = 1,000 s/mm2. The images were
acquired at the MRI facility of Karolinska Institute at Karolinska
University Hospital in Solna using a GE Discovery 3T MR750
scanner with a spin-echo EPI sequence with TR/TE of 7,000/80.9
ms and flip angle of 90 degrees. The images were acquired
using a head coil with 8 channels. The cohort of this dataset
consists of 17 patients with unilateral congenital ear canal
atresia and 17 age- and gender-paired controls. The patients
are adults with contralateral normal hearing, had no hearing
aid or successful ear canal surgery before age 12, and have
sufficient understanding of the Swedish language. Subjects with
a history of severe psychiatric illness or neurological disease, any
associated syndrome (Goldenhaar, CHARGE, etc.), or metallic
artifacts were excluded from the cohort. In twelve of the patients,
the right ear is affected. Eight of the patients are female and
nine are male. The patients were all recruited in the Stockholm
region. The ethical permit was granted by the Swedish ethical
board (Dnr 2012/1661-31/3). The clinical dataset was pre-
processed with the standard pre-processing pipeline of MRtrix3

1 https://www.humanconnectome.org/hcp-protocols

(30) to remove artifacts and geometric distortions, which in turn
uses methods from FSL (23).

2.2. TractSeg

TractSeg is a method that trains deep neural networks for
segmenting fiber bundles (29). Figure 1 shows the pipeline of
TractSeg. The steps of TractSeg are the following. First, the dMRI
data must be pre-processed to remove artifacts and geometric
distortions. Notice that this step is not required for HCP data
since this dataset is already pre-processed (25). The clinical
dataset was pre-processed with the tools provided in MRtrix3
(30). Second, fiber orientation distribution functions (fODF) are
estimated per voxel using constrained spherical deconvolution
(CSD) (31). The maxima (also known as peaks) of the fODFs
can be seen as estimations of the most likely orientation fiber
bundles in every voxel. Thus, the next step is to extract the largest
peaks of the fODFs per voxel. Every peak is a vector whose
direction and magnitude encode the most likely orientation of a
fiber bundle and its strength, respectively. This strength, among
many factors, is related to the density of fibers at the specific
orientation of the peak. TractSeg assumes that a maximum of
three fiber bundles can traverse a voxel. Thus, only the three
largest peaks are input to the neural network. Notice that the
magnitude of only one peak is not negligible in regions traversed
by a single fiber bundle and two for those with two crossing
fiber bundles. We used the option “–super_resolution” from
TractSeg, which upsamples the peaks to an isotropic resolution
of 1.25 mm.

Expert neuroanatomists manually segmented 72 different
fiber bundles in 105 HCP subjects. These segmentations were
used in TractSeg to train U-Net-like neural networks (32). As
shown in Figure 1, TractSeg uses 2D neural networks (one per
axis) in two stages. The first stage is used to generate masks
of the fiber bundles by only considering the 2D information
contained in the training slices. The second stage is used to
learn the best combination to generate the final segmentation
of the 72 fiber bundles. Notice that TractSeg uses a so-called
2.5D approach, that is, segmenting 3D structures with multiple
2D neural networks. Although it is possible to use 3D U-Nets
instead, the authors argue that a 2.5D approach is more efficient
and less prone to overfitting (29), which is in agreement with
studies dealing with other segmentation problems [e.g., (33)].

TractSeg can be seen as a powerful method that can be used
out-of-the-box to segment 72 fiber bundles (29). One of the
main advantages of TractSeg is that, although it was trained
on high-quality data [HCP young adult dataset (24, 25)], the
neural network is also able to segment these bundles in dMRI
data of clinical quality without any need for training. This is
because the 72 targeted fiber bundles are relatively big. It is
interesting to assess whether or not TractSeg can achieve the
same performance with smaller fiber bundles, specifically the AR
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FIGURE 1

Segmentation pipeline of TractSeg. Left: The dMRI data is pre-processed for extracting the peaks of the fiber orientation distribution functions

per voxel. These peaks are used as the input of the neural network. Middle: 2D U-Net-like fully convolutional neural networks (FCNNs) are

trained to segment fiber bundles. Three networks are trained per axis (coronal, axial, sagittal) in two stages. While the goal in the first stage is to

segment the fiber bundles using 2D information, the second stage aims at learning the best combination of the three intermediate results to

generate the final segmentation. Right: Segmentation masks of 72 fiber bundles are generated. Figure reproduced from Wasserthal et al. (29),

license CC BY 4.0.

in clinical data. Thus, we generated training data for the AR from
the same 105 HCP subjects used in TractSeg as described in the
following section.

