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Antibacterial coating of implants in
orthopaedics and trauma: a classification
proposal in an evolving panorama
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Abstract

Implanted biomaterials play a key role in current success of orthopedic and trauma surgery. However, implant-related
infections remain among the leading reasons for failure with high economical and social associated costs. According to
the current knowledge, probably the most critical pathogenic event in the development of implant-related infection is
biofilm formation, which starts immediately after bacterial adhesion on an implant and effectively protects
the microorganisms from the immune system and systemic antibiotics. A rationale, modern prevention of
biomaterial-associated infections should then specifically focus on inhibition of both bacterial adhesion and biofilm
formation. Nonetheless, currently available prophylactic measures, although partially effective in reducing surgical site
infections, are not based on the pathogenesis of biofilm-related infections and unacceptable high rates of septic
complications, especially in high-risk patients and procedures, are still reported.
In the last decade, several studies have investigated the ability of implant surface modifications to minimize bacterial
adhesion, inhibit biofilm formation, and provide effective bacterial killing to protect implanted biomaterials, even if
there still is a great discrepancy between proposed and clinically implemented strategies and a lack of a common
language to evaluate them.
To move a step forward towards a more systematic approach in this promising but complicated field, here we provide
a detailed overview and an original classification of the various technologies under study or already in the market. We
may distinguish the following: 1. Passive surface finishing/modification (PSM): passive coatings that do not release
bactericidal agents to the surrounding tissues, but are aimed at preventing or reducing bacterial adhesion through
surface chemistry and/or structure modifications; 2. Active surface finishing/modification (ASM): active coatings that
feature pharmacologically active pre-incorporated bactericidal agents; and 3. Local carriers or coatings (LCC): local
antibacterial carriers or coatings, biodegradable or not, applied at the time of the surgical procedure, immediately prior
or at the same time of the implant and around it. Classifying different technologies may be useful in order to better
compare different solutions, to improve the design of validation tests and, hopefully, to improve and speed up the
regulatory process in this rapidly evolving field.
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Introduction
Even if current peri-operative infection prevention
methods, like antibiotic prophylaxis, have significantly
reduced the incidence of surgical site infections (SSI),
up to 2.5 % of primary hip and knee arthroplasties and
to 10 % of revision arthroplasties can still be compli-
cated by periprosthetic joint infection (PJI) [1]. More-
over, according to recent analysis, these figures could even
be underestimated and are on the rise [2], while multi-
resistant pathogens are often retrieved [3]. The occurrence
of PJI is a devastating complication, often requiring implant
removal, with high morbidity and possible mortality raise
[4] and elevated economical and social costs [5].
Implant-related infections are the results of a complex

interaction of various factors, including bacterial load,
microorganism’s and host’s type, surgical procedure and
technique, and type of implant and of antibacterial
prophylaxis.
In fact, even elective surgery may not be performed in a

completely sterile environment, and operating rooms have
been shown to become contaminated within the first few
hours of service [6, 7]. While in the majority of cases the
rather low bacterial load eventually present at surgery
may be generally overcome by the host’s immunological
defense and the systemic antibiotic prophylaxis [8], in
some patients a SSI may eventually develop, especially
in high-risk patients, in which relevant co-morbidities
may increase the relative risk for infection up to 20
times compared to normal population [9–11]. Similarly,
the most complex surgical procedures and techniques have
been shown to be more prone to septic complications [12].
In this context, implant features, including size, shape,
material, and intended use, also play an important role [13],
while, for example, local antibacterial prophylaxis, like the
use of antibiotic-loaded bone cement or bone grafts has
been shown to reduce the incidence of implant-related in-
fections [14, 15]. In line with these considerations, a strong
recommendation was delivered, in a recent international
consensus meeting on PJI, concerning the need for devel-
oping effective antibacterial surfaces that prevent bacterial
adhesion and colonization of implants and proliferation
into the surrounding tissues [16].
In the present review, we provide a detailed descrip-

tion and an original classification of the technologies
already available or under investigation, aimed at min-
imizing implant-related infections in orthopedics and
trauma surgery.

