
Circulating adipokine levels and
preeclampsia: A bidirectional
Mendelian randomization study

Xiaoyan Chen†, Zhaoming Liu†, Jingen Cui, Xiaolan Chen,
Jing Xiong and Wei Zhou*

Department of Obstetrics, Chongqing Health Center for Women and Children, Women and Children’s
Hospital of Chongqing Medical University, Chongqing, China

Background: Several observational studies have demonstrated that significantly

rising circulating adipokine levels are pervasive in preeclampsia or eclampsia

disorder (or preeclampsia toxemia (PET)). However, it remains unclear whether

this relationship is causal. In this study, we sought to elucidate the causal effects

of circulating adipokine levels on PET.

Methods: Summary-level data and independent genetic variants strongly

associated with common adipokine molecule (adiponectin, leptin, resistin,

sOB-R, and PAI-1) levels were drawn from public genome-wide association

study (GWASs). Additionally, the corresponding effects between instrumental

variables and PET outcomes were acquired from the FinnGen consortium,

including 4,743 cases and 136,325 controls of European ancestry.

Subsequently, an inverse-variance weighted (IVW) approach was applied for

the principal two-sample Mendelian randomization (MR) and multivariable MR

(MVMR) analyses. Various complementary sensitivity analyses were then carried

out to determine the robustness of our models.

Results: The results of the IVW method did not reveal any causal relationship

shared across genetically predisposed adipokine levels and PET risk (for

adiponectin, OR = 0.86, 95% CI: 0.65–1.13, p = 0.274). Additionally, no

significant associations were identified after taking into account five

circulating adipokines in MVMR research. Complementary sensitivity analysis

also supported no significant associations between them. In the reverse MR

analysis, genetically predicted PET risk showed a suggestive association with

elevating PAI-1 levels by the IVW method (Beta = 0.120, 95% CI: 0.014, 0.227,

p = 0.026). Furthermore, there were no strong correlations between genetic

liability to PET and other adipokine levels (p > 0.05).

Conclusion: Our MR study did not provide robust evidence supporting the

causal role of common circulating adipokine levels in PET, whereas genetically

predicted PET may instrumentally affect PAI-1 levels. These findings suggest

that PAI-1 may be a useful biomarker for monitoring the diagnosis or therapy of

PET rather than a therapeutic target for PET.
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Introduction

Preeclampsia or eclampsia, also known as preeclampsia

toxemia (PET), is the leading cause of maternal as well as

fetal morbidity and mortality among the hypertensive disorders

of pregnancy (Rana et al., 2019). Although their incidence

varies widely, it is estimated to complicate approximately

4.5% of all pregnancies in the Western world (Abalos et al.,

2013). The etiology of PET is probably heterogeneous and not

completely clarified, but it is believed that a variety of

inflammatory and angiogenic mediators affecting vascular

endothelial function and reactivity are attributed to the

phenotype of preeclampsia (Bellos et al., 2018). Continued

efforts have been made to combat PET; however, there is

still a long way to reduce the disease burden of PET. One of

the key points is early screening (or diagnosis) based on

circulating biomarkers.

It has been well established that adipose-derived adipokines

have been assumed to be involved in preeclampsia pathogenesis

(Gutaj et al., 2020). As indispensable members of adipokines (a

type of immune molecules and inflammatory mediators),

common adipokines leptin and resistin have been increasingly

studied in the context of risk of PET onset and progression

(Masuyama et al., 2010; Daskalakis et al., 2020; Banjac et al.,

2021). For example, previous epidemiological studies reported

increased serum leptin levels in PET patients and elevated levels

of this protein in preeclamptic placentas (Kalinderis et al., 2015;

Taylor et al., 2015). Meanwhile, several observational studies

indicate that circulating levels of leptin are lower or similar in

women with clinical PET than in their normotensive

counterparts (Martinez-Abundis et al., 2000; Laml et al., 2001;

Doster et al., 2016; Kharb et al., 2017). A recent meta-analysis

suggested that patients with PET have a significantly higher

leptin level than a group of healthy controls; however,

typically only limited research with a small number of

patients are available (Shahid et al., 2022).

