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Abstract: We consider the problem of minimization of products of mean values of the high powers of
operators x and p. From this point of view, we study several two-term superpositions of the Fock
states, as well as three popular families of infinite superpositions: squeezed states, even/odd coherent
states, and orthogonal even coherent states (or compass states). The new element is the analysis of
products of the corresponding (co)variances and the related generalized (Robertson–Schrödinger)
intelligent states (RSIS). In particular, we show that both Fock and pure Gaussian homogeneous
states are RSIS for the fourth powers (but not for the sixth ones). We show that lower bounds of the
high-order uncertainty products can be significantly below the vacuum values. In this connection,
the concept of significant and weak high-order squeezing is introduced.

Keywords: Fock states; Gaussian states; even/odd coherent states; compass states; generalized
intelligent states; minimal uncertainty products; Robertson–Schrödinger uncertainty relations

1. Introduction

The exact inequality for the product of the second order statistical moments of the dimensionless
coordinate and momentum operators (in the system of units with h̄ = 1),

〈x̂2〉〈 p̂2〉 ≥ 1/4, (1)

is known since the paper by Kennard in 1927 [1]. Moreover, it is well known that the equality in (1)
is achieved for the vacuum state |0〉 of the quantum harmonic oscillator with 〈x̂2〉 = 〈 p̂2〉 = 1/2.
Using the inequality 〈Â2〉 ≥ 〈Â〉2 (which holds for any Hermitian operator Â) one immediately arrives
at the inequality

Π(4) ≡ 〈x̂4〉〈 p̂4〉 ≥ 1/16. (2)

However, in the vacuum state |0〉, one has 〈x̂4〉 = 3〈x̂2〉2 and 〈 p̂4〉 = 3〈 p̂2〉2, so that the left-hand side
of (2) equals (Π(4))vac = 9/16 = 0.5625, nine times bigger than the right-hand side! Thus, the natural
questions arise: can one find quantum states with the product 〈x̂4〉〈 p̂4〉 smaller than 9/16 and can
the limit value 1/16 be achieved? These questions were considered in [2]. It was shown that the
answer to the second question is negative. Using more sophisticated inequalities of the “entropic”
type found in [3], the following inequality for the product of statistical moments of the same order can
be derived [2]: 〈|p|q〉〈|x|q〉 ≥ (πe/4)qq2(q−1)e−2[Γ(1/q)]−2q, where Γ(z) is the Euler gamma function.
For q = 4, one gets the inequality 〈x̂4〉〈 p̂4〉 ≥ (4eπ2)2 [Γ(1/4)]−1/8 ≈ 0.3857. Therefore, the first
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question becomes: can one find the states with the product Π(4) between 0.39 and 0.56? The positive
answer was given in [2], where two simple two-term superpositions of the Fock states of the form

|ψk〉 = α|0〉+ β|k〉, |α|2 + |β|2 = 1, (3)

were considered for k = 2 and k = 4. It was shown that (Π(4))min ≈ 0.51 for |ψ2〉 (if Im(βα∗) = 0
and |β|2 = 1/44). A smaller value, (Π(4))min ≈ 0.4901, was found for |ψ4〉 with Im(βα∗) = 0
and Re(βα∗) < 0, when |β|2 =

(
1−
√

150/151
)

/2 ≈ 0.00166 (i.e., |β| ≈ 0.041). These examples
show that even a tiny admixture of highly excited states can significantly change the uncertainty
product (compared with its value in the vacuum state), due to the quantum interference effects.
On the other hand, the overwhelming (but not 100%!) weight of the ground state is very important,
since superpositions without the ground state possess high values of Π(4) (see an example in
Section 6.1).

Soon after paper [2], Lynch and Mavromatis [4] looked for the minimal value of the product
Π(N) ≡ 〈x̂N〉〈 p̂N〉 in the restricted class of states with equal mean values, 〈x̂N〉 = 〈 p̂N〉. They found
that the minimal value of Π(N) for such states coincides with the minimal eigenvalue squared λ2 of
the equation (

x̂N + p̂N
)
|ψ〉 = 2λ|ψ〉. (4)

Using approximate variational schemes, they obtained the minimal value

(Π(4))LM = (0.6984)2 = 0.4878 = 0.8672 (Π(4))vac (5)

in the specific superposition of the Fock states of the form |ψ〉K = ∑K
n=0 cn|4n〉, with K = 6 and certain

values of coefficients cn (not given in that papers). Recently, Equation (4) was studied in [5], where the
same value λ

(4)
min = 0.6984 was confirmed. The value (5) is the best lower limit for the product Π(4)

known until now.
An interesting infinite-dimensional analog of the state |ψ〉K is the superposition of four coherent

states with equal amplitudes and phases shifted by π/2,

|ψ〉4α = B (|α〉+ |iα〉+ | − α〉+ | − iα〉) = N
∞

∑
n=0

α4n√
(4n)!

|4n〉. (6)

Such kinds of states were studied for a long time from different points of view, due to their interesting
properties. They were named “four-photon states” [6], “orthogonal-even coherent states” [7], “pair cat
states” [8], “compass states” [9], and “four-headed cat states” [10]. The state (6) is a special case of large
families of “circular states” [11–13] and “crystallized cat states” [14]. For extensive lists of references
one can consult [15,16]. Following [7], we use the abbreviation OECS for the state (6).

It was shown in [7] that the value (Π(4))min ≈ 0.49 can be obtained in the state (6) with |α| ≈ 0.67.
Later, this result was confirmed in [17,18]. It is worth noting that the relative probability of the state |4〉
in the superposition (6), p4/p0 = (0.67)8/24 = 0.00169, is very close to the relative probability 0.00166
of the state |4〉 in the superposition |ψ4〉 (3).

One of our goals is to analyze some known families of quantum superposition states, in order to
see whether they can give the values of Π(4) smaller than 0.49, without the restriction 〈x̂N〉 = 〈 p̂N〉.
The simplest natural candidates are superpositions of two coherent states or superpositions of states
|ψk〉 (3), containing even Fock states only. This is explained by the fact that operators x̂2 and p̂2 mix
the Fock states with the same parity only. Because we need the vacuum state |0〉 as the basic element,
only even Fock states can lead to useful interference effects. In principle, one can consider various
families of states, which are characterized by arbitrary numbers of independent parameters. However,
explicit expressions for the quantity Π(4) are so complicated in the majority of cases that we confine
ourselves to the cases of no more than four real parameters.
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Another subject of our study is the minimization of the general product Π(2n). Its values in the
vacuum state grow very rapidly with increase of power 2n:

(Π(2n))vac =
[
2−n(2n− 1)!!