Although TractSeg does not include the core of the AR, it can
be trained for that purpose (29). The training procedure requires
the segmentation of the new fiber bundles of interest, ideally
using the same dataset of the original article. Following the same
approach of TractSeg, we used five-fold cross-validation with
105 subjects: 63 training subjects, 21 validation subjects, and
21 test subjects per fold. An additional set of 20 subjects was
used for independent testing. As mentioned, newer versions
of TractSeg have the option of using segmentation masks from
XTRACT, including the AR. However, these segmentations
consider not only the core but also can contain fiber bundles
reaching the STG.

By design, TractSeg is able to segment fiber bundles beyond
the original 72. For this, it is crucial to use high-quality
segmentation masks of the new bundles during training. The
following subsection describes the proposed methodology for
generating such segmentation masks for AR.

2.3. Generation of training data

Probabilistic tractography (iFOD2) with anatomically-
constrained tractography (ACT) (34) from MRtrix3 (30) was
used for creating streamlines connecting the left HG to the
left MGN and the right HG to the right MGN targeting
the left and right AR, respectively. Masks of the HG and
MGN at both hemispheres extracted with FreeSurfer (28) are
available in the HCP database and were used as independent
seeds for tractography. Thus, two sets of streamlines were
obtained per side: one for streamlines starting at the HG
and ending at the MGN and the other reversing the roles of
two masks. We used the command “tckgen” in MRTrix3 (30)

with the default parameters of iFOD2. Moreover, we used the
options from ACT “- backtrack”, which tries to re-track partially
truncated streamlines, and “- crop_at_gmwmi”, which crops the
streamlines once they cross the boundary between gray and
white matter.

As mentioned, one of the challenges in obtaining the
AR is that it is very close to other fiber bundles, as shown
in Figure 2. Our approach to tackling this issue is to reject
any streamline reaching segmentation masks of nearby fiber
bundles. In particular, we used the masks of the CST, IFOF, and
ILF created by Wasserthal et al. (29) for training TractSeg to
reject implausible AR streamlines.

As shown in Figure 2, the AF, OR, and MLF are too close
to the AR that even some voxels can contain streamlines of
different bundles. Thus, masks of AF, IR, and MLF cannot be
used to reject implausible AR streamlines. Instead, we removed
the voxels from these masks that are closer than 4 cm from
both the HG and the MGN and used them to reject implausible
AR streamlines. With this procedure, streamlines are allowed
to enter the voxels close to the MGN and HG, which are also
covered by the AF, OR, and MLF segmentation masks.

An additional problem is that the HG and the superior
temporal gyrus (STG) are very close to each other, as shown in
Figure 3. Due to the closeness between the HG and the STG,
some streamlines can leak to the latter, especially when theMGN
is used as the origin of the streamlines. In order to avoid this
from happening, we used the mask of the STG extracted with
FreeSurfer, which is available in the HCP database, to reject
streamlines not ending in the HG. This step is crucial to remove
possible streamlines not belonging to the core of the AR.

Notice that the described restrictions for generating
streamlines are stringent and make the generation of training
data computationally expensive. Actually, around 150,000
generated streamlines were discarded per every single accepted
one. Thus, as stopping criteria, we set a maximum of 1,000
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FIGURE 2

The relative position of the left acoustic radiation with six nearby fiber bundles for a subject of the human connectome project. The Heschl’s

gyrus, medial geniculate nucleus, and acoustic radiation of the left side of the brain are depicted in red, magenta, and blue, respectively. Each of

the nearby fiber bundles is depicted in green, one per subfigure. A and P indicate the anterior and posterior sides of the brain, and T1w is used as

a reference. The depicted acoustic radiation was computed using the methodology of Section 2.3.
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FIGURE 3

The acoustic radiation (in blue) from the medial geniculate

nucleus (in magenta) and the Heschl’s gyrus (in red) is also very

close to the superior temporal gyrus (in yellow). A and P indicate

the anterior and posterior sides of the brain, and T1w is used as

a reference.

accepted streamlines, or 150 million generated streamlines in
total per seedmask. Themaximum length of each streamline was
set to 60mm. The two sets of streamlines per side were combined
into a single tractogram. This procedure resulted in tractograms
of at least 1,000 streamlines per side of the brain. Finally, a
mask of the AR per side was created with the voxels traversed
by at least ten streamlines. This procedure was successful in all
HCP subjects.

