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Paclitaxel is widely used as a first-line chemotherapy agent to treat malignant tumors.

However, paclitaxel causes peripheral nerve fiber damage and neuropathic pain in some

patients. In addition, patients received paclitaxel chemotherapy are often accompanied

by negative emotions such as anxiety. The amygdala is critically involved in regulating

pain signals, as well as anxiety. The purpose of this study is to clarify the role of

Ca2+/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in

the amygdala in paclitaxel-induced pain and negative affective symptoms. Intraperitoneal

injection of paclitaxel into mice caused mechanical and thermal allodynia, as measured

by Von Frey test and Hargreaves test, and anxiety, as measured by open field test

and elevated plus maze test. Immunofluorescence staining revealed that c-fos-positive

neurons were significantly more in the basolateral amygdala (BLA) and central amygdala

(CeA) in paclitaxel-treated mice than untreated mice. Furthermore, part of c-fos-positive

neurons in the BLA were immunoreactive of CaMKII. Engineered Designer receptors

exclusively activated by designer drugs (DREADD) receptor hM4Di or hM3Dq was

selectively expressed on CaMKII neurons by injection of adeno-associated virus (AAV)

vectors containing CaMKII and hM4Di or hM3Dq. Administration of DREADD agonist

CNO to selectively inhibit the CaMKII neurons in the BLA significantly increased the paw

withdrawal thresholds and paw withdrawal latencies. In addition, selectively inhibition of

CaMKII neurons in the BLA alleviated anxiety behavior without affecting the motor activity.

In summary, our findings suggest that CaMKII neurons in the amygdala are critical for

neuropathic pain and anxiety behaviors induced by paclitaxel chemotherapy.

Keywords: paclitaxel, chemotherapy pain, amygdala, anxiety, glutamatergic neuron

INTRODUCTION

Paclitaxel is a tetracyclic diterpene compound that is widely used to treat variety of carcinomas such
as ovarian and breast cancers, lung cancer, colorectal cancer, melanoma, head and neck cancer,
lymphoma, and brain tumors (1, 2). Paclitaxel causes mitochondrial damage and cell apoptosis
via inhibiting the dynamic instability of microtubules (3). Paclitaxel exerts its antitumor effects
accompanied by various side effects such as chronic pain with negative emotions, impairment of
cognitive function (chemo brain), and neuroinflammation (4, 5). Paclitaxel-induced neuropathy
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manifests as mechanical and sensory allodynia, numbness,
and tingling (6–8), which may easily induce anxiety and
depression-like emotions (9, 10). It has been shown that
intraperitoneal injection of paclitaxel accumulatively produced
anxiety and depression-like emotions without affecting the
weight and exercise capacity of the mice (9). However, the precise
mechanisms underlying paclitaxel-induced chronic pain with
negative emotions are still need to be elucidated.

Although paclitaxel-induced peripheral neuropathic pain
can be treated using analgesics and antidepressants, these
medicines are often inadequately effective and induces many
side effects (11, 12) including alteration of neurocircuitry. For
instance, paclitaxel treatment alter function of brain areas
involved in the emotional and motivational response to chronic
pain (13). Furthermore, paclitaxel treatment induces negative
emotions and reduces NR1 levels in the prefrontal cortex
(PFC) (14). Since the PFC receives glutamatergic projections
from the basolateral amygdala (15), we speculate that the
amygdala is also involved in the regulation of paclitaxel
chemotherapy pain.

As a part of the limbic system, the amygdala is an almond-
shaped structure located in the medial temporal lobe and
plays a critical role in feeling, learning, fears, anxiety, and
depression (16–19). The amygdala consists of anatomically
and functionally different nuclei (20–23) including basolateral
amygdala (BLA), central nucleus (CeA) and intervening cell
clusters between BLA and CeA (24). BLA has cortical
characteristics, contains Ca2+/calmodulin-dependent protein
kinase II (CaMKII) excitatory output neurons (25–27). BLA
integrates sensory information and sensory-related emotions
from the cortex and conveys them to the CeA (17, 24,
28). BLA neurons project to medial PFC, ACC (Anterior
cingulate cortex), peripheral cortex, and insular cortex (29–
34). It has been shown that the BLA is involved in the
regulation of pain signal (24, 35–37) and the BLA has a large
number of CaMKII-positive glutamatergic neurons projecting
to mPFC, which plays an important role in the pain-induced
mPFC inactivation (32, 33, 35, 38–40). The CeA integrates
nociceptive information with multi-modal information about
the internal and external environment of the body, and is
the main output nucleus of the amygdala function (21, 24).
Through associative processing, the LA/BLA attaches emotional-
affective content to the sensory inputs and transmits that
highly processed information to the amygdala output region
in the CeA for further processing as part of amygdala
fear and anxiety circuitry. This LA/BLA-CeA projection is
now known to generate and modulate pain-related negative
emotional behaviors (24). Recent studies have confirmed that
the functional conversion of DOR1 and DOR2 is related to
the state of anxiety in different pain stages by regulating the
activity of specific pathways (BLA-CeA and PBN-CeA) (41).
However, the role of glutamatergic neurons in amygdala in
paclitaxel-induced pain and anxiety is unknown. Therefore,
in the present study, by using paclitaxel chemotherapy pain
model and chemogenetic method, we explored the role of
CaMKII-positive glutamatergic neurons in paclitaxel-induced
pain and anxiety.