]2
= 2−4n [(2n)!/(n!)]2 . (7)

In particular, (Π(4))vac = 9/16 = 0.5625,

(Π(6))vac =
225
64
≈ 3.5156, (Π(8))vac =

1052

256
≈ 43.07, (Π(10))vac =

9452

322 ≈ 872.1.

However, let us look at the ratio F(2n) ≡ (Π(2n))min/(Π(2n))vac, where (Π(2n))min is the minimal value
of the product Π(2n). Using the values of (Π(2n))min calculated in [4] (the best values known up to
now), we obtain the following numbers:

F(4) ≈ 0.8671, F(6) ≈ 0.6201, F(8) ≈ 0.40, F(10) ≈ 0.37.

We see that this ratio diminishes with increase of n, but the decrease rate slows down for big values n.
We study the asymptotic behavior of F(2n) for the two-Fock superpositions (3) in Section 8, comparing
our results with those that were obtained in [4].

The subject that was not addressed in the available literature is the minimal value of the product
of variances of operators x̂N and p̂N . Remember that variances and the covariance of two Hermitian
operators, Â and B̂, are defined, as follows,

σA ≡ 〈Â2〉 − 〈Â〉2 ≡ 〈(δÂ)2〉, σAB ≡
1
2
〈ÂB̂ + B̂Â〉 − 〈Â〉〈B̂〉 ≡ 1

2

〈{
δÂ, δB̂

}〉
, δÂ ≡ Â− 〈Â〉.

Let us define the variance uncertainty product (VUP) of the order 2n as

Π(2n)
σ = σxn σpn ≡

(
〈x̂2n〉 − 〈x̂n〉2

) (
〈 p̂2n〉 − 〈 p̂n〉2

)
.

Obviously, Π(2n)
σ > 0 for any normalized quantum state. It is also obvious that Π(2n)

σ ≤ Π(2n) in any
state. However, what is the minimal value of Π(2n)

σ ? The answer is well known for n = 1: in view of the
Heisenberg–Kennard inequality [1] σxσp ≥ 1/4, one has the minimal value (Π(2)

σ )min = 1/4, and this
minimum is achieved for all coherent states of the harmonic oscillator. However, the minimum of
Π(2n)

σ with n > 1 was never discussed. This issue is considered in Sections 2, 5 and 6 for n = 2.
The generalization of inequality σxσp ≥ 1/4 for arbitrary Hermitian operators Â and B̂ was found

by Robertson and Schrödinger [19,20]. It can be written as follows,

R ≡ σAσB − σ2
AB −Y2

AB ≥ 0, YAB =
1
2i
〈
[Â, B̂]

〉
. (8)

Two equivalent formulas for R, which can be useful in some cases, are

R ≡ 〈(δÂ)2〉〈(δB̂)2〉 − |〈(δÂ)(δB̂)〉|2,

R ≡ 〈Â2〉〈B̂2〉 − |〈ÂB̂〉|2 − 〈Â2〉〈B̂〉2 − 〈B̂2〉〈Â〉2 + 〈ÂB̂ + B̂Â〉〈Â〉〈B̂〉.

The problem with inequality (8) consists in the fact that the quantity YAB is state dependent for many
operators, different from x̂ and p̂. Moreover, YAB can be equal to zero in many quantum states.
Therefore, the following non-negative quantities can be studied in connection with inequality (8):

D ≡ σAσB − σ2
AB, Z ≡ σAσB −Y2

AB. (9)
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The name “intelligent states” (IS) was coined in [21] for the spin (angular momentum) states
satisfying the equality Z = 0. The difference between “intelligent” and “minimum uncertainty”
states for the angular momentum operators was discussed in [22]. A little later, the same name was
accepted in connection with the non-compact group SU(1, 1) [23]. Further extensions of the concept of
“intelligent” states were made, e.g., in [24–27]. Of course, the word “intelligent” is nothing but a label,
but this name has been adopted nowadays by the majority of researchers. Later on, the states satisfying
a more general equality R = 0 were named “generalized intelligent states” (GIS) in [28]. The names
“Schrödinger intelligent states” and “Robertson intelligent states” were also used in [29,30]. Many
references to the papers that are devoted to IS and GIS for various sets of operators can be found in [15].
The physical meaning of IS and methods of their generation were discussed, e.g., in papers [31–34].
“Constrained” intelligent states were introduced in study [35]. We shall use the name “ordinary
intelligent state” (OIS) in the case of Z = 0, and the name “Robertson–Schrödinger intelligent state”
(RSIS) when R = 0.

In Section 2, we consider the operators Â = x̂N and B̂ = p̂N and Gaussian pure (squeezed) states,
trying to answer the following questions: (1) When the equalities R = 0 or Z = 0 can be satisfied?
(2) What is the minimal value of the quantity D? In Section 3, we show that the Fock states are RSIS
(but not OIS) for N = 2. Sections 4–8 are devoted to the detailed analysis of the products Π(2n) and
Π(2n)

σ in various superposition states, described by a small number (from 2 to 4) of real parameters.
The main goal is to minimize these products with respect to the chosen parameters. The results of that
sections naturally lead us to some thoughts about the best definition of the concept of the high-order
squeezing. This subject is discussed in Section 9. The last Section 10 contains a brief discussion of main
results that were obtained in the paper, together with outlines of possible directions for further studies.

2. Robertson–Schrödinger Relations with High-Order Moments for the Gaussian States

It is known since [1] that R ≡ 0 for A = x and B = p in any pure Gaussian state, described by
means of the normalized wave function

ψ(x) =
( a

π

)1/4
exp

[
−1

2
(a + ib)x2 + (c + id)x− c2

2a

]
, (10)

where a, b, c, d are real numbers with a > 0. If b = 0 and a = 1, then (10) is the well known
Schrödinger’s non-dispersive wave packet, called nowadays the Glauber–Sudarshan coherent state.
The states with arbitrary a and b 6= 0 were named “correlated coherent states” in [36]. The states with
c = d = 0 are nothing but the “squeezed vacuum states”. For a detailed history of these states, one can
consult review [15].

Coefficients of the wave function (10) can be written in terms of mean values and variances:

a = (2σx)
−1, c = 〈x̂〉/(2σx), b = −σxp/σx, d = 〈 p̂〉 − 〈x̂〉σxp/σx. (11)

The high-order moments of operators x̂ and p̂ in the state (10) are given by the formulas
(see Appendix A for the proof)

〈x̂n〉 = i−n(σx/2)n/2Hn

(
i〈x̂〉/

√
2σx

)
, 〈 p̂n〉 = i−n(σp/2)n/2Hn

(
i〈 p̂〉/

√
2σp

)
, (12)

where Hn(z) is the Hermite polynomial. The right-hand sides of expressions in (12) are always real,
due to the even/odd parity of the Hermite polynomials for even/odd values of power n. If 〈x̂〉 =
〈 p̂〉 = 0, then

〈x̂2n〉 = (2n)!
2nn!(2a)n =

(2n− 1)!!
(2a)n , 〈 p̂2n〉 = (2n− 1)!!