Rationale of antibacterial coating of implants
Prophylactic systemic antibiotics are administered routinely
to patients who receive an orthopedic device to prevent
peri-operative infection [8]. However, systemic administra-
tion of antibiotics has many potential disadvantages includ-
ing the need for a correct timing of administration, the
relatively low drug concentration at the target site, and the
limited ability to kill bacteria eventually present on the
implant surface or embedded in biofilms.
When Anthony Gristina first proposed the concept of a

“race for the surface”, more than three decades ago, he
described a simplified model of implant-related infection,
whereby host and bacterial cells compete in determining
the ultimate fate of the implant [17]. According to this
model, when the host cells colonize the implant surface
first, the probability of attachment of bacterial cells is very
low and vice versa. Further studies have now made it clear
that the process is much more complex and only partially
understood.
Bacteria have a highly successful and diversified strategy

to adhere and survive on virtually all natural and synthetic
surfaces [18, 19]. Surface characteristics of a biomaterial
such as roughness, hydrophobicity, and electrostatic charge
play only conditional roles [20], while a number of potential
receptors for bacterial adhesive ligands are offered by the
protein film that covers an implant immediately after its
placement into the host body [21–23]. Complement, albu-
min, and several other host proteins and lipids are the
main components of this conditional protein film [24–26].
The process of bacterial adhesion can be divided into a
reversible phase, based on nonspecific interactions between
implant surface and bacterial adhesions, and an irreversible
phase, mediated by molecular and cellular interactions and
closely associated with expression of biofilm-specific gene
clusters in reversibly attached bacteria. All the process
from bacterial adhesion to the production of a mature
biofilm is extremely efficient and is normally completed
within 12 to 18 h [27–30].
On the host side, the detailed process of implant osteo

and tissue integration is also incompletely unveiled [31, 32].
According to Gristina’s model, host cells, once attached to
implant surfaces, should lead to periprosthetic bone regen-
eration and remodeling, protecting the biomaterial against
bacterial colonization [33]. However, bacteria may survive
to osteointegration or to fibrous tissue encapsulation of an
implant, while peri-implant fibrous tissue may even prevent
direct contact between host immunity cells and bacterial
molecules, while the presence of the implant has been
shown to impair innate local host response [34–36].
As a result, there is a strong need for intrinsic implant

surface antibacterial functionality to overcome the implant-
induced defects in the local immune response and to
prevent the striking ability of bacteria to quickly adhere on
a substrate and immediately produce a protective bio-
film barrier, providing a competitive advantage to the
host’s cells over the contaminating microorganisms.
This is of utmost importance especially in patients with
underlying compromised immunity [37] and in those
undergoing revision surgery [38] in which the relative
risk of infection is multiplied.
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At the same time, any coating technology should prove
to be safe in the short and long term, should not interfere
with osteointegration or induce bacterial resistance in the
long run, and should be easy to implement in the clinical
practice and at an affordable cost. Also, since bacterial
colonization, from microbial adhesion to an established
mature biofilm layer only takes few hours [39], any anti-
bacterial protection should act at the exact time of surgery
and for at least some hours or days thereafter.

Classification of antibacterial coating technologies
Local antibacterial implant protection can be achieved
in different ways. Currently, there is not a single, uni-
versally accepted classification of coating technologies,
standardized validation methods are lacking and regu-
latory aspects appear somewhat inadequate in view of
the clinical needs and expectations. Table 1 summa-
rizes the basic requirements that an “ideal” coating
technology should fulfill to meet the needs of a wide-
spread clinical use.
According to their strategy of action, antibacterial coat-

ings can be classified in at least three groups (Table 2):

1. Passive surface finishing/modification (PSM). Here
all surface chemistry and/or structure modifications
aimed at preventing or reducing bacterial adhesion,
without releasing bactericidal agents to the
surrounding tissues, are included.

2. Active surface finishing/modification (ASM).
Active coatings, included in this class, feature
pharmacologically active pre-incorporated antibacterial
agents, like antibiotics, antiseptics, metal ions, or other
organic and inorganic compounds.