MATERIALS AND METHODS

Animals
C57BL/6 mice aged 8 to 12 weeks were obtained from the animal
facility of the FourthMilitaryMedical University andmaintained
at an ambient temperature of 25◦C, with a 12 h light and 12 h
dark cycle. The mice were given ad libitum access to food and
water. All animal operations were approved by the Experimental
Animal Management Ethics Committee of the Fourth Military
Medical University.

Establishment of Paclitaxel Chemotherapy
Pain Model
Paclitaxel (PTX, TCI, P1632) was dissolved in Cremopher EL
(CEL, SIGMA, 61791-12-6) and absolute ethanol diluted in equal
proportions to a concentration of 6mg/ml and then frozen at
−20◦C. The working solution was diluted with normal saline
to 0.4 mg/ml; the vehicle group was given the Cremopher EL
and absolute ethanol in equal proportions and diluted with
the normal saline to an equal volume. Paclitaxel (4 mg/kg,
intraperitoneal injection) was given daily for 8 days (9). The
volume is 6.67 ml/kg (cumulative dose: 32 mg/kg, intraperitoneal
injection) to induce neuropathy.

Von Frey Test
Three days before the experiment, the mice were placed on a
metal iron frame with a transparent box at the same time period
as the experiment to adapt to the experimental environment for
one hour. On the day of the experiment, themice need to adapt to
the metal grid for one hour. After the mouse stopped grooming
and other behaviors, Von-Frey fiber filaments weighing 0.008 to
2.0 g were used to stimulate the palms of the rear plantar of the
mice, and the fiber filaments were bent in an S shape for 3 to 5 s.
A positive response was defined as an obvious rapid foot lifting
or licking due to pain. Movement or foot lifting due to other
discomfort is considered negative. There should be an interval
of at least 20 s between each plantar stimulation or wait for the
mouse returns to a calm state. After five tests, three positive
weights can be regarded as the paw withdrawal thresholds of
the mouse.

Hargreaves Test
The mice were placed on a 30◦C constant temperature plate with
a transparent box and adapted to the experimental environment
for one hour every day at the same time period as the experiment
for three days before the experiment day. Before the start of the
experiment, set the required heat pain intensity and the longest
heat pain stimulation time. On the day of the experiment, it
is necessary for the mice to adapt to the metal grid for one
hour. After the mouse stopped grooming and other behaviors,
a thermal stimulator was used to illuminate the palm area of the
rear plantar of the mouse. The longest irradiation time should
not exceed 20 s to avoid burns on the soles of the mice or causing
hyperalgesia. The sign to stop the timer was defined as an obvious
rapid foot-lifting or licking response. A total of 10 times of mouse
foot lifting time were recorded, and the average value of 10 times
was the paw withdrawal latencies of this mouse.
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Open Field Test
The mice were put into the laboratory one hour before the
experiment to adapt to the experimental environment. Wipe the
open field area with a length of 40 cm each with a 50% ethanol
solution to prevent the mice from being affected by other odors.
Afterwards, the mice were gently placed in the central area of the
open field, and then a 5min travel trajectory of each mouse was
recorded by video.

Elevated Plus Maze Test
The mice were put into the laboratory one hour before the
experiment to adapt to the experimental environment. Wipe the
elevated plus maze with a 50% ethanol solution to prevent the
mice from being affected by other odors. Then gently place the
mouse at the center of the junction area between the open arm
and the closed arm, and then start to record the trajectory of the
mouse by video for five minutes for each mouse.