(2a)n

(
a2 + b2

)n
. (13)

A simple formula can also be obtained for the mean value 〈x̂n p̂n〉, if 〈x̂〉 = 〈 p̂〉 = 0:
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〈x̂n p̂n〉 = 〈 p̂n x̂n〉∗ = inn![(a + ib)/(2a)]n/2Pn

(√
(a + ib)/(2a)

)
, (14)

where Pn(z) is the Legendre polynomial. The consequence of (14) for n = 1 is the known formula for
the covariance in the Gaussian state (10): σxp = −b/(2a).

2.1. N = 2

For Â = x̂2 and B̂ = p̂2, we have

〈Â2〉 = 〈x̂4〉 = 3
4a2 +

3c2

a3 +
c4

a4 , 〈Â〉 = 〈x̂2〉 = 1
2a

+
c2

a2 , σA =
1

2a2 +
2c2

a3 = 2σ2
x + 4σx〈x̂〉2.

In view of the x− p symmetry, we can write

σB ≡ 〈 p̂4〉 − 〈 p̂2〉2 = 2σ2
p + 4σp〈 p̂〉2 = (a2 + b2)2/(2a2) + 2(a2 + b2)(ad− bc)2/a3.

Therefore, the minimum of Π(4)
σ is achieved for the states with b = c = d = 0, i.e., for all uncorrelated

vacuum squeezed states (here, we restore the Planck constant):

(Π(4)
σ )min = (Π(4)

σ )Gauss = h̄4/4 = h̄2(Π(2)
σ )min. (15)

In addition,

〈x̂2 p̂2〉 = (α− β2)[〈x̂〉2 + σx] + 2αβ[〈x̂〉3 + 3〈x̂〉σx]− α2[〈x̂〉4 + 6〈x̂〉2σx + 3σ2
x ], (16)

where α = a + ib and β = c + id. Using the real part of (16), together with (A4), we obtain a very
simple formula for the covariance: σAB ≡ 〈x̂2 p̂2 + p̂2 x̂2〉/2− 〈x̂2〉〈 p̂2〉 = 4〈x̂〉〈 p̂〉σxp + 2σ2

xp − 1/2.

Consequently, DAB = 4
(
σxp + 〈x̂〉〈 p̂〉

)2
+ 8σxσp

(
σx〈 p̂〉2 + σp〈x̂〉2 − 2σxp〈x̂〉〈 p̂〉

)
, so that D(min)

AB = 0
for b = c = d = 0.

Because [x̂2, p̂2] = 2i (x̂ p̂ + p̂x̂), we immediately obtain the value YAB = 2
(
σxp + 〈x̂〉〈 p̂〉

)
.

Therefore,
R = 8σxσp

(
σx〈 p̂〉2 + σp〈x̂〉2 − 2σxp〈x̂〉〈 p̂〉

)
=
(

a2 + b2
) (

c2 + d2
)

/a3.

This quantity equals zero for c = d = 0 and arbitrary values of a and b. Consequently, any squeezed
vacuum state is the Robertson–Schrödinger intelligent state not only for the pair of operators (x̂, p̂),
but also for the pair (x̂2, p̂2). Actually, this fact can be derived from the results of study [28], since linear
combinations of operators x̂2, p̂2 and x̂ p̂ + p̂x̂ are generators of the su(1, 1) algebra. The new result
obtained here is that the presence of linear terms in the argument of the exponential function (10) breaks
the fourth-order generalized “intelligence”, in contradistinction to the second-order “intelligence”.

Another interesting formula is

Z ≡ σAσB −Y2
AB = 4

(
σ2

x σ2
p − σ2

xp

)
+ 4〈x̂〉2〈 p̂〉2

(
4σxσp − 1

)
+ 8σxσp

(
σx〈 p̂〉2 + σp〈x̂〉2

)
.

The second and third terms in the right-hand side are always non-negative, going to zero
simultaneously for 〈x̂〉 = 〈 p̂〉 = 0 only. On the other hand, σ2

x σ2
p − σ2

xp =
(
a2 − b2)2 /(16a4).

Consequently, the correlated state (10) is the OIS for the pair (x̂2, p̂2), if c = d = 0 and b = ±a,
when σxp = ∓1/2 and the correlation coefficient r ≡ σxp/√σxσp = ∓1/

√
2. This result is new. Note

that σAB = 0, in this case, so that the state is uncorrelated from the point of view of the (x̂2, p̂2) pair.
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2.2. N = 3, Homogeneous States

For Â = x̂3 and B̂ = p̂3, we consider the state (10) without linear terms (c = d = 0).
Subsequently, 〈x̂〉 = 〈x̂3〉 = 〈 p̂〉 = 〈 p̂3〉 = 0, so that

σA =
15
8a3 , σB =

15a3

8
(1 + g2)3, σAB =

3
8
(3g− 5g3), YAB =

3
8
(1 + 9g2), g ≡ b/a.

Consequently, Π(6)
σ = Π(6) = (225/64)(1 + g2)3 and D = (225 + 594g2 + 945g4)/64. Two other

quantities, R = 27(1 + g2)2/8 and Z = (216 + 513g2 − 54g4 + 225g6)/64, attain minimal values at
g = 0. Therefore, Gaussian states cannot be “intelligent” in any sense for the pair (x̂3, p̂3).

2.3. Arbitrary N, Vacuum Squeezed States

For the vacuum squeezed (uncorrelated) states (b = c = d = 0), we obtain, from (13),
the uncertainty product of the 2nth order, as given by Equation (7). The same value corresponds to
Π(2n)

σ , if n is any odd number. If n = 2m, then

Π(4m)
σ = 2−4m

{
(4m− 1)!!− [(2m− 1)!!]2

}2
= 2−8m

{
(4m)!
(2m)!

−
[
(2m)!

m!

]2
}2

.

However, using the known Stirling formula for n � 1, n! ≈
√

2πn(n/e)n, one can see that the
relative contribution of the second term inside the figure brackets rapidly decreases with m as 4−m

√
2.