It is important to emphasize that the original article of
TractSeg (29) used whole-brain tractograms, each with 10
million streamlines with lengths between 40 and 250 mm. From
these streamlines, only a few were part of the AR (fewer than
20 in all cases), which are not enough to generate reliable
segmentation masks. The proposed procedure for generating
streamlines of the core of the AR is expensive but effective for
generating the masks that were used for training TractSeg.

3. Results

This section shows the results of the proposed methodology
for segmenting the core of the AR applied to HCP data and
the diffusion data acquired in a clinical setting on 17 patients
with unilateral congenital ear canal atresia and 17 age- and
gender-paired controls.

3.1. High-quality di�usion data

Figure 4 shows the curves of the F1 score during validation
and testing on HCP data. The best performing network attained

an F1 score of 0.73 during testing. The F1 score is equivalent to
the Dice score for segmentation purposes.

We tested the trained network in 20 additional HCP
subjects not used for training. As shown in Figures 5, 6 for
one of these subjects, the segmentation results of the core
of the AR at both sides are anatomically plausible. From the
figure, it can be seen that there are differences between atlases.
The segmentation generated from our methodology is more
conservative than the atlases and XTRACT. For example, the
generated segmentation masks always stop at the boundary
between white matter and the HG, while, e.g., (2) usually
overlaps with the HG and is more likely to reach the STG. Most
of the generated masks of AR overlap with the two atlases and
XTRACT.

As shown in Figure 6, the atlases and XTRACT tend to reach
regions of the STG (see yellow arrows), sometimes in regions
not adjacent to the HG. It can also be seen that the segmentation
masks differ from each other, especially in the region close to the
HG.

Using visual inspection, we found that the proposed
methodology was able to extract anatomically plausible AR in
all 20 subjects used for independent testing.

3.2. Di�usion data acquired in a clinical
setting

We applied the trained network on dMRI data of 17
subjects with unilateral ear canal atresia and 17 controls. As
mentioned, these images were acquired in a clinical setting
(b = 1,000s/mm2, 60 directions, spatial resolution = 2.3 mm

isotropic). This case is more challenging than the segmentation
of the HCP data due to the low spatial and angular resolution
and the relatively low b-value used in the acquisition. Table 1
shows the number of cores of the ARs that were completely
reconstructed, were reconstructed in fragments, or where the
method failed. As shown, the method was able to completely
reconstruct the core of the AR in most cases (53/68 = 77.9%)
with a similar performance between patients and controls (24 vs.
29). The method yielded fragmented cores of the ARs in 14 cases
(20.5%) andmore often in patients than in controls (9 vs. 5). The
fragments were visually inspected. In most cases, the core of the
AR was fragmented into two pieces, each of them closer to either
the MGN or the HG. In a few cases, the core of the AR appeared
as a blob in the middle between the MGN and the HG. In the 14
cases, the fragments were always located at the region where the
AR is expected to be. The method only failed to reconstruct the
left AR of a single patient. The trained network was also more
consistent in yielding uncut segmentations on the left side (2
cases on the left vs. 12 on the right).

In the cases where TractSeg was not able to extract the
complete core of the AR, it is possible to use the masks to guide
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FIGURE 4

Evolution of the training of the neural network with the training epochs. The loss function and the F1 score are shown in red and green,

respectively. Dotted, continuous, and dashed lines correspond to performance during training, validation, and testing.

FIGURE 5

Visualization of the extracted acoustic radiation for one subject from the human connectome project in blue. The Heschl’s gyrus and medial

geniculate nucleus are depicted in red and magenta, respectively. Left: The atlas from Bürgel et al. (2) is shown as a reference in yellow. Middle:

The atlas from Ma�ei et al. (16) is shown as a reference in yellow. Right: The segmentation obtained with XTRACT (20) is shown in yellow as a

reference. A and P indicate the anterior and posterior sides of the brain, and T1w is used as a reference.

tractography. For this, not only the MGN and the HG are used
as seed regions, but also the results of the segmentation with
TractSeg. This makes it more likely for tractography to compute
streamlines that comply with the strict restrictions described in
Section 2.3. Figure 7 shows the results obtained for some of the
subjects.