Stereotactic Injection in the Brain
The mice were anesthetized by intraperitoneal injection of 5%
chloral hydrate. After the mice were anesthetized, the scalp was
prepared and the incisors were fixed to the rack of the operating
table, and the ear rack was used to fix the head of the mouse in
the external auditory canal. The fontanel was used as a reference
to level the head. The BLA is M/L = ±3.00, A/P = −1.25,
D/V = −4.75. 250 nl of rAAV-CaMKIIa-hM4D(Gi)-EGFP-
WPRE-pA (Cat#: PT-0524, titer: 5.54× 1012 vg/mL, BrainVTA),
rAAV-CaMKII-hM3D(Gq)-mCherry-WPREs (Cat#: PT-0049,
titer: 5.33× 1012 vg/mL, BrainVTA) and rAAV-CaMKIIa-EYFP-
WPRE-pA (Cat#: PT-0107, titer: 2.50 × 1012 vg/mL, BrainVTA)
were injected to each of the bilateral BLA of the three groups
respectively for 5min and the needle need to be left for 10min.
Then withdraw the needle, surgically sutured the skin of the skull,
and the other experimental operations need to be wait for three
weeks after the virus infected the neurons.

Perfusion and Extraction
The mice were anesthetized by intraperitoneal injection of 5%
chloral hydrate. After the mice were anesthetized, they were
fixed on the surgical board in the supine position, the chest
cavity was opened, and the heart was freed. Pierce the rounded
needle into the left ventricle, and then pierce the right atrial
appendage with scissors. 0.9% saline was quickly injected into
the left ventricle by a 20ml syringe. Then fixed with the titration
50ml of 4% paraformaldehyde. Next, carefully peel off the skull
with tweezers and take out the entire brain. The taken-out brain
was immersed in 4% paraformaldehyde for post-fixation for four
hours, and then the brain was placed in a 30% sucrose solution
for dehydration at 4◦C overnight. When the floating brain sinks
into the solution, dehydration is complete.

Immunofluorescence Histochemical
Staining
Take out the dehydrated brain, cut it perpendicularly to the
missing seam, place it on the stage, and embed it in OCT. Using
a cryostat (Leica CM1950), put it in a microtome and quickly
freeze it at−20◦C for 20min. Then transfer it to the slicing table,

perform coronal sectioning with a thickness of 30 um, gently pick
it out with a brush, and place it in a six-well plate of 0.1M PBS.
Three sets of brain slices were selected for each group, and rinsed
for three times at room temperature with 0.1MPBS (pH 7.4) for
10min each time. Then place the brain slices in the antibody
diluent (3% BSA, 0.3% Triton X-100 PBS) that has been added
to the primary antibody, and incubate at room temperature for
16 h on a shaker. Use the following primary antibodies: mouse
anti c-fos (1:500; abcam, ab11959), rabbit anti CaMKII (1:200;
abcam, ab5683). The brain slices were rinsed three times with
0.1MPBS at room temperature for 10min each time, and then
the brain slices were placed in the antibody diluent with the
added secondary antibody, incubated for 4 h, and dapi was added
at 3.5 h. Use the following secondary antibodies: Donkey Anti-
Rabbit IgG H&L Alexa Fluor R© 488 (1:500; invitrogen, A-21206),
Goat Anti-Mouse IgGH&LAlexa Fluor R© 594 (1:500; invitrogen,
A-21202), DAPI (1:1000; Sigma, D9542). Then the brain slices
were rinsed for three times with 0.1MPBS for 10min each time.

Pharmacogenetic Manipulation
Dissolve Clozapine N-oxide (CNO, TOCRIS) with 0.9% saline
to a concentration of 0.25 mg/ml. One mg/kg of it was injected
intraperitoneally to the three groups of mice (The hM4D,
hM3D, and EYFP) 1 h before the behavioral test. CaMKII
neurons in virus-transfected mice were activated or inhibited by
CNO pharmacology.

Image Acquisition and Statistical Analysis
Digital images were captured by FLUOVIEW software (FV10-
ASW 1.7, Olympus) and saved in tiff image files. The data
were presented as the mean ± S.E.M. For behavioral test
data, repeated measures ANOVA was performed to detect
overall differences followed by Bonferroni post hoc analysis for
multiple comparisons. Student’s t-test was used to determine the
differences between groups. We performed a Shapiro-Wilk test
prior to using any parametric statistical test, to ensure that the
data follow a normal distribution. For data that do not follow a
normal distribution, we used Mann Whitney test and Rank Sum
test. P < 0.05 was regarded as statistically significant. GraphPad
Prism 8 Software (GraphPad, USA) was used for all statistical
analyses and statistical graph drawing.