Consequently, we can neglect the difference between Π(2n) and Π(2n)
σ for n� 1, using the approximate

formula Π(2n) ≈ 2(n/e)2n, independently of the parity of number n. Moreover, Formula (14),
together with the known inequality |Pn(cos φ)| ≤ 1, shows that R ∼ Z ∼ D ∼ Π(2n), if n� 1.

3. Fock States as Intelligent States

Simple formulas can be obtained for various combinations of products of the second-order
moments of operators Â = x̂2 and B̂ = p̂2 in an arbitrary Fock state |n〉:

〈x̂2〉 = 〈 p̂2〉 = n + 1/2, 〈x̂4〉 = 〈 p̂4〉 = 1
4

(
6n2 + 6n + 3

)
, 〈x̂2 p̂2〉 = 1

4

(
2n2 + 2n− 1

)
.

They follow from the standard expressions for the canonical dimensionless operators x̂ and p̂ in terms
of the bosonic annihilation and creation operators,

x̂ =
(

a + a†
)

/
√

2, p̂ =
(

a− a†
)

/(i
√

2), â|n〉 =
√

n|n− 1〉, â†|n〉 =
√

n + 1|n + 1〉. (17)

Consequently,

σA = σB =
1
2

(
n2 + n + 1

)
, σAB = − 1

2

(
n2 + n + 1

)
.

In addition, YAB = 0, as soon as 〈x̂ p̂ + p̂x̂〉 = 0. Therefore, D = R = 0 for any Fock state. This means
that all of the Fock states are Robertson–Schrödinger intelligent states for the pair of operators Â = x̂2

and B̂ = p̂2. However, they are not ordinary intelligent states for this pair. The product σAσB equals 1/4
for n = 0, and it grows rapidly with increase of n. However, we can expect that some superpositions
of the vacuum and a few first excited states can give smaller values of this product. This conjecture is
analyzed in the next sections.
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4. Nth Order Products in the Two-Term Even Fock Superpositions: General Formulas

In this section, we consider the mean values of even powers of the coordinate and momentum in
the two-term superpositions of the even Fock states |ψ2j〉 (3). In this case, we can write

〈ψ2j|x̂2n|ψ2j〉 = |α|2µ(2n) + |β|2ν
(2n)
2j + 2Re(α∗β)ρ(2n)

2j ≡ µ(2n)
[
1 + |β|2ν̃

(2n)
2j + 2Re(α∗β)ρ̃(2n)

2j

]
, (18)

µ(2n) = 〈0|x̂2n|0〉 = 2−n(2n− 1)!! = 2−2n(2n)!/n!,

ν
(2n)
2j = 〈2j|x̂2n|2j〉, ρ

(2n)
2j = 〈0|x̂2n|2j〉, ν̃

(2n)
2j = ν

(2n)
2j /µ(2n) − 1, ρ̃

(2n)
2j = ρ

(2n)
2j /µ(2n). (19)

All of the coefficients (19) are real non-negative numbers. This is the consequence of formulas (17).
Besides, ρ

(2n)
2j = 0 if j > n. Using the form of wave functions in the coordinate and momentum

representations,

〈x|n〉 =
(√

π2nn!
)−1/2 Hn(x)e−x2/2, 〈p|n〉 = (−i)n (√π2nn!

)−1/2 Hn(p)e−x2/2,

we obtain the formula

〈ψ2j| p̂2n|ψ2j〉 = |α|2µ(2n) + |β|2ν
(2n)
2j + 2(−1)jRe(α∗β)ρ(2n)

2j , (20)

with the same coefficients as in (18).
According to Equation (18), the minimum of 〈ψ2j|x̂2n|ψ2j〉 with a fixed value of |β| is achieved for

Re(α∗β) = −|αβ|. In order to find the absolute minimum, we have to minimize the function

f (z) = 1 + ν̃z− 2ρ̃
√

z(1− z), z = |β|2. (21)

Here, we dropped all indexes. Calculating the derivative d f /dz, we arrive at the quadratic equation
g2z2 − g2z + ρ2 = 0, where g2 = 4ρ̃2 + ν̃2. It has two real solutions. We need the solution z∗, which is
close to zero. Afterwards,

z∗ =
g− ν̃

2g
=

2ρ̃2

g(g + ν̃)
, fmin = 1− g− ν̃

2
= 1− 2ρ̃2

g + ν̃
, g =

√
4ρ̃2 + ν̃2. (22)

These formulas are exact. For small values of |β| (which are most relevant for our purposes, as will be
shown in the following sections), one can use the parabolic approximation f (|β|) = 1 + ν̃|β|2 − 2ρ̃|β|,
which results in simple formulas |β|min = ρ̃/ν̃ and fmin = 1− ρ̃2/ν̃.

If j is odd, then the minimum of 〈ψ2j|x̂2n|ψ2j〉 corresponds to the maximum of 〈ψ2j| p̂2n|ψ2j〉,
according to Equations (18) and (20). In this case, (Π(2n))min = χmin(Π(2n))vac, where χmin is the
minimum of function χ(z) = (1 + ν̃z)2 − 4ρ̃2z(1− z). The exact position of minimum z∗ and exact
minimal value χmin are as follows:

z∗ =
2ρ̃2 − ν̃

ν̃2 + 4ρ̃2 , χmin =
4ρ̃2 (1 + ν̃− ρ̃2)

ν̃2 + 4ρ̃2 . (23)

Explicit expressions for the coefficients (19) in the most general case are as follows (see Appendix B):

ρ̃
(2n)
2j =

2jn!
(n− j)!

√
(2j)!

=
2j√
(2j)!

(n− j + 1)(n− j + 2) · · · n, (24)

ν̃
(2n)
2j + 1 =

22j

(2j)!
(n + 1)(n + 2) · · · (n + 2j)F(−2j,−2j;−n− 2j; 1/2), (25)

where F(a, b; c; z) is the Gauss hypergeometric function.
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5. Fourth-Order Variance Products in States |ψ2〉 and |ψ4〉

General formulas for the variances σA and σB are rather involved for arbitrary numbers n and j.
In this section, we consider in detail the case of n = 2, when all calculations can be performed in a
relatively simple way.

5.1. Superpositions of the Vacuum and Fourth Fock States

For n = j = 2, the general scheme of the preceding section results in the following mean values:

〈x̂2〉 = 〈 p̂2〉 = 1
2
+ 4|β|2, 〈x̂4〉 = 〈 p̂4〉 = 3

4
+ 30|β|2 +

√
6Re(α∗β).

Therefore,

σA = σB =
1
2
+
√

6Re(α∗β) + 26|β|2 − 16|β|4. (26)

For the fixed values of |α| and |β|, the minimum of (26) is achieved for Re(α∗β) = −|αβ|.
Thus, we arrive at the function

f (|β|) = 1
2
− |β|

√
6(1− |β|2) + 26|β|2 − 16|β|4.