Conclusive causal relationships remain unestablished on the

basis of observational evidence alone due to reverse causation

and residual confounding factors, such as incomplete adjustment

for confounders, the absence of high-quality evidence, and

relatively small sample sizes of trials. Mendelian

randomization (MR) is an epidemiological method that uses

genetic variants (single nucleotide polymorphisms, SNPs) as

instrumental variables (IVs) and could mimic biological

effects of clinical biomarkers, and it is less susceptible to the

aforementioned shortcomings (Lawlor et al., 2008; Davey Smith

and Hemani, 2014). As germline variants in parental genes tend

to be randomly distributed to offspring in meiosis during

gametogenesis and at conception, MR analysis can eliminate

residual confounding from environmental factors and strengthen

the causal inference (Burgess et al., 2019). Based on the existing

genome-wide association study (GWAS) databank, MR has been

widely used to quantitatively assess the effect of circulating

adipokine levels on the risk of various diseases, such as

cancers, cardiovascular diseases, and auto-inflammatory

disorders (Dimou et al., 2021; Harroud et al., 2021; Chen

et al., 2022).

However, the potential causal relationship between

circulating adipokines and PET has scarcely been explored

using the MR approach. Hence, we conducted a bidirectional

MR study to test the association of five genetically predicted

adipokine biomarkers [adiponectin, leptin, resistin, soluble leptin

receptor (sOB-R), and plasminogen activator inhibitor-1 (PAI-

1)] with the risk of PET. In addition, we also conducted

multivariable MR (MVMR) analysis to determine whether

circulating adipokine levels are associated with PET outcomes

independently of each other.

Methods

Study design

To allow for an adequate number of SNPs to be included in

our MR analysis, we thoroughly relaxed the GWAS p-value

threshold of p < 5 × 10–6 for the five adipokine biomarkers.

We performed a two-sample MR study using the publicly

available summary-level GWAS datasets on adipokines and

PET. The validity of MR analysis relies on three critical

assumptions: 1) the selected IVs should be closely related to

the exposure factor. The IV–exposure strength of genetic

instruments was assessed from the F statistic using an

approximation (Bowden et al., 2016). If F > 10, there is

sufficient strength to avoid a problem of weak instrument bias

in the two-sample model (Burgess and Thompson, 2011); 2) each

IV must influence the outcome only through exposure factors

rather than another pathway; 3) the selected IVs need to be

independent of unobserved confounders of the

exposure–outcome relationship (Lawlor et al., 2008).

Additionally, ethical approval or consent to participate was

documented in the original publications. The overview of the

study design is presented in Figure 1.

Data sources

To be more specific, selection of strong adipokine-level

estimates of correlations between genetic variants can be
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obtained from several previously published GWAS datasets of

European ancestry (1,338 ≤ N ≤ 39,883) (Dastani et al., 2012;

Huang et al., 2012; Kilpelainen et al., 2016; Suhre et al., 2017;

Folkersen et al., 2020). A generalized linear mixed model was

applied to test for association with genotyped or imputed SNPs

that were adjusted for age, sex, and body mass index (BMI).

Within each study, circulating adipokine levels were natural

logarithm transformed to approximate normal distribution.

Further details concerning the relevant genetic information

could be acquired from the aforementioned research studies.

Summary data for PET genetic association estimates were

extracted from the FinnGen consortium (R6) (https://finngen.

FIGURE 1
Overview of our study design aimed at revealing the bidirectional relationships between circulating adipokines and PET. Abbreviations: N,
number of SNPs; PET, preeclampsia or eclampsia.

TABLE 1 Basic characteristics for selected summary-level GWASs applied in MR study.

Trait First
author/consortium

Sample size Cases Ethnicity Sex References

Adiponectin Dastani Z 39,883 NA European Males and females [23]

Leptin Kilpelainen TO 32,161 NA European Males and females [24]

Resistin Folkersen L 30,931 NA European Males and females [25]

sOB-R Suhre K 1,338 NA European Males and females [26]

PAI-1 Huang J 30,395 NA European Males and females [27]

PET FinnGen team 141,068 4,743 European Females a

ahttps://finngen.gitbook.io/documentation

Abbreviation: NA, not available.

Frontiers in Genetics frontiersin.org03

Chen et al. 10.3389/fgene.2022.935757

https://finngen.gitbook.io/documentation
https://finngen.gitbook.io/documentation
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.935757


gitbook.io/documentation) with 4,743 cases and 136,325 controls

of European individuals. Details of population characteristics are

available in the original publications and websites. There is no

sample overlap between the exposure and outcome datasets. All

datasets for the MR analysis are summarized in Table 1. To avoid

a possible bias in the estimates of linkage disequilibrium (LD), we

attempted to exclude SNPs that met the condition r2 < 0.001.