3. Peri-operative antibacterial local carriers or coatings
(LCC). According to this strategy, implant
protection is achieved through a biodegradable or
not-biodegradable antibacterial carrier or coating,
applied during surgery on the implant or around it;
the coating may simply act by delivering high local
concentrations of one or more pre-loaded
antibacterials, or it may have a direct or synergistic
antibacterial activity. Antibiotic-loaded
polymethylmethacrylate is probably the very first
Table 1 A list of requirements to be fulfilled by the “ideal” antibacte

Requirements Fulfillments

Safety No systemic toxicity No local toxicity

In vitro activity No cytotoxicity or
genotoxicity

Proven bactericidal and antibiofi
activity on different surfaces

Efficacy Proven in vivo Case series

Ease-of-use Easy handling Versatility

Market Acceptable cost Large availability
example of this coating strategy, used since many
years to protect joint implants.

Although necessarily schematic, this classification may
be helpful to compare different technologies both in the
clinical practice and concerning regulatory aspect, that
should probably differ for different classes.

Passive surface finishing/modification
Chemical and/or physical modifications of the surface
layer of an existing biomaterial may result in a substantial
change of its susceptibility to bacterial colonization.
Surface characteristics of implants, like surface rough-

ness and chemistry, hydrophilicity, surface energy or
potential and conductivity play in fact crucial roles in
bacterial adhesion and subsequent biofilm formation.
Surface physio-chemical modification of an implant is
also relatively simple and economic to achieve and to
industrialize.
Ultraviolet light irradiation, for example, is able to in-

crease “spontaneous” wettability on titanium dioxide,
which in turn can inhibit bacterial adhesion without
compromising osteogenesis on titanium alloy implants
[40, 41]. A bacterial anti-adhesive surface can also be
achieved by modifying the crystalline structure of the
surface oxide layer [42].
Some polymer coatings, like the hydrophilic poly-

methacrylic acid, polyethylene oxide, or protein-resistant
polyethylene glycol can be applied to the surface of
titanium implants and result in significant inhibition
of bacterial adhesion [43–45]. Even if some of these
coatings may impair local osteoblast function, the
use of additional bioactive molecules as sericin and
RGD motif could restore and even improve the im-
paired cell function [46]. Hydrophobic and super-
hydrophobic surface treatment technologies have also
shown a great repellent antibacterial effect in preclin-
ical studies [47, 48].
Other researchers have focused on controlling the bio-

logical response to biomaterials via alterations in surface
structure and design [49, 50]. In this regard, changing the
implant surface at a nanometric scale, at which bacterial
adhesion does not simply follow the roughness of the
rial implant coating strategy

No detrimental effects on bone
healing

No unwanted long-term side
effects

lm Large spectrum No induction of resistance

Multicenter trials Randomized trials

Resistance to press-fit insertion Storage

Easy to manufacture Overcomes regulatory issues



Table 2 Classification of antibacterial implant protection strategies

Strategy Features Examples Development
stage

Limits

Passive surface finishing/
modifications (PSM)

Prevention of
bacterial adhesion

Hydrophilic surface Preclinical Limited antibacterial and
antibiofilm activity

Super-hydrophobic surface

Anti-adhesive polymers Possible interference with
osteointegration

Nano-patterned surface

Albumin Unknown long-term effects

Hydrogels Regulatory issues

Biosurfactants

Active surface finishing/
modifications (ASM)

Inorganic Silver ions and nanoparticles Market Incomplete implant coating

Questionable long-term toxicity

Limited versatility and
applicability

Limited large-scale applications

Possible bacterial resistance
induction

Costs

Other metals (copper, zinc,
titanium dioxide etc.)

Preclinical Questionable long-term toxicity

Regulatory issues

Non-metals: Iodine Clinical Incomplete implant coating

Questionable long-term toxicity

Challenging large-scale
application

Regulatory issues

Other non-metal ions (selenium,
grapheme, etc.)

Preclinical Poorly studied compounds

Coating resistance to press-fit
insertion

Questionable long-term toxicity

Challenging large-scale
application

Regulatory issues

Organic Coated/linked antibiotics Market Unique application to nail
coating

Long-term effects on
osteointegration

Single antibiotic (gentamicin)

Covalently linked antibiotics Preclinical Incomplete implant coating.