Its minimum in the interval 0 < |β| < 1 can be found numerically:

σ
(min)
A = σ

(min)
B ≈ 0.4424, (Π(4)

σ )min ≈ 0.1957, |β|min ≈ 0.0471, |β|2min ≈ 0.00222. (27)

5.2. Superpositions of the Vacuum and Second Fock States

For n = 2 and j = 1, we have unequal second- and fourth-order moments:

〈x̂2〉 = 1
2
+ 2|β|2 +

√
2Re(α∗β), 〈 p̂2〉 = 1

2
+ 2|β|2 −

√
2Re(α∗β),

〈x̂4〉 = 3
4
+ 9|β|2 + 3

√
2Re(α∗β), 〈 p̂4〉 = 3

4
+ 9|β|2 − 3

√
2Re(α∗β),

σA =
1
2
+ 7|β|2 + 2

√
2Re(α∗β)− 2

[√
2|β|2 + Re(α∗β)

]2
,

σB =
1
2
+ 7|β|2 − 2

√
2Re(α∗β)− 2

[√
2|β|2 − Re(α∗β)

]2
,

Π(4)
σ =

1
4

(
8|β|4 − 14|β|2 − 1

)2
− 2[Re(α∗β)]2

(
8|β|4 − 2|β|2 + 5

)
+ 4[Re(α∗β)]4.

Writing Re(α∗β) = |αβ| cos(φ), one can see that Π(4)
σ is a monotonous function of cos2(φ), with the

minimum at cos2(φ) = 1. Therefore, writing [Re(α∗β)]2 = |β|2(1− |β|2), we arrive at the function

Π(4)
σ = 36|β|8 − 84|β|6 + 63|β|4 − 3|β|2 + 1/4,

which attains the minimum (found numerically)

(Π(4)
σ )min ≈ 0.213076 at |β| ≈ 0.15826, |β|2 ≈ 1/40.

For this value of |β| and cos(φ) = 1, we have

〈x̂2〉 = 0.771085, 〈x̂4〉 = 1.638394, σA = 1.043822,

〈 p̂2〉 = 0.329099, 〈 p̂4〉 = 0.312438; , σB = 0.204131.
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Minimal values of 〈 p̂2〉, 〈 p̂4〉 and σB are obtained for cos(φ) = 1. They are as follows,

〈 p̂2〉min = 0.275255 for |β| = 0.302905, 〈 p̂4〉min = 0.275063 for |β| = 0.218479,

σmin
B = 0.186765 for |β| = 0.203724.

Figure 1 shows the product Π(4)
σ as function of b = |β|2 for the superpositions |ψ2〉 and |ψ4〉 (3).
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Figure 1. The product Π(4)
σ versus b = |β|2 for the two-term Fock superpositions |ψk〉 (3). Left: for |ψ2〉

with cos2(φ) = 1. Right: for |ψ4〉 with cos(φ) = −1.

Figure 2 shows the wave functions ψ2(x) and ψ4(x) with the extremal values of parameter β,
as compared with the ground-state wave function ψ0(x).

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

2.5 3.0 3.5 4.0 4.5 5.0

0.00

0.05

0.10

0.15

0.20

Figure 2. Wave functions ψ2(x) and ψ4(x) with the extremal values of parameter β, as compared with
the ground-state wave function ψ0(x).

Note that two functions with β = ±0.15826 have the same value of the product Π(4)
σ , but they

have different values of σA and σB.

5.3. Superpositions of Three Even Fock States

Now, let us consider the three-parameter states of the form

|ψ〉 = C0|0〉+ C1|2〉eiφ + C2|4〉iχ, C2
0 + C2

1 + C2
2 = 1,

where all three coefficients Cj can be assumed to be real and non-negative. General formulas in this
case are rather involved. For example,

〈x̂4〉 = 3/4 + 9C2
1 + 30C2

2 +
√

6C0C2 cos(χ) + 3
√

2C0C1 cos(φ) + 14
√

3C1C2 cos(χ− φ),

〈 p̂4〉 = 3/4 + 9C2
1 + 30C2

2 +
√

6C0C2 cos(χ)− 3
√

2C0C1 cos(φ)− 14
√

3C1C2 cos(χ− φ).



Entropy 2020, 22, 980 10 of 24

If C1 = 0, then both products, Π(4) or Π(4)
σ , attain their minimal values for χ = π. Using this value,

we can write Π(4) as Π(4) =
(

3/4 + 9C2
1 + 30C2

2 −
√

6C0C2

)2
− C2

1 cos2(φ)
(

3
√

2C0 − 14
√

3C2

)2
.

The partial derivative of this function with respect to C2
1 at C2

1 = 0 equals

∂Π(4)/∂C2
1

∣∣∣
C2

1=0
=
(

3/4 + 30C2
2 −
√

6C0C2

) (
18 +

√
6C2/C0

)
− cos2(φ)

(
3
√

2C0 − 14
√

3C2

)2
.

Using the value C2 = 0.041 (when function Π(4)(C2, C1 = 0) attains the minimum), we obtain
∂Π(4)/∂C2

1

∣∣∣
C2

1=0
≈ 12.7− 10.5 cos2(φ). This derivative is positive for any phase φ. Consequently,

the addition of the second Fock state |2〉 can only spoil the result obtained for the two-term
superposition |ψ4〉. The same conclusion holds for the product Π(4)

σ (although the calculations are
more cumbersome).

6. Superpositions of Coherent States

6.1. Two Coherent States

The first simplest superpositions of two coherent states were introduced in [37] under the names
even/odd coherent states:

|α〉± = N± (|α〉 ± | − α〉) , N−2
± = 2

[
1± exp

(
−2|α|2

)]
. (28)

Here, |α〉 is the well known Glauber–Sudarshan coherent state, satisfying the equation â|α〉 = α|α〉
with â = (x̂ + i p̂) /

√
2. Remember that wave functions of the coherent states in the coordinate and

momentum representations have the form

〈x|α〉 = π−1/4 exp
(
− x2

2
+
√

2αx− α2

2
− |α|

2

2

)
, 〈p|α〉 = π−1/4 exp

(
− p2

2
− i
√

2αp +
α2

2
− |α|

2

2

)
. (29)

Therefore,

〈x|α〉+ =
π−1/4 cosh(

√
2αx)√

cosh(|α|2)
exp

(
− x2

2
− α2

2

)
, 〈p|α〉+ =

π−1/4 cos(
√

2αp)√
cosh(|α|2)

exp
(
− p2

2
+

α2

2

)
. (30)

Note that |0〉+ is the ground Fock state |0〉, whereas |0〉− is the first excited Fock state |1〉.
The states (28) and their generalizations were discussed in detail, e.g., in reviews [15,38,39]. For our
purposes, the following properties of the states (28) are useful:

−〈α|α〉+ = 0, â|α〉± = α (N∓/N±) |α〉∓, (N+/N−)2 = tanh(|α|2).