Figure 8 shows a visual comparison of the segmentation
masks obtained with the proposed methodology, the atlases by
Bürgel et al. (2) and Maffei et al. (16), and XTRACT for one
subject from the clinical dataset where the methodology was able
to extract the core of the AR. As shown, the atlases and XTRACT
tend to reach more the STG. Except for the atlas by Bürgel et al.
(2), the other methods have problems entering the cavity of the
HG in this specific subject.

The extracted segmentation masks can be used for different
group analyses. Among many other options, one can use the
masks to restrict tractography and perform bundle analytics

(35). To showcase this application, we used the implementation
of TractSeg for bundle analytics. In brief, the method runs
tractography, but unlike the procedure described in Section 2.3,
the generated streamlines are only restricted to traversing the
segmentation mask of the AR. Using the AR masks is much
less restrictive than using the neighboring fiber bundle masks
and, thus, is much less time-consuming (ca. 10–20 min. per
subject). Then, the generated streamlines are used to sample the
maps of fractional anisotropy (FA) or any other measurement
along the path of the streamlines. This way, it is possible to
assess differences between the groups along the trajectory of
the AR. Figure 9 shows a bundle analysis of the FA applied to
the AR for the clinical dataset. As shown, the FA starts at a
very low value at the MGN, goes up in the middle, and down
again to the end close to the Heschl’s gyrus. It can be seen that
the 95% CIs (shown with colored bands) are relatively large.
In fact, these CI were 2–3 times larger than for the cortical
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FIGURE 6

Visual comparison of the segmentation masks in one subject of the human connectome project. First column: Segmentation mask of the

proposed methodology (in cyan) and the atlas by Ma�ei et al. (16) (in blue). Second column: Segmentation mask of the proposed methodology

(in cyan) and the atlas by Bürgel et al. (2) (in blue). Third column: Segmentation mask of the proposed methodology (in cyan) vs. the result from

XTRACT (in blue). Every row corresponds to a di�erent axial slice. The superior temporal gyrus (STG), medial geniculate nucleus, and Heschl’s

gyrus are depicted in green, magenta, and brown, respectively. Yellow arrows indicate where the segmentation masks reach the STG.
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TABLE 1 The number of subjects in which the proposed methodology was able to reconstruct the complete acoustic radiation (AR) (Uncut), split

the AR into fragments (Fragm.), or completely failed (Fail) per side in the clinical dataset of unilateral ear canal atresia.

Left AR Right AR ARs of both sides

Uncut Fragm. Fail Uncut Fragm. Fail Uncut Fragm. Fail

Patients R (N = 12) 10 1 1 8 4 0 29 5 1

Patients L (N = 5) 4 1 0 2 3 0 6 4 0

All Patients (N = 17) 14 2 1 10 7 0 24 9 1

Controls (N = 17) 17 0 0 12 5 0 29 5 0

All subjects (N = 34) 31 2 1 22 12 0 53 14 1

Patients R and Patients L indicate the side of the affected ear.

FIGURE 7

Results for three images acquired in a clinical setting. The core of the acoustic radiations (ARs) are depicted in blue, the Heschl’s gyrus (HG) in

red, and the medial geniculate nucleus (MGN) in magenta. Left: The core of the ARs are completely extracted. Middle: The core of the ARs are

fragmented into two pieces. Right: The method gave a blob in between the MGN and the HG for the right side and was unable to segment the

core of the AR of the left side. A and P indicate the anterior and posterior sides of the brain, and T1w is used as a reference.

spinal tract (CST) and other large tracts. This could mean that
the intersubject variability is higher for the AR than for large
fiber bundles. We performed t-tests along the tract that were
corrected for multiple comparisons to account for family-wise
errors. With this procedure, we did not find any statistically
significant difference between the two groups at any point along
the tract.