Questionable long-term toxicity

Challenging large-scale
application

Regulatory issues

Antimicrobial peptides No data on in vivo or clinical
effects

Cytokines Coating resistance to press-fit
insertion

Enzymes and biofilm disrupting
agents

Questionable long-term toxicity

Challenging large-scale
applicationChitosan derivatives

Synthetic Non-antibiotic antimicrobial
compounds

Regulatory issues
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Table 2 Classification of antibacterial implant protection strategies (Continued)

“Smart” coatings

Combined Multilayer coating

Peri-operative antibacterial local
carriers or coatings (LCC)

Not-biodegradable Antibiotic-loaded
polymethylmetacrylate

Market Resistance and small-colony
variants induction

No antibiofilm effect

Incomplete implant coating

May not be used for
cementless implants

Biodegradable Antibiotic-loaded bone grafts
and substitutes

Market Limited availability

Not proven efficacy as implant
coating

Cost

Fast-resorbable hydrogel Market Early clinical use and results
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surface but also is dependent on other variables like the
quantity of adsorbed proteins, can in fact suppress
bacteria adhesion [51].
Treating more specifically protein surfaces and/or pro-

tein–bacteria interactions may also be a successful strategy
of inhibiting bacterial adhesion to a specific biomaterial
[52, 53]. Friedman et al., using a rabbit model, demon-
strated reduced bacterial adherence on pure titanium
samples and decreased infection rates of implants coated
with cross-linked albumin [54].
More recently, novel strategies include production of

self-assembled mono- or multilayers, surface grafting or
hydrogels, or the use of biosurfactants and microbial
amphyphilic compounds with excellent anti-adhesive
properties [55, 56].
In summary, a number of anti-adhesive surface modi-

fications have been proposed for different purposes,
but only a few will probably be suitable for clinical use.
In particular, a strong anti-adhesive layer cannot be
used for coating of fixation surfaces of joint arthro-
plasty since it could also interfere with implant osteoin-
tegration, leading to early mechanical failure [48, 49].
Another challenge of designing anti-adhesive tech-
nologies relates to the current inability to find a uni-
versal treatment that can be applied to all surfaces and
biomaterials, all bacterial species and under all (in-
growth and noningrowth) implants. Moreover, passive
coating methods should be preferred as long as their
antibacterial ability is strong enough to prevent bio-
film formation, but the ability of passive coatings to
resist bacterial adhesion is generally limited and varies
greatly depending on the bacterial species and loads
[57]. In vivo efficacy and long-term effects of these
new technologies both on host’s cells and on bacterial
resistance are also poorly understood and need to be
further investigated before clinical applications and
market introduction.
Active surface finishing/modification
Surface modifications may include pharmacologically active
pre-incorporated antibacterial agents or compounds, like
antibiotics, antiseptics, metal ions, or organic molecules.
Such pharmacologically activated coatings may change the
implant from a passive, pharmacologically inert medical de-
vice, to something more and more similar to a drug agent,
with difficult to predict long-term effects and challenging
regulatory issues.
Historically, two main strategies have been proposed for

effective antibacterial surface treatment either “contact kill-
ing” or drug eluting, while in terms of durability, we can
distinguish between degradable and non-degradable coat-
ings. Killing of bacteria can be achieved by interfering with
cell respiration or division, cell wall formation or bacterial
signaling network as well as inhibition of the transition of
planktonic phenotype of bacteria into a sessile type [58].
Antibacterial surface technologies can employ metals

(silver, zinc, copper, etc.), non-metal elements (e.g.,
iodine, selenium), organic substances (antibiotics, anti-
infective peptides, chitosan, other substances), and
their combinations.
Antibacterial activity of the majority of metal coatings is