Using these properties, the following mean values can be found:

〈x̂2〉± = 1/2 + at± + ac2, 〈 p̂2〉± = 1/2 + at± − ac2,

〈x̂4〉± =
3
4
+ a2 + a2c2

2 + 3at± + ac2 (2at± + 3) , 〈 p̂4〉± =
3
4
+ a2 + a2c2

2 + 3at± − ac2 (2at± + 3) ,

σ
(±)
A =

1
2
− a2t2

± + a2 + 2at± + 2ac2, σ
(±)
B =

1
2
− a2t2

± + a2 + 2at± − 2ac2,

σ
(±)
AB = a2 − a2t2

± − 1/2, Y(±)
AB = 2as2,
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where a = |α|2, α = |α|eiφ, t± = [tanh(a)]±1, cn = cos(nφ), sn = sin(nφ), so that c4 = c2
2 − s2

2. Hence,
we have to minimize the following functions:

Z± =
1
4

[(
1− 2a2t2

± + 2a2 + 4at±
)2
− 16a2

]
, (Π(4)

σ )± =
1
4

[(
1− 2a2t2

± + 2a2 + 4at±
)2
− 16a2c2

2

]
,

Π(4)
± =

(
3/4 + a2 + 3at± + a2c2

2

)2
− a2c2

2 (2at± + 3)2 . (31)

Note that functions Z± do not depend on the phase φ. Their minimal values (found numerically) are:

Zmin
+ = 0.21259 for |α| ≈ 0.52963, Zmin

− = 1.76386 for |α| ≈ 1.03430.

The same minimal values are obtained for the products (Π(4)
σ )±, if cos2(2φ) = 1. The following mean

values can be found for |α| = 0.52963 and c2 = −1:

〈x̂2〉+ = 0.296176, 〈x̂4〉+ = 0.252876, σ
(+)
A = 0.165156,

〈 p̂2〉+ = 0.857192, 〈 p̂4〉+ = 2.021965, σ
(+)
B = 1.287187.

The minimal values of 〈 p̂2〉, 〈 p̂4〉, and σB are obtained for c2 = 1. These minimal values are as follows,

〈 p̂2〉min
+ = 0.221535 for |α| = 0.79952, 〈 p̂4〉min

+ = 0.202769 for |α| = 0.654213,

σ
(+min)
B = 0.140771 for |α| = 0.626735.

The product Π(4)
± , as given by Equation (31), is a quadratic polynomial with respect to the variable

ξ = c2
2. It is easy to verify that the derivative of this polynomial with respect to ξ is negative in the

interval 0 ≤ ξ ≤ 1. Consequently, the minimum is achieved at ξ = 1. Thus, we have to minimize
the function

f (a) =
9
16

+
9
2

at± − 6a2 + 9a2t2
± + 4a4

(
1− t2

±

)
.

Numerical calculations yield

(Π(4)
+ )min = 0.51057 for a = 0.26657, (Π(4)

− )min = 13.07101 for a = 0.92917 .

Although (Π(4)
− )min is smaller than the value (Π(4))1 = 225/16 = 14.0625 in the first Fock state |1〉,

the difference is only about 7%. This example shows that, removing the vacuum state, one cannot
achieve a small value of Π(4).

Figure 3 shows the functions ψ+(x) and ψ+(p) (30) for two extremal values of parameter α.
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Figure 3. Wave functions of the even coherent states ψ+(x) and ψ+(p) (30) for two extremal values of
parameter α, as compared with the ground-state wave functions ψ0(x) and ψ0(p).
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6.2. Superpositions of Four Coherent States (Orthogonal-Even Coherent States)

For the state (6), we use the following formulas that were obtained in [7,17]:

B2 =
{

8e−a[cosh(a) + cos(a)]
}−1 , α =

√
aeiφ, (32)

〈x̂2〉 = 〈 p̂2〉 = 1
2
+ a

sinh(a)− sin(a)
cosh(a) + cos(a)

,

〈x̂4〉 = 〈 p̂4〉 = 3
4
+

a2

2
cos(4φ) + 3

a[sinh(a)− sin(a)] + a2[cosh(a)− cos(a)]/2
cosh(a) + cos(a)

.

The minimum of 〈x̂4〉 and 〈 p̂4〉 is achieved for cos(4φ) = −1. According to [7,17], 〈x̂4〉min = 0.69992 is
achieved at |α| = 0.67. Assuming cos(4φ) = −1, we obtain the following expression for the variances:

σA = σB =
1
2
+

a2 [2 sinh(a) sin(a)− cosh(a) cos(a)− cos2(a)
]

[cosh(a) + cos(a)]2
+

2a[sinh(a)− sin(a)]
cosh(a) + cos(a)

.

The minimum σ
(min)
A = 0.442 is achieved for a = 0.482, i.e., |α| ≈ 0.694. Hence, (Π(4)

σ )min = 0.1955
for the orthogonal-even coherent states. This value is only slightly less than (27), as obtained for the
two-term superposition |ψ4〉. Figure 4 shows the product Π(4)

σ as function of parameter a = |α|2 for
the OECS with cos(4φ) = −1 and the even coherent state with cos2(2φ) = 1.
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Figure 4. The product Π(4)
σ versus a = |α|2. Left: for the OECS (6) with cos(4φ) = −1. Right: for the

even coherent state (28) with cos2(2φ) = 1.

Using Equations (6), (29) and (32), the wave function of the OECS with φ = π/4 can be written as

ψ4α(x) =

√
2 exp

(
−x2/2

) [
cosh(|α|x) cos(|α|x) cos(|α|2/2) + sinh(|α|x) sin(|α|x) sin(|α|2/2)

]
π1/4

√
cosh(|α|2) + cos(|α|2)

.

The plot of this function for the extremal value |α| = 0.694 is shown in Figure 5. It looks rather different
from the vacuum function ψ0(x) and the extremal function ψ4(x), as shown in Figure 2.
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Figure 5. The wave function of the OECS (6) with φ = π/4 and |α| = 0.694.