When multiple tagging IVs were in strong LD with each other,

only the corresponding IV with the smallest p value was

appropriately chosen. Additionally, any specifically requested

SNPs that were not available in outcome datasets would be

replaced with proxies in LD of r2 > 0.8 or excluded from the

MR if no eligible proxies were identified. We also manually

searched secondary phenotypes of each selected SNP and its

proxy in PhenoScanner V2 (http://www.Phenoscanner.cam.ac.

uk/) to rule out the possible influence of pleiotropic effects. The

effects of ambiguous SNPs being palindromic with intermediate

allele frequencies (where “palindromic SNPs” refer to SNPs with

A/T or G/C alleles and “intermediate allele frequencies” refer to

0.01 < allele frequency < 0.30) would be discarded in the

subsequent two-sample MR analysis.

Bidirectional Mendelian randomization

To examine the possibility that reverse causality exists in

these studies, a bidirectional two-sample MR analysis between

genetically predicted PET and circulating adipokines was

performed using the same approach as described earlier. Since

summary-level data for outcome (sOB-R and PAI-1) were not

obtained from the corresponding GWASs, other GWAS

summary data for these two adipokines were chosen from the

MRC IEU open GWAS platform (https://gwas.mrcieu.ac.uk/);

the GWAS IDs corresponding to sOB-R and PAI-1 were “prot-a-

1724” and “prot-a-2696,” respectively.

Statistical analysis

The fixed-effects inverse-variance weighted (IVW) meta-

analysis based on the Wald ratio method was applied to

explore two-sample MR estimates of the associations between

the levels of the five adipokines and PET(28). The IVW method,

including all valid IVs, would provide the most accurate

assessments. We further applied MVMR (Burgess and

Thompson, 2015) to dissect the influence of potential

adipokine levels on causal estimates. Additionally, a series of

complementary sensitivity analyses, such as maximum

likelihood, MR-Egger regression, weighted median, and MR-

robust adjusted profile score (MR-RAPS) methods, were

introduced to produce a consistent causal estimate (Pierce and

Burgess, 2013; Bowden et al., 2015; Hartwig et al., 2016; Zhao

et al., 2019). Moreover, estimating an intercept with p < 0.05 in

MR-Egger regression is akin to allowing for the possibility of

additional horizontal pleiotropy. MR-pleiotropy residual sum

and outlier (MR-PRESSO) test was applied to detect potential

outlying SNPs and provide causal estimates after the removal of

outliers (Verbanck et al., 2018). We also applied radial IVW for a

better visualization of the regression estimates. The statistical

heterogeneity among the estimates of IVs in the IVW method

was assessed using Cochran’s Q test, and p values less than

0.05 were considered statistically significant. To address multiple

testing, a Bonferroni-corrected p value of 0.005 (0.05/

10 adipokines) was considered significant, with a p value <
0.005 or < 0.05 was regarded as suggestive. Furthermore, a

“leave-one-out” sensitivity analysis was performed to

determine the potential effect of SNPs on the causal estimates.

Power calculations were performed based on a web tool available

at https://sb452.shinyapps.io/power.

All these analyses were implemented in the R software

(version 4.1.0, using the “TwoSampleMR,” “RadialMR,” and

“MR-PRESSO” R packages; R Foundation for Statistical

Computing, Vienna, Austria).

Results

A detailed description of the selected SNPs, including effect

allele (EA), EA frequency, and effect sizes on adipokines and

PET, was thoroughly retrieved from the original literatures. All

selected SNPs did not have a potent LD calculation (r2 < 0.001).

For genetically predicted exposure level, power calculations for

our bidirectional two-sample MR analyses were performed. All

statistical power calculations for our MR estimates were less than

80%, except for the effect of PAI-1 level on PET (Table 1).