RESULTS

Establishment of Paclitaxel Chemotherapy
Pain Model
To establish a paclitaxel chemotherapy pain model, paclitaxel
dissolved in Cremopher EL and normal saline was injected
intraperitoneally at 4 mg/kg body weight for 8 days. Paclitaxel
administration significantly reduced the withdrawal threshold
in Von Frey testing and thermal threshold in Hargreaves Test
3 to 21 days post injection (Figures 1A,B). The paclitaxel-
treated mice and vehicle-treated mice were subjected to an
open field and an elevated plus maze (EPM) test on day
9. The paclitaxel-treated mice spent significantly less time
in the central area than the vehicle group (Figures 1C–E).
In the EPM testing, the number of open-arm entries and
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FIGURE 1 | Establishment of paclitaxel chemotherapy pain model. (A,B) The behavioral changes of paw withdrawal thresholds and paw withdrawal latencies in the

vehicle group and paclitaxel group at different time. (C) Open field test trajectory diagram of vehicle and paclitaxel groups. (D) Total distance statistics of the vehicle

group and paclitaxel group. (E) The statistical results of the percentage of central area activity time in the vehicle group and paclitaxel group. (F) The trajectory diagram

of the elevated plus maze test in the vehicle and paclitaxel groups. (G) Statistic results of the percentage of open arm entry time in the vehicle group and paclitaxel

group. (H) Statistic results of the number of entries open arm in the vehicle group and paclitaxel group. n = 6–9, ns, no significant, *P < 0.05, **P < 0.01, ***P < 0.001.

the percentage of total open-arm staying time in EPM
test were significantly less than those in vehicle group
(Figures 1F–H).

We used the immediate early gene c-fos to detect changes
in neuronal activity in the amygdala in response to paclitaxel
treatment. Immunofluorescence staining was performed using
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FIGURE 2 | CaMKII neurons in the BLA are activated in paclitaxel-treated mice. (A) The expression of CaMKII (green) and Fos (red) in the BLA of the vehicle group.

(B,C) The expression of CaMKII (green) and Fos (red) in the BLA of the paclitaxel group under different multiples microscope. (D) The magnified images of the

rectangles indicated in (C). Arrows indicate part of CaMKII and Fos double-labeled neurons. n=3 mice per group, 2 sections per mouse. Scale bars = 100µm in (A)

[applies to (B,C)]; 50µm in (D).

mice treated by paclitaxel or vehicle for 9 days. The number
of c-fos-positive neurons in the basolateral amygdala of
paclitaxel chemotherapy pain model mice (341.00 ± 13.70) was
significantly higher than vehicle-treated mice (99.83 ± 8.30,
P < 0.001, Figures 2A,B). In addition, the number of c-fos-
positive neurons in the central amygdala area (62.67± 7.02) were
significantly higher than that in vehicle-treated mice (33.83 ±

4.66, P < 0.001, Figures 3A,B).

CaMKII Neurons in the Amygdala Are
Activated in Paclitaxel-Treated Mice
CaMKII is a marker for excitatory neurons. Paclitaxel-treated
mice had more CaMKII and c-fos double-labeled neurons

(281.83 ± 8.18) in the BLA compared with that (79.83 ± 6.99)
in vehicle-treated mice. The double-labeled neurons in the BLA
of the paclitaxel-treated mice accounted for 83.34± 4.03% of the
c-fos-positive neurons and 68.01± 1.50% of the CaMKII-positive
neurons (Figure 2). These data suggest that paclitaxel treatment
activates CaMKII neurons in the BLA.

The CeA receives projections of CaMKII-positive neurons
from the BLA. We also found that there were a large number
of CaMKII and c-fos double-labeled neurons in the CeA
of paclitaxel-treated mice compared with the control group.
CaMKII/FOS double-labeled neuron count (10.50 ± 0.76) in the
CeA of the paclitaxel-treated mice was significantly more than
that of the control group (3.83 ± 0.74, P < 0.001, Figure 3). The
double-labeled neurons in the CeA accounted for 17.90 ± 2.51
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FIGURE 3 | CaMKII neurons in the CeA are activated in paclitaxel-treated mice. (A) The expression of CaMKII (green) and Fos (red) in CeA area of the vehicle group.