7. Sixth Order Products in Two-Term Superpositions of the Fock States

For the Fock states, we have 〈x̂3〉 = 〈 p̂3〉 = 0 and

〈n|x̂6|n〉 = 〈n| p̂6n〉 = 5
8
(2n + 1)

(
2n2 + 2n + 3

)
, 〈n|x̂3 p̂3|n〉 = 3i

8

(
6n2 + 6n + 1

)
.

Therefore, the Fock states are not intelligent for operators x̂3 and p̂3 in any sense.
The sixth order moments grow very rapidly with n:

〈0|x̂6|0〉 = 15/8, 〈2|x̂6|2〉 = 375/8, 〈3|x̂6|3〉 = 945/8, 〈4|x̂6|4〉 = 1935/8, 〈6|x̂6|6〉 = 5655/8.

Nonetheless, some simple two-term superpositions of the Fock states |ψk〉 of the form (3) can give
the values of Π(6) smaller than the vacuum value (Π(6))vac = 225/64 = 3.515625. Note that we have
〈x̂3〉 = 〈 p̂3〉 = 0 for even values of k, so that Π(6) = Π(6)

σ in such cases.
For k = 2, we have

〈x̂6〉 = 3
8

[
5 + 120|β|2 + 30

√
2Re(α∗β)

]
, 〈 p̂6〉 = 3

8

[
5 + 120|β|2 − 30

√
2Re(α∗β)

]
.

The minimum of the product Π(6) is attained for [Re(α∗β)]2 = |αβ|2. Subsequently,

Π(6) =
9
64

[(
5 + 120|β|2

)2
− 1800|β|2

(
1− |β|2

)]
.

The minimum of this function is attained at |β|2 = 1/54, yielding (Π(6))min = 175/64 ≈ 2.73, which is
smaller than the vacuum value.

A better result can be obtained for k = 4, with

〈x̂6〉 = 〈 p̂6〉 = 3
8

[
5 + 640|β|2 + 20

√
6Re(α∗β)

]
. (33)

The minimum of (33) is attained for Re(α∗β) = −|αβ| and |β|2min = 1/2 −
√

128/515 ≈ 0.00146.

It yields (Π(6))min = (225/64)
(

65− 2
√

1030
)2
≈ 2.32 ≈ 0.66 (Π(6))vac. However, this value is higher

than the value (Π(6))min = (1.4765)2 ≈ 2.18 that was obtained in [4,5].
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For k = 6, we have

〈x̂6〉 = 3
8

[
5 + 1880|β|2 + 8

√
5Re(α∗β)

]
, 〈 p̂6〉 = 3

8

[
5 + 1880|β|2 − 8

√
5Re(α∗β)

]
.

Now, the minimum of Π(6) is attained for [Re(α∗β)]2 = |αβ|2. Subsequently,

Π(6) =
9
64

[(
5 + 1880|β|2

)2
− 320|β|2

(
1− |β|2

)]
.

However, the derivative of this function with respect to |β|2 is positive at |β|2 = 0. Consequently,
the state |ψ6〉 has the values Π(6) > (Π(6))vac for any β 6= 0.

8. Asymptotic Values of High-Order Products in the Two-Term Fock Superpositions

It is interesting to see the behavior of (Π(2n))min for n � 1. This can be easily done for the
two-Fock superpositions, while using Equations (22) and (23). Coefficients (24) and (25) have the
following asymptotic forms:

ρ̃
(2n)
2j =

(2n)j√
(2j)!

[
1− j(j− 1)

2n

]
, ν̃

(2n)
2j + 1 =

(2n)2j

(2j)!

[
1 +

j
n

]
,

where we neglect corrections of the relative order n−2 inside square brackets. Afterwards, Equations (22)
and (23) assume the form

z∗ = |β|2∗ ≈ (2n)−2j(2j)!, fmin ≈ j2/n, χmin ≈ 4j2/n.

If j is an even number, then 〈ψ2j|x̂2n|ψ2j〉 = 〈ψ2j| p̂2n|ψ2j〉, so that F(2n) ≡ (Π(2n))min/(Π(2n))vac = f 2
min.

Therefore, this ratio is minimized for j = 2, i.e., in the state |ψ4〉, which has preferences over other-two
term superpositions for n = 2 and n = 3, as we saw in the preceding sections:

F(2n) = f 2
min ≈ (4/n)2 , n� 1. (34)

The authors of [4] minimized the mean value of operator x̂N + p̂N for the state |ψ4〉 with an arbitrary
real coefficient α. We re-write formula (33) from that paper in a more convenient form:√

F(N) =
u/48

w +
√

w2 − u
, (35)

w = N4 + 4N3 + 20N2 + 32N + 48, u = 768
(

N3 + 2N2 + 4N + 3
)

.

If N � 1, then (35) assumes the form
√

F(N) ≈ 8/N, which coincides with (34) for N = 2n. However,
it is worth noticing that such a simple asymptotic formula gives accurate enough values of the ratio
F(N) for very big values of N only. Note that the authors of [4] interpreted Formula (35) incorrectly,
saying that the uncertainty product goes to zero as N → ∞. Of course, this was an obvious oversight:
although the ratio F(N) tends to zero as N → ∞, the total uncertainty product Π(N) = (Π(N))vacF(N)

remains very big in this limit.
Figure 6 shows the ratio (Π(2n))2j/(Π(2n))vac ≡ f 2, calculated using exact Formula (21),

as function of |β| for φ = π, in the state |ψ4〉 (i.e., j = 2), for different values of power 2n. We see that
the asymptotic Formula (34) gives approximate minimal values higher than actual ones. Exact and
asymptotic values of f 2

min are compared in Figure 7.
If j is an odd number, then F(2n) = χmin ∼ 4j2/n. Therefore, the state |ψ4〉 is the best one among

all two-term Fock superpositions from the point of view of the minimization of Π(2n). However,
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the state |ψ2〉 is preferable from the point of view of the high-order squeezing: see Section 9. We do not
study the variance product Π(2n)

σ for n� 1, because it is very close to Π(2n): see the end of Section 2.3.
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Figure 6. The ratio (Π(2n))2j/(Π(2n))vac ≡ f 2 in the state |ψ4〉 as function of |β| for φ = π.
Left: for 2n = 8. Middle: for 2n = 16. Right: for 2n = 32.
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9. Significant and Weak High-Order Squeezing

The concept of high-order squeezing was introduced by Hong and Mandel [40]. According to their
definition, the state |ψ〉 is squeezed to the 2nth order with respect to x̂, if the mean value 〈ψ|(∆x̂)2n|ψ〉
is less than the mean value of (∆x̂)2n in the coherent state, i.e., 〈(∆x̂)2n〉 < Λvac

2n ≡ 2−n(2n − 1)!!.
In particular, for n = 2 we have the requirement 〈(∆x̂)4〉 < 3/4. Hong and Mandel showed that
the usual squeezed states are squeezed to any even order 2n. There are other definitions of the
higher-order squeezing [41–44], but they are not related directly to the powers of coordinate and
momentum operators.