Circulating adipokine levels and PET

Summary information about the selected SNPs for the five

adipokine levels is available in Supplementary Table S2. In this

study, 6 SNPs (rs601339, rs7133378, rs13081028, rs10773049,

rs825453, and rs8182584) for adiponectin level, five SNPs

(rs199752470, rs34861192, rs7746716, rs4134826, and

rs3745367) for resistin level, and 1 SNP (rs17412403) for

sOB-R level were removed due to high LD with other variants

or absence from the LD reference panel. Additionally, we

eliminated 1 SNP (rs10487505 related to leptin) for being

palindromic with intermediate allele frequencies. Thus, the

remaining 11 SNPs regarded as IVs for adiponectin level, four

SNPs for leptin level, 10 SNPs for resistin level, three SNPs for

sOB-R level, and four SNPs for PAI-1 level were included in

further MR analysis. The F statistics of all selected SNPs ranged

from 18 to 225, demonstrating that there is no bias due to weak

instruments. Moreover, the variance explained in circulating

adipokine levels by the genetic instruments was 6.04%, 1.69%,
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4.67%, 9.06%, and 1.87% for adiponectin, leptin, resistin, sOB-R,

and PAI-1 levels, respectively.

As shown in Table 2, genetically predicted levels of circulating

adipokines were not associated with the risk of PET (adiponectin,

OR = 0.86, 95% CI: 0.65–1.13, p = 0.274; leptin, OR = 0.87, 95% CI:

0.41–1.86, p = 0.72; resistin, OR = 1.13, 95%CI: 0.94–1.35, p = 0.199;

sOB-R, OR = 1.01, 95% CI: 0.97–1.05, p = 0.599; and PAI-1, OR =

1.36, 95%CI: 0.71–2.62, p = 0.354, Figure 2) using the IVWmethod.

Moreover, such findings were undeviating from several

complementary MR analyses (p > 0.05). When five circulating

adipokines were included together in the MVMR analysis

(Supplementary Table S3), all its estimations with PET hardly

surpassed the Bonferroni-corrected threshold (p > 0.05).

Cochran’s Q statistics showed evidence of slight heterogeneity

based on genetically predicted SNPs of PAI-1 level (p = 0.032),

and the associations for PAI-1 were mainly driven by

rs6976035 located near the ACHE region in sensitivity analyses.

The results of the leave-one-out method demonstrated that the links

between other adipokines and PET risk were not driven by SNPs,

which indicated thatMR results were reliable (Supplementary Figure

S1). Moreover, the MR-Egger intercept test detected no evidence of

directional pleiotropy (p > 0.05). No outlier SNPs were observed in

the MR-PRESSO analysis (data not shown). Additionally, the IVW

Radial MR results delineated that no instrumental variables of

adipokines that carry large effect sizes on PET could potentially

be outliers.

A few genetic variants (rs998584 for adiponectin,

rs780093 for leptin, rs3087852 for resistin, rs4655537 for sOB-

R, and rs11128603 for PAI-1) were associated with other

phenotypes at the threshold of genome-wide significance (p <
5 × 10–8), including different white blood cells, BMI, lipid levels,

coronary artery disease, and age at menopause (Supplementary

Table S4). Remarkably, all these traits were unlikely to exert any

pleiotropic effect on the observed associations between

genetically predicted adipokine levels and PET risk.

PET and circulating adipokine levels

To further examine the influence of PET on adipokine

concentrations, we conducted another reverse MR design

regarding genetical PET trait as exposure and circulating

TABLE 2 Two-sample MR estimates of associations between genetically predicted circulating adipokine levels and PET.

Exposure Method SNPs OR 95% CI p Q statistic P-heterogeneity P-intercept

Adiponectin IVW 11 0.86 0.65–1.13 0.274 15.19 0.125

Maximum likelihood 11 0.85 0.63–1.14 0.279

MR-Egger 11 1.36 0.86–2.14 0.218 0.510

Weighted median 11 0.93 0.65–1.35 0.718

MR-RAPS 11 0.85 0.63–1.13 0.252

Leptin IVW 4 0.87 0.41–1.86 0.720 0.097 0.992

Maximum likelihood 4 0.87 0.41–1.86 0.720

MR-Egger 4 3.62 1.15e-04–1.14e+05 0.830 0.812

Weighted median 4 0.89 0.38–2.09 0.787

MR-RAPS 4 0.87 0.39–1.94 0.735

Resistin IVW 10 1.13 0.94–1.35 0.199 15.62 0.075

Maximum likelihood 10 1.13 0.94–1.36 0.194

MR-Egger 10 0.72 0.40–1.31 0.316 0.154

Weighted median 10 1.07 0.84–1.35 0.600

MR-RAPS 10 1.13 0.94–1.36 0.194

sOB-R IVW 3 1.01 0.97–1.05 0.599 1.193 0.551

Maximum likelihood 3 1.01 0.97–1.05 0.599

MR-Egger 3 1.03 0.96–1.10 0.605 0.706

Weighted median 3 1.02 0.97–1.06 0.497

MR-RAPS 3 1.01 0.97–1.05 0.601

PAI-1 IVW 4 1.36 0.71–2.62 0.354 8.78 0.032

Maximum likelihood 4 1.38 0.93–2.04 0.108

MR-Egger 4 2.52 0.05–118.8 0.684 0.779

Weighted median 4 1.48 0.89–2.47 0.131

MR-RAPS 4 1.38 0.93–2.04 0.105

Abbreviations: IVW, inverse-variance weighted; MR-Egger, Mendelian randomization Egger; MR-RAPS, Mendelian randomization robust adjusted profile score; SNP, single nucleotide

polymorphism; OR, odds ratio; 95% CI, 95% confidence interval.
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adipokines as outcome. A total of 11 SNPs that were strongly

related to PET risk (p < 5 × 10–6) were identified in our MR

findings (Supplementary Table S5). The MR results indicated

that there was a suggestive positive link between genetic liability

to PET and circulating PAI-1 levels using the IVW, maximum

likelihood, MR-Egger, and MR-RAPS methods (IVW, Beta =

0.120, 95% CI: 0.014, 0.227, p = 0.026, Figure 3 and Table 3). In

addition, null estimates were obtained for the causal effects of

PET on other circulating adipokine levels. The leave-one-out

analysis also did not demonstrate any evidence that an SNP could

drive the overall effect of genetical PET variants on adiponectin

levels (Supplementary Figure S2). Similarly, neither indication of

a significant intercept for horizontal pleiotropy (intercept =

–0.02, p = 0.281) nor strong heterogeneity (Cochran’s Q =

13.32, p = 0.629) was detected in these MR analyses (Table 3).

Discussion

To the best of our knowledge, this is the first MR analysis

evaluatingwhether five adipokine levels are related to the risk of PET

based on the genetic data from large-scale GWAS datasets. The

FIGURE 2
Associations of genetically predicted circulating adipokine levels with PET according to different Mendelian randomization methods.
Abbreviations: IVW, inverse-variance weighted; MR-Egger, Mendelian randomization Egger; MR-RAPS, Mendelian randomization robust adjusted
profile score; OR, odds ratio; 95% CI, 95% confidence interval.
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current MR estimates did not support a causal effect of genetically

determined circulating adipokines on PET risk. Moreover, reverse

MR analyses indicated that genetic predisposition to PET was

possibly associated with the level of circulating PAI-1.

Our findings on the role of circulating adipokine levels in the

development of PET seem quite inconsistent across observational

studies and interventional trials. Compared to healthy controls,

several case–control researches have demonstrated elevated levels

of PAI-1 in patients with early-onset PET (Chappell et al., 2002;

Wikstrom et al., 2009; Bodova et al., 2011; Rampersaud et al., 2020).

A positive association has been confirmed between maternal PAI-1

mRNA expression and the severity of PET in the third trimester, and

a linear regression model has evaluated that severe PET is

remarkably associated with PAI-1 level (Purwosunu et al., 2007;

Elzein et al., 2016). In addition, some researchers argued that there

was no difference in PAI-1 expressions between PET individuals and

healthy pregnant women (Gow et al., 1984; Ho and Yang, 1992). A

previous meta-analysis also did not delineate any significant

relationship between the occurrence of PE and PAI-1 4G/5G

polymorphism (Morgan et al., 2013). Although accumulating

evidences show that increased PAI-1 levels play a pivotal role in

PET phenotype, information about the function of PAI-1 during

pregnancy complicated with PET are still controversial. Our

bidirectional MR analysis has shown the shared genetic

architecture between PAI-1 levels and PET and found suggestive

evidence of causal relationships between them.

Even though we found no indication of potential causality

between other genetically predicted adipokine levels and PET

risk, such findings are contradictory with previous observational

studies. For adiponectin, multiple researchers confirmed that a

significant increase was mapped in adiponectin concentration

among PET patients compared to controls (Naruse et al., 2005;

Takemura et al., 2007). In contrast, several comparative studies

have demonstrated significantly lower levels of adiponectin in

PET patients (Ouyang et al., 2007; Herse et al., 2009). Some

researchers proved that the involvement of adiponectin in PE

pathology was attributed to its function in endothelial nitric

oxide synthase activation and nitric oxide synthesis, and both

could result in the reduction of blood pressure (Sandrim et al.,

2008). With regard to resistin, alterations in its concentration

level in PET patients are still poorly understood. Some of the

studies concerning PET have concluded that maternal resistin

concentrations might be elevated (Seol et al., 2010), some

observed reduced resistin level (Christiansen et al., 2015), and

others also revealed no significant correlation between PET and

non-complicated pregnancies (Hendler et al., 2005). The

FIGURE 3
Causal association of genetically predicted PET and circulating adipokine levels according to different Mendelian randomization methods.
Abbreviations: IVW, inverse-variance weighted; MR-Egger, Mendelian randomization Egger; MR-RAPS, Mendelian randomization robust adjusted
profile score; 95% CI, 95% confidence interval.

Frontiers in Genetics frontiersin.org07

Chen et al. 10.3389/fgene.2022.935757

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.935757


discrepancy between our MR findings and previous

observational studies may partly be due to measurement error,

small sample size, and residual confounding. Indeed, further

research is required to elucidate the internal association of

adiponectin, as well as other adipokines with robust null

results in our study, with PET and to identify whether there is

potential bias or confounding accounted for previous studies.

Several potential mechanisms of increased PAI-1 synthesis in

the pathogenesis of PET and their association have been

comprehensively discussed. It has been reported that the

hypoinvasion and failed conversion of maternal endometrial

spiral arteries in the placenta of patients with PET are related

to the increased level of PAI-1 (Redman and Sargent, 2005).

Additionally, PET has been commonly recognized as an

inflammation-mediated disorder, and inflammatory cytokines,

including interleukin 1β (IL-1β), IL-6, vascular endothelial

growth factor, and epidermal growth factor, could upregulate

the level of circulating PAI-1 (Zhai et al., 2022). Moreover, it has

been found that the NF-κB pathway activation in the damaged

migration of trophoblasts in PET could ultimately promote the

mRNA expression of PAI-1 (Ye et al., 2017). Although the fact

whether an increased level of PAI-1 is the leading cause of PET or

the meaningful consequence of endothelial and placental

dysfunction remains undetermined, our reverse MR results

partly supported that upregulations of circulating adipokines

involved in PAI-1 level appear to be downstream effects of PET.

As far as we know, there are no related MR analyses that have

explored the bidirectional association of circulating adipokine

levels with the risk of PET. A recent MR research revealed the

causal role of resistin in the development of cardiovascular

disease, which probably acted through blood pressure (Chen

et al., 2022). Another MR study provided evidence for a potential

causal link between leptin level and blood pressure among

smokers (Shen et al., 2020). In our MR study, we

incorporated the largest and most comprehensive datasets to

investigate a causal association between genetically determined

circulating adipokine concentrations and risks of PET. In

addition, we performed various sensitivity analyses and

investigated potential associations with secondary phenotypes

of interest. Our results were similar and robust, suggesting that

pleiotropy did not markedly influence our findings. However,

our present findings cannot rule out the possibility of a protective

TABLE 3 Two-sample MR estimates of associations between genetically predicted PET and circulating adipokine levels.

Outcome Method SNPs Beta 95% CI p Q statistic P-heterogeneity P-intercept

Adiponectin IVW 10 −0.006 (−0.037, 0.025) 0.689 13.78 0.088

Maximum likelihood 10 −0.007 (−0.039, 0.026) 0.698

MR-Egger 10 0.126 (−0.015, 0.269) 0.117 0.091

Weighted median 10 0.009 (−0.039, 0.057) 0.720

MR-RAPS 10 −0.007 (−0.039, 0.026) 0.656

Leptin IVW 7 −0.022 (−0.071, 0.026) 0.363 10.59 0.102

Maximum likelihood 7 −0.024 (−0.074, 0.026) 0.346

MR-Egger 7 −0.121 (−0.332, 0.090) 0.312 0.381

Weighted median 7 −0.025 (−0.093, 0.044) 0.477

MR-RAPS 7 −0.021 (−0.069, 0.027) 0.346

Resistin IVW 6 0.030 (−0.209, 0.270) 0.803 3.34 0.648

Maximum likelihood 6 0.031 (−0.211, 0.274) 0.800

MR-Egger 6 0.592 (−0.205, 1.391) 0.219 0.221

Weighted median 6 −0.021 (−0.324, 0.282) 0.891

MR-RAPS 6 0.031 (−0.211, 0.274) 0.809

sOB-R IVW 17 0.011 (−0.095, 0.118) 0.835 15.42 0.494

Maximum likelihood 17 0.012 (−0.097, 0.120) 0.835

MR-Egger 17 −0.033 (−0.240, 0.174) 0.757 0.629

Weighted median 17 −0.039 (−0.190, 0.112) 0.620

MR-RAPS 17 0.012 (−0.097, 0.120) 0.837

PAI-1 IVW 17 0.120 (0.014, 0.227) 0.026 13.32 0.649

Maximum likelihood 17 0.125 (0.016, 0.233) 0.024

MR-Egger 17 0.221 (0.015, 0.426) 0.042 0.281

Weighted median 17 0.109 (−0.039, 0.259) 0.164

MR-RAPS 17 0.124 (0.015, 0.228) 0.029

Abbreviations: IVW, inverse-variance weighted; MR-Egger, Mendelian randomization Egger; MR-RAPS, Mendelian randomization robust adjusted profile score; SNP, single nucleotide

polymorphism; 95% CI, 95% confidence interval.
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or detrimental role for adipokines in PET etiology, which

suggests that the function of adipokines in the causal pathway

of this disease is likely to be small.

The present MR design was introduced primarily to avoid the

bias of observational studies on the association of genetically

predicted adipokine levels with PET risk in large-scale

individuals. Several important advantages deserve special

emphasis. First, a predominant strength of the bidirectional MR

method is benefited to reduce bias from unmeasured residual

confounding, reverse causality, and measurement error. Second,

the most comprehensive GWAS-identified SNPs were regarded as

the IV model. In addition, all selected IVs (F > 10) were robustly

associated with the exposure factor, suggesting that there were no

evidence of weak estimate. Third, several sensitivity analyses and

potential pleiotropic validation imply the decreased probability of

bias. Thus, our findings provide strong evidence in support of the

genetic assessment between adipokine levels and PET susceptibility.

Notwithstanding the explicit strengths, some limitations in our

study should be noted. First, the statistical power might be low for

several analyses due to limited case numbers. Thus, the inadequate

power might be the reason for the null results. Second, the

information for our research was obtained from publicly available

GWASs’ summary-level datasets. However, detailed demographic

characteristics and clinical manifestations (such as smoking status

and PET progress) of subjects were not available to perform risk-

stratified and conventional subgroup analysis. Third, our population

confinement to European descent could help minimize the impact of

ethnic structure bias; however, our findings might not generalize to

other populations. Fourth, it is difficult for us to make a distinction

between preeclampsia and eclampsia in our MR analyses. Fifth, we

cannot completely rule out the relationship of sOB-R level with PET

risk, since this might be due to the relatively small sample size. Sixth,

our research did not acquire enough SNPs regarding plasma

adipokine levels as IVs, resulting in only a limited proportion of

variation to be explained and no adequate power to reach a

significant threshold. Additionally, we acknowledged that MR

methods used in our research cannot address commonly seen

pleiotropy and sample structure problems in such causal inference

studies. Genome-wide MR methods such as Causal Analysis Using

Summary Effect Estimates (Morrison et al., 2020) and constrained

maximum likelihood and model averaging (Xue et al., 2021) using

weak IVs may relieve the concern for possible false-positive causal

findings. Seventh, the effects of PET exposure on five plasma

adipokine biomarkers could vary by sex difference, but sufficiently

large unbiased female samples for adipokine outcomes are not

available to test this possibility. Finally, epigenetic phenomena that

were independent of MR design, for example, methylation,

acetylation, or potential mechanism of developmental

compensation, also could affect the association of adipokine levels

with PET risk.

Conclusion

Our bidirectional MR study did not support a critical role for

increased circulating adipokine levels in PET but identified a

potential causality of PET risk and circulating PAI-1 levels,

suggesting that PAI-1 may be a potential biomarker for the

diagnosis or therapy of PET. Subsequent studies with updated

data from large GWAS datasets are still required to authenticate

the mentioned findings.
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