(B) The expression of CaMKII (green) and Fos (red) in CeA area in paclitaxel group. (C) The magnified images of the rectangles indicated in (B). Arrows indicate part of

CaMKII and Fos double-labeled neurons. n = 3 mice per group, 2 sections per mouse. Scale bars = 100µm in (A) [applies to (B)]; 50µm in (C).

% of the fos-positive neurons, and 6.67 ± 0.53% of CaMKII-
positive neurons in paclitaxel-treated mice. These data suggest
that paclitaxel treatment activates CaMKII neurons in the CeA.

Selectively Inhibiting CaMKII Neurons in
the BLA Relieves Paclitaxel-Induced Pain
Because a large number of CaMKII neurons were activated
in the BLA in paclitaxel-treated mice, we speculated that
manipulating CaMKII neuron activity in the BLA might alter
pain behavior. Three vectors rAAV-CaMKIIa-hM4D(Gi)-EGFP-
WPRE-pA, rAAV-CaMKIIa-hM3D(Gq)-mCherry-WPREs,
and rAAV-CaMKIIa-EYFP-WPRE-pA were injected into
the BLA by stereotactic intracerebral injection (Figure 4A).
Immunofluorescence staining showed that hM3D-mCherry
positive neurons were widely expressed in the BLA
(Figures 4B–D). Next, we used the Von Frey test and
the Hargreaves test to evaluate the mechanical pain and
thermal pain behavior in each group after administration
of CNO. Compared with mice expressing EYFP, mice
expressing hM4D have significantly higher paw withdrawal
thresholds and paw withdrawal latencies. On the other
hand, the pain threshold of hM3D-expressing mice did not
change significantly (Figures 4E,F). These data suggest that
inhibiting CaMKII neurons in the BLA through chemogenetics

suppresses mechanical allodynia and thermal hyperalgesia in
paclitaxel-treated mice.

Chemogenetic Inhibition of CaMKII
Neurons in BLA Relieves Anxiety-Like
Behaviors
As mentioned above, inhibiting CaMKII neurons in the BLA
effectively increases the mechanical allodynia and thermal
hyperalgesia caused by paclitaxel chemotherapy. Therefore, we
speculate that inhibiting CaMKII neurons in the BLA might
relieve anxiety emotions in paclitaxel-treated mice. Similarly,
using mice injected with rAAV-CaMKIIa-hM4D(Gi)-EGFP-
WPRE-pA, rAAV-CaMKIIa-hM3D(Gq)-mCherry-WPREs,
rAAV-CaMKIIa-EYFP-WPRE-pA into the BLA (Figure 4A),
we performed the open field (Figures 5A,B) and the elevated
plus maze experiment (Figures 5E,F) to evaluate anxiety-like
behavior after administration of CNO. The total distance in the
open field experiment did not significantly differ between these
three groups (Figure 5C). However, the percentage of active
time in the central area of the hM4D group was significantly
higher than that of the hM3D group and the control group
(Figure 5D). In addition, in the elevated plus maze experiment,
the number of open-arm entry and the percentage of open-arm
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FIGURE 4 | Selectively inhibiting CaMKII neurons in the BLA relieves paclitaxel-induced pain. (A) Timeline of virus injection, Clozapine-N-oxide (CNO) administration,

and experiments and the Schematic diagram of virus injection site. (B) Representative imaging of hM3Dq virus expression within CaMKII neurons in the BLA 3 weeks

after viral injection. Scale bars = 100µm. (C) Representative imaging of hM3Dq virus expression within CaMKII neurons in the BLA 3 weeks after viral injection. Under

high magnification co-labeled of hM3Dq-mCherry (red) and CaMKII (green), and co-labeled of hM3Dq-mCherry (red) and Fos (green). Scale bars = 50µm. (D) The

percentage of the numbers of hM3Dq and Fos co-labeled neurons to hM3Dq labeled neurons in EYFP and hM3Dq. (E) Changes in PWT after activation or inhibition of

CaMKII neurons. (F) Changes in PWL after activation or inhibition of CaMKII neurons. n = 6–7, ns, no significant, **P < 0.01, ***P < 0.001.

entry time in the hM4D group were also significantly higher
than those in the control group (Figures 5G,H). Compared with
the control group, there were no significant differences in the
percentage of active time in the central area of the hM3D group
(Figure 5D), the number of open-arm entry times, and the
percentage of open-arm entry time compared with the control
group (Figures 5G,H). Thus, inhibiting CaMKII neurons in the
BLA reduced pain and anxiety in paclitaxel treated mice.