The choice of the coherent (or vacuum) state as the reference one is natural for the usual
(second-order) squeezing, because the minimal value of the uncertainty product Π(2)

σ (as well as
Π(2)) is achieved in this state. However, minimal values of high-order products are achieved in
non-Gaussian states. Therefore, we suggest to say that the x variable is significantly squeezed to the

2nth order, if 〈(∆x̂)2n〉 < Λ2n, where Λ2n =
√
(Π(2n))min. If Λvac

2n > 〈(∆x̂)2n〉 > Λ2n, then the 2nth
order squeezing can be considered as weak. In particular, using the results from [4], we can use the
following values:

Λ4 ≈ 0.7, Λ6 ≈ 1.48, Λ8 ≈ 4.14, Λ10 ≈ 17, 96. (36)

In addition, we can consider the σ-squeezing of the fourth order, defining its weak form by the

inequality σx2 < 1/2, and the significant form by the inequality σx2 < (Λσ)4 =

√
(Π(4)

σ )min ≈ 0.44.
Note that, according to our definition, the simultaneous significant high-order squeezing is impossible.

For example, all of the Gaussian states with b = c = d = 0 (see Section 2) possess some
amount of weak high-order squeezing with respect to x for any value a > 1 and any value 2n.
However, the significant fourth-order squeezing can be achieved for a > a4 = 1.035, and the significant
σ-squeezing of the fourth order exists for a > 1.066. For higher values of 2n, the minimal value
of parameter a resulting in the significant squeezing is given by the formula a2n = [F(2n)]−1/(2n),
according to Equation (13). This minimal value a2n slowly grows initially with the power 2n, but for
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2n ≥ 16 it slowly decays to unity as n→ ∞. In particular, using the best available values of Λ2n from
Equation (36), we obtain

a4 ≈ 1.035, a6 ≈ 1.083(1.0715), a8 ≈ 1.12(1.093), a10 ≈ 1.105, a16 ≈ 1.112.

The values in parentheses for 2n = 6 and 2n = 8 are obtained using Equation (22), derived for the
two-Fock superpositions. For other values of 2n, the results of the two-Fock approximation practically
coincide with that of [4]. The asymptotic formula is a2n ≈ exp

[
n−1 ln(n/4)

]
≈ 1 + n−1 ln(n/4)

for n � 4. Therefore, homogeneous Gaussian states with parameter a > 1.12 (or σx < 0.45) are
significantly squeezed with respect to the x-coordinate to any order 2n. Figure 8 shows minimal values
a2n, calculated with the aid of Equation (22), as compared with two asymptotic expressions.
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Figure 8. Minimal values a2n, when the homogeneous Gaussian state is significantly squeezed to the
order 2n, with the normal and logarithmic scales of the horizontal axis.

Figure 9 shows 〈x̂4〉 and σx2 as function of parameter |β| for the two-Fock superposition
|ψ2〉 (3) with φ = π, and as function of parameter |α| for the even coherent state (28) with
cos(2φ) = −1. Four horizontal lines show the boundaries of weak and significant fourth-order
squeezing and σ-squeezing.
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Figure 9. 〈x̂4〉 and σx2 as function of parameter |β| for the two-Fock superposition |ψ2〉 (3) with
φ = π (left) and as function of parameter |α| for the even coherent state (28) with cos(2φ) = −1 (right).

Figure 10 shows 〈x̂6〉 as function of parameter |β| for the two-Fock superpositions |ψ2〉 and |ψ6〉 (3)
with φ = π. In the case of |ψ2〉, the minimal value 〈x̂6〉min = 0.510146 is achieved at |β| = 0.169102.
For |ψ6〉, the minimal value 〈x̂6〉min = 1.85904 is achieved at |β| = 0.00475743. In this case, we only
observe a very weak sixth-order squeezing.

The Hong–Mandel squeezing of the 4th and 6th order in the even coherent states was studied,
e.g., in [45–47]. Arbitrary values of 2n were considered in [48]. The most general superpositions of two
coherent states were considered in [49,50] in connection with the 4th order squeezing, and in [51,52]
in connection with the 2nth order Hong–Mandel squeezing. The enhancement of the 2nth order
Hong–Mandel squeezing in superpositions of even coherent states and the vacuum state was
demonstrated in [53]. Two-mode generalizations of even/odd coherent states were studied in [54,55].
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Figure 10. 〈x̂6〉 as function of parameter |β| for the two-Fock superpositions |ψ2〉 (3) (left) and
|ψ6〉 (right) with φ = π.

The high-order Hong–Mandel squeezing in the Gaussian mixed states (squeezed thermal states)
was studied, e.g., in paper [56]. Squeezed number states were studied from this point of view
in [57]. Multiphoton non-Gaussian states were discussed in [58]. Paper [59] showed the existence of
high-order squeezing in specific four-photon states. Combinations of squeezed and number states were
considered in [60]. Two-mode squeezed states were considered in [61]. Higher-order squeezing in the
photon-added coherent states and their generalizations was studied in [62,63]. “Semi-coherent” states
and their generalizations were investigated in this connection in [64,65]. The binomial states and their
generalizations were considered in [66,67]. The generation of high-order squeezing in multiphoton
processes was studied in [68].

The concept of significant squeezing can be especially important for n� 1, when the significant
squeezing boundary Λ2n is approximately n/4 times lower than the vacuum (Hong–Mandel) boundary
Λvac

2n . Figure 11 shows the ratio 〈ψ2|x̂(2n)|ψ2〉/〈0|x̂(2n)|0〉 ≡ f as function of parameter |β| for the
two-Fock superposition |ψ2〉 (3) with φ = π. Function f is given by Equation (21) with j = 1.
The normalized significant squeezing level Λ̃2n = fmin is calculated while using the exact Formula (22)
with j = 2.
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Figure 11. The squeezing coefficient of the 2nth order f = 〈ψ2|x̂(2n)|ψ2〉/〈0|x̂(2n)|0〉 as function of
parameter |β| for the two-Fock superposition |ψ2〉 (3) with φ = π. Left: 2n = 16. Right: 2n = 32.

The high-order σ-squeezing practically coincides with the simple high-order squeezing for n� 1,

because ν
(2n)
2j /

[
ν
(n)
2j

]2
∼ (2j)