4. Discussion

Previous studies have shown that extracting the AR is
possible in vivo on data from the MGH adult diffusion dataset
of HCP with ultra-high b-values up to 10,000 s/mm2 (16).
In this study, we showed that extracting the core of the AR in
high-quality dMRI data with lower b-values (b = 1,000, 2,000,
and 3,000 s/mm2) from the HCP young adult dataset by using
masks of neighboring fiber bundles is also possible. One issue
of our approach is that our strategy is very restrictive and
time-consuming.

Thus, in order to reduce the computation time, we trained
the neural network of TractSeg (29) with the segmentation
masks of the core of the AR created from HCP data. There
are two main advantages of using TractSeg for segmenting the
AR compared to using atlases: (a) that the resulting masks are
subject-specific, and (b) it is not necessary to do registration
to a template. Regarding the former, subject-specific masks can
tackle the anatomical variability of the AR, HG, and MGN.
As for the latter, misregistrations can generate errors that are
not a problem for TractSeg. An alternative to using TractSeg
is to generate the core of the AR as proposed in Section 2.3.
The main gain of using TractSeg is that the segmentation mask
is obtained in a few seconds instead of several hours of the
proposed methodology from Section 2.3.

The trained neural network of TractSeg was able to segment
the core of the AR in HCP data in a few seconds instead of
several hours. We used a workstation equipped with an Intel
Xeon CPU E5-2630 v3 with 8 cores at 2.40 GHz, and a GPU
NVIDIAGeForce GTX 1070. The processing of oneHCP subject
using the methodology described in Section 2.3 was 8–10 h
in this workstation. Computing the peaks of the fODFs took
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FIGURE 8

Visual comparison of the segmentation masks on one subject of the clinical dataset. First column: segmentation mask of the proposed

methodology (in cyan) and the atlas by Ma�ei et al. (16) (in blue). Second column. segmentation mask of the proposed methodology (in cyan)

and the atlas by Bürgel et al. (2) (in blue). Third column: segmentation mask of the proposed methodology (in cyan) vs. the result from XTRACT

(in blue). Every row corresponds to a di�erent axial slice. The superior temporal gyrus (STG), medial geniculate nucleus, and Heschl’s gyrus are

depicted in green, magenta, and brown, respectively. Yellow arrows indicate where the segmentation masks reach the STG.

Frontiers inNeurology 10 frontiersin.org

https://doi.org/10.3389/fneur.2022.934650
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Siegbahn et al. 10.3389/fneur.2022.934650

FIGURE 9

Bundle analysis of the fractional anisotropy (FA) applied to the left and right acoustic radiations (AR) for the clinical dataset used in this paper.

The mean FA of patients and controls along the tracts are shown with lines in blue and orange, respectively. The 95% CIs are shown in light blue

and light orange bands, respectively for the two groups. Position 0 and 1 along the tract are located at the medial geniculate nucleus and the

Heschl’s gyrus, respectively.

approximately 1 min and applying the trained neural network
took around 40 s for both the HCP data and the clinical data.
The segmentations generated by the trained neural network
were anatomically plausible when applied to an independent set
of subjects fromHCP. The methodology proposed in Section 2.3
is conservative. Thus, the segmentation masks obtained with the
neural network are also conservative compared to the publicly
available atlases of the AR. We argue that it is important to have
a conservative approach to extracting the core of AR. This way,
the downstream conclusions drawn from group analyses of the
AR will become more meaningful.

The trained neural network had more problems with data
acquired in a clinical setting. Still, it was able to completely
segment the core of the ARs in 77.9% of the cases, yielded
fragmented masks in 20.6% of the cases, and only failed in a
single subject. The performance was very similar in patients and
controls. The neural network tended to reconstruct the core of
the left AR better than the core of the right AR.

As shown in some cases, the neural network yields a
fragmented segmentation. Such fragments can be used as seeds
for tractography, which has the advantage of reducing the high
cost of running tractography to extract the core of the AR.