DISCUSSION

Paclitaxel is a chemotherapy drug that widely used to treat
manymalignant tumors. However, it also causes peripheral nerve

damage, neuropathic pain, and negative emotions (2, 9, 42, 43).
We found that the CaMKII-positive glutamatergic neurons in the
amygdala are involved in the regulation of pain and emotions.
By using chemo-genetic approach, selectively inhibiting CaMKII
neurons in the BLA produced analgesic effects and effectively
relieved the accompanying anxiety in paclitaxel-treated mice.

Previous studies have confirmed that paclitaxel causes a
damage of peripheral nerves, including dorsal root ganglia to
induce chronic pain (44, 45). As a macromolecular substance,
paclitaxel is extremely difficult to pass the blood-brain barrier.
Thus, it is most likely that the negative emotions in response to
paclitaxel treatment are caused by pain induced by peripheral
nerve injury. Anxiety-like emotions generally appear in the early
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FIGURE 5 | Chemogenetic inhibition of CaMKII neurons in BLA relieves anxiety-like behaviors. (A,B) Open field experiment trajectory diagram in vehicle and PTX

group after activation or inhibition of CaMKII neurons. (C) The total distance in different groups (EYFP, hM3Dq, hM4Di). (D) The percentage of central area activity time

in different groups (EYFP, hM3Dq, hM4Di). (E,F) Elevated plus maze experiment trajectory diagram in vehicle and PTX group after activation or inhibition of CaMKII

neurons. (G) The percentage of the open arm entry time in different groups (EYFP, hM3Dq, hM4Di). (H) The Number of entries open arms in different groups (EYFP,

hM3Dq, hM4Di). n = 7, ns, no significant, *P < 0.05, **P < 0.01.

stages of chronic pain (46, 47). In our model, the pain threshold
was lowest on the 9th day of paclitaxel injection. At the same
time that the pain threshold is significantly reduced, anxiety-
like emotions also arise. The chronic pain lasted for more than
21 days.

Recently, “chemobrain” has been proposed because
chemotherapy drugs induce negative emotions is called
“emotional chemotherapy brain”(48). Previous studies (14)
have reported that paclitaxel chemotherapy pain and its
negative emotions affect the frontal cortex. CaMKII neurons

in the frontal cortex are significantly down-regulated by
harmful external stimuli that cause the excitability being
transmitted to the amygdala (49). Arthritis pain increases
synaptic transmission in the BLA and increases its excitability
(50, 51). In our experiment, under the dual effects of
chemotherapy pain and negative emotions, compared with
the control group, CaMKII neurons in BLA are activated,
thus providing evidence that CaMKII neurons in BLA
are involved in the occurrence and regulation of pain and
related emotions.
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The CeA receives the projection of the CaMKII neuron in the
BLA (23, 52–54). The excitability of CeA neurons is increased,
c-fos and extracellular signal-regulated kinase are activated in
visceral pain (55, 56). The increased excitability of CeA in
neuropathic pain is accompanied by an increase in expression of
corticotrophin-releasing factor and glucocorticoid receptors (57,
58). In our experiment, we observed that some CaMKII-positive
neurons were activated in CeA.

In paclitaxel-treated mice, the BLA has more activated
CaMKII neurons than other areas of the amygdala. Thus, we
determined that the neuropathic pain and negative emotions
induced by paclitaxel treatment were regulated by the CaMKII
neurons in the BLA by using chemo genetics approach. Our
finding is consistent with previous reports (23, 24) showing that a
reduction of amygdala activity inhibits pain behaviors. Also, non-
NMDA and NMDA receptor antagonists, mGluR1 and mGluR5
antagonists, group II mGluR2/3 agonists and group III mGluR,
including mGluR8, CGRP1 and CRF1 receptor antagonists,
neuropeptide S activates NPS receptors, and ERK and PKA
inhibitors have obvious analgesic effects. It has been reported
that the CaMKII neurons in the BLA are activated by conditional
fear (27, 59). Our findings in this study suggest that inhibition of
CaMKII neurons in the BLA produces significant analgesia and
relieves anxiety.

CONCLUSION

Therefore, our study showed that the CaMKII neurons in the
amygdala participate in the regulation of paclitaxel-induced pain
and negative emotions. Inhibition of the CaMKII neurons in
the BLA effectively alleviated the pain and negative emotions in
paclitaxel-treated mice. These findings provide a new perspective

to develop novel approaches for treating pain and negative
emotions induced by chemotherapy.
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