closely linked to the ionic or nano form rather than to the
bulk material [59]. Silver is the most prevalent metal used
in biomedical applications. Dissolved silver cations are
biochemically active agents that interfere with bacterial
cell membrane permeability and cellular metabolism.
Silver also contributes to formation of reactive oxygen
species and other mechanisms that potentially influence
prokaryotic cells [60]. There has been concern, however,
about the toxicity of silver ions [61]. Research efforts have
focused on the development of silver coating technologies
that reduce or even eliminate toxicity while maintaining
antibacterial effects [62, 63]. Despite demonstrated clinical
efficacy and safety in recent comparative studies [64, 65],
routine use of silver-coated implants remains rather
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limited. The main obstacle to a broader usage of such
technology is cytotoxicity on bone cells, that prevented
until now coating of the intra-medullary part of the pros-
thesis. In addition, cost issues and the inability to apply
the technology to a variety of prosthetic implants and de-
vices further reduces its application outside oncological or
highly selected cases.
Copper and zinc also have potent antibacterial effects on

a wide spectrum of bacterial species [66, 67]; however,
potential toxic side effects of these metals remain a strong
concern [68]. Proposed solutions include copper- and zinc-
based nanomaterials or, alternatively, controlled release
[69]. The risk of bacterial resistance to metallic coatings
remains a potential limitation for their widespread use [70].
Concern also exists about the mechanical properties of im-
plant nanocoatings since damage may occur during surgical
implantation especially in cementless implants inserted via
press-fit methods [71].
Another interesting technology is related to modification

of commonly used alloys, like titanium. The anti-infective
potential of titanium dioxide layers has been widely investi-
gated and proven effective in vitro both alone [72] or in
combination with other substances [73].
Non-metal elements like hydrogen, chlorine, iodine,

or oxygen are commonly used in biomedicine for their
anti-infective properties. Selenium bound covalently
onto the surface of titanium or titanium alloy implant
discs has been shown to prevent Staphylococcus aureus
and Staphylococcus epidermidis attachment without
affecting osteoblast viability [74]. Selenium catalyzes
the formation of superoxide radicals and subsequently
inhibits bacterial adhesion and viability. In addition,
selenium nanoparticles can inhibit bacterial growth
and biofilm formation [75].
Ongoing research is also directed to determine the

clinical applicability of carbon substances like graphene
or carbon nanotubes, that can be synthesized in multi-
functional layers [76]; however, the most interesting
technology today under study, related to non-metal
elements, is probably iodine coating of titanium alloys, that
has recently demonstrated clinical efficacy in a continuous
series of 222 patients with excellent results [77].
Several organic compounds with antibacterial properties

have the potential to be linked to the surface of implants
conferring them anti-infective properties. A large number
of studies have investigated the efficacy of surfaces coated
with covalently linked antibiotics [78–82]. Clinical effective-
ness of such implants is most likely limited to infections
caused by bacteria that are sensitive to the specific anti-
biotic that has been coupled. In addition, strong forces such
as covalent binding are insufficiently sensitive to react to
weak external stimuli [83]. In fact, despite the theoretical
advantages for non-eluting systems, this concept is lim-
ited by the fragility of the coatings and killing activity
potential of bacteria which might not be directly adja-
cent to the implant. To overcome these issues, combi-
nations of antibiotics with other compounds have been
proposed either alone or in association with a particu-
lar mechanism of controlled release [84]. Antibiotics
such as gentamicin, vancomycin, and others have been
loaded into porous hydroxyapatite (HA) coatings on
titanium implants. The antibiotic-HA coatings exhibit
significant improvement in preventing infection com-
pared with standard HA coatings in vivo, but there are
still many unresolved issues regarding the methodology
of antibiotic incorporation into the HA coating and the
optimal release kinetics and possible detachment of the
coating at the time of press-fit insertion.
Biodegradable polymers and sol–gel coatings are also

utilized to form controlled release antibiotic-laden coat-
ings on titanium implants [85, 86]. Clinical applications
of antibiotic-loaded D-poly-lactate acid/gentamycin intra-
medullary coated nail have been recently reported with
early positive results [87].
Some antiseptic agent such as chlorhexidine, chloroxyle-

nol, or poly-hexamethylenebiguanide have demonstrated
efficacy and might be an alternative to avoid the risk of
drug resistance. Chlorhexidine can be adsorbed to the
TiO2 layer on titanium surfaces and is released gradually
over several days [88]. Its release pattern is similar to that
of antibiotic-laden coatings with an initial rapid release
rate followed by slower but sustained release [89].
Another promising approach involves coating implants