We compared the proposed methodology with the
segmentation generated by TractSeg (29) trained with masks

created with XTRACT (20, 21). From the results, an important
difference between our methodology and XTRACT is that the
latter included tracts that reached the STG in the segmentation
masks. It is important to differentiate the fibers connecting
only the MGN and the HG from those that can get the STG, as
they can have different purposes in the human brain (9). For
example, Ito et al. (36) reported that the STG might be involved
in the joint processing of visual and auditory stimuli. Unlike
XTRACT, the proposed methodology actively removes the fibers
reaching the STG to target the core of the AR. At this stage, it
is not possible to know if the fibers covered by XTRACT and
not covered by our methodology belong to the belt of the AR.
The STG is a structure that is larger compared to the HG. Thus,
it is not clear which substructures of the STG might be part of
the AR. Such information is crucial to assess whether the voxels
reaching the STG by the masks of XTRACT belong to the AR or
are artifacts.

Unlike our methodology, XTRACT was able to generate
the AR in all cases. Since XTRACT uses less restrictive rules
for generating the masks, they cover more voxels, which
makes TractSeg increase its robustness at the cost of being
less specific. In some cases, the XTRACT masks covered
parts of the ventricles and the most posterior parts of the
STG, almost reaching the medial temporal gyrus. Thus, we
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recommend a manual review of these masks before any
further analysis.

Previously, Bertó et al. (37) added prior information for
improving the segmentation of fiber bundles. Our results are in
line with that study since we show that adding the segmentation
masks of other bundles is needed for the segmentation of small
fiber bundles like the AR.

We showcased the use of segmentationmasks by performing
a bundle analysis on the clinical dataset to assess differences in
FA between patients and control in the AR. We did not find any
statistically significant difference between the groups. The 95%
CI was larger than other bundles (e.g., the CST). This suggests
that the intersubject variability is higher for the AR.

The results of this study are encouraging but also show that
more research is needed toward a fully automatic segmentation
of the AR from images acquired in clinical settings. For example,
as mentioned, TractSeg uses three peaks of the fODFs (29).
Recently, it has been argued that up to seven fiber bundles might
appear in certain brain regions (38). Thus, it is possible that
more peaks could be helpful for extracting the AR. However,
enlarging the number of inputs to the neural network has
the disadvantage of needing more training data or changing
the neural network architecture, which is beyond the scope
of this article. Although TractSeg (29) can still be considered
state-of-the-art for fiber bundle segmentation, new AI-based
segmentation methods have recently been proposed [e.g., (39–
42)]. It is interesting to assess if adapting these methods can
yield better results for segmenting the AR. Plans for the future
also include the analysis of the AR for other diseases affecting
the auditory system and datasets acquired in different clinical
settings.

This study has many limitations. One of the main issues is
that there is not possible to have a personalized ground truth that
can be used to assess the accuracy. This is a general limitation
of any method based on tractography. The atlas by Bürgel et
al. (2) was created from histology and is expected to depict
the anatomy of AR better. However, the variability of the HG,
MGN, and the AR among subjects, makes it less appropriate for
group analyses. A second limitation is that although FreeSurfer
is relatively accurate for segmenting the HG [Desikan et al.
(43) reported intraclass correlations between automatic and
manual segmentations of 0.712 and 0.719 for the left and right
HG, respectively], it can be inaccurate in cases where the HG
has duplications. Marie et al. (44) found in a cohort with 430
participants that 36.6 and 48.8% of the right-handed subjects and
30.8 and 39.4% of the left-handed subjects had duplications on
the left and right side, respectively. Considering duplications of
the HG in the pipeline is clinically relevant since they have been
associated with neurological conditions (45). In order to account
for this anatomical variability of the HG, it would be necessary
not only to use during training more accurate segmentation
tools tailored explicitly for the HG [e.g., TASH (46)] but also
to train independent TractSeg models for subjects with and

without duplications in the HG. The most appropriate TractSeg
model for a specific subject could be chosen once the type of HG
is detected. Still, it is uncertain whether such an approach could
lead to differences in AR.

5. Conclusion

In this study, we proposed a methodology to extract the core
of the AR in subjects from the HCP young adult dataset by using
masks of neighboring fiber bundles obtained with TractSeg.
Since the procedure is expensive, we trained TractSeg to extract
the AR automatically. For this, we used the masks of the AR
extracted from a set of subjects from the HCP young adult
dataset. The trained neural network was applied both to unseen
subjects of the HCP young adult dataset and a clinical dataset.

The main conclusion of this study is that it is possible to
segment the core of the AR in most cases, even in images
acquired in clinical settings in a few seconds with the trained
network. In case it is not possible to reconstruct the core of the
AR, the results can be used as masks for tractography.
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