with antimicrobial peptides, cytokines, or other molecules
critical for host response to bacteria invasion. This hetero-
geneous group of substances has proven experimentally
their efficacy against a wide range of pathogens [90]. Anti-
microbial peptides, like antibiotics, function via damage of
the cell wall and inhibition of key bacterial protein synthe-
sis. In addition, they exert influence upon inflammation,
tissue healing, and apoptotic events [91]; resistance to anti-
microbial peptides has been reported less frequently than
to antibiotics [92]. Initial experiments demonstrated that a
thin layer of antimicrobial peptides affixed onto the surfaces
of metal alloys exhibit excellent antibacterial effects against
typical pathogens related to PJI [93].
Chitosan (CS) is a polycationic polymer derived from

chitin that exhibits antibacterial and antifungal activity. The
exact mechanism of action remains poorly understood.
There is some evidence that CS derivatives can be
firmly anchored to titanium alloys and that they have
a protective effect against some bacterial species either
alone or in combination with other antimicrobial
substances like antibiotics or antimicrobial peptides
[94, 95]. CS derivatives secured to external fixator pins
have been studied as a method of preventing pin tract
infections [96]. However, we are not aware of a study
to date reporting data from clinical setting.



Fig. 1 “Defensive Antibacterial Coating”, DAC® (Novagenit Srl,
Mezzolombardo, Italy): a fast-resorbable hydrogel coating, composed
of covalently linked hyaluronan and poly-D,L-lactide, is spread onto a
cementless hip prosthesis. The hydrogel is loaded intra-operatively with
one or more antibiotics that are released within 48 to 72 h, providing
antibacterial and antibiofilm protection to the implant

Table 3 Tested antibacterials to be loaded with DAC hydrogel
coating at concentrations ranging from 2 to 10 % ([113] and
Novagenit Srl data on file)

Antibacterial family Tested antibiotics

Aminoglycosides Gentamicin

Tobramycin

Amikacin

Carbapenems Meropenem

Glicopeptides Vancomycin

Teicoplanin

Quinolones Ciprofloxacin

Cyclic lipopeptides Daptomycin

Rifamycins Rifampicin

Glycylcyclines (Tetracyclines) Tigecyclin

Oxazolidinones Linezolid

Antifungals Amphotericin B

Fluconazole

Ketoconazole
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Long-term impact of permanently coated implants with
antibiotics and other organic compounds, never used
before either for local or general administration, does raise
concerns regarding possible induction of bacterial resist-
ance, local, and general toxicity and possible detrimental
effects on implant osteointegration, ultimately preventing
clinical applications until now.
Still more complex approaches involve the development

of multifunctional surface layers, like functional polymer
brush coating, that combine anti-adhesive and antimicro-
bial substances and other compounds able to enhance
tissue integration [97], while “smart coatings”, sensitive
and responsive to a variety of stimuli, including the pres-
ence of bacteria [98], are another fascinating but futuristic
research pathway that poses a number of open questions,
like feasible coating manufacturing process, non-adverse
reactions in vivo, mechanical resistance, or preservation of
intended functionalities throughout the life of the device.

Peri-operative antibacterial carriers or coatings
Instead of pre-manufactured surface modifications, either
with or without pharmacologically active agents, a differ-
ent approach to implant protection may be to provide a
traditional implant with an antibacterial carrier or coating
at the time of surgery. The separation of the protective
solution from the implant until surgery may reduce the
regulatory requirements and increase the applicability of a
universal antibacterial coating to many different already
existing implants and biomaterials.
Local administration of antibiotics historically attracted

much attention in orthopaedics. Buchholz et at. first
popularized the incorporation of antibiotics into poly-
methylmethacrylate (PMMA) bone cement for local anti-
biotic prophylaxis in cemented total joint arthroplasty
[99]. Clinical studies have shown that antibiotic-loaded
bone cement can decrease deep infection rates of cemen-
ted total hip arthroplasties and revision rates due to sup-
posed “aseptic” loosening when combined with systemic
antibiotic administration [100] and this solution has been
found both effective and economically sound, especially in
high-risk patients [101, 102]. However, PMMA was not
designed as a local delivery carrier of antibiotics and may
have some limits. Antibiotic-loaded PMMA may not over-
come biofilm formation and may be associated with the
development of antibiotic-resistant “small-colony variants”
[103, 104], while the increasing use of cementless implants
worldwide, especially at the hip site, make this a possible
option only for a restricted number of patients.
Other porous materials for local antibiotic delivery like

collagen sponges [105], cancellous bone [106], and calcium
phosphate cements [107, 108] were not specifically
designed to protect implanted biomaterials, and their
use for routine infection prevention in joint prosthesis
is limited by their insufficient in vitro, in vivo, and
clinical evidence of efficacy in this specific application,
their inability to be applied as a coating to all implants’
surfaces, and their relatively high costs and possible
interference with primary implant fixation and long-
term osteointegration.
Biocompatible hydrogels do represent a possible

alternative solution, as they have demonstrated to be
able to deliver local pharmacological agents and may
be designed to meet the desired elution pattern [109].
Recently, a fast-resorbable hydrogel coating, that can
be loaded intra-operatively with various antibacterials,
has been introduced in the European market [110].



Romanò et al. Journal of Orthopaedic Surgery and Research  (2015) 10:157 Page 8 of 11
Based on the facts that bacterial colonization occurs
within the very first hours after implant and that
short-term systemic prophylaxis is equally effective as
the long-term one to prevent PJIs [111], this novel
coating technology introduced the “short-term local
protection” of the implant. A short-term local delivery
system may in fact meet the requirements needed to win
the “run to the surface”, while limiting possible long-term
unwanted side effects [112]. This novel fast-resorbable
hydrogel coating, “Defensive Antibacterial Coating”, DAC®
(Novagenit Srl, Mezzolombardo, Italy), composed of cova-
lently linked hyaluronan and poly-D,L-lactide, (Fig. 1), is
designed to undergo complete hydrolytic degradation
in vivo within 48 to 72 h, being able to completely release
a variety of different antibacterials, including glycopep-
tides, amynoglycosides, and fluoquinolones (Table 3), at
Fig. 2 a Radiographic antero-posterior view of sequelae of a septic hip arthritis
hydrogel is applied on the sanded titanium surface of a standard cementless hi
may be press-fit inserted according to a normal procedure (arrow indicates som
shows optimal bone osteointegration (arrows). The patient is pain- and infection
concentrations ranging from 2 % to 10 %. The hydrogel
showed a synergistic antibacterial activity with various an-
tibiotics and antibiofilm agents in vitro [113], while in vivo
it has been proven effective a rabbit model of highly
contaminated implant both with [114] and without sys-
temic prophylaxis [115]. An ongoing European multicen-
ter clinical trial (Fig. 2) is currently investigating the safety
and the efficacy of the device [116].

Conclusions
A tremendous amount of research has been done in the last
two decades in order to better protect implanted biomate-
rials from bacterial colonization, but we are still probably at
the beginning of the journey. In fact, in spite of the highly
successful advances in preclinical studies, a remarkable dis-
crepancy still exists between the proposed strategies and
(S. aureus) in a 52-year-old female patient. b Teicoplanin 5 % loaded DAC®
p prosthesis, both on the stem and c in the acetabulum component that
e hydrogel squeezed out during cup insertion). d Control after 12 months
-free
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their clinical applications [117, 118]. While most of the
coatings under study will not probably be suitable for
orthopedic implants, due to cytotoxicity, immunoreactivity,
or genotoxicity problems, clinical application of those
successfully tested in vitro and in vivo can still be limited
by biotechnological, regulatory, economic, and medico-
legal issues.
Improving collaborative efforts amongst governments,

regulatory agencies, industry leaders, and health care payers
will probably allow more and more our patients to benefit
from these very promising technologies.
A comprehensive classification and a common language

are needed to standardize appropriate tests and realistic
regulatory requirements, in order to favor the transition
from preclinical studies to effective patient’s protection.

Consent
Written informed consent was obtained from the patient
for the publication of this report and any accompanying
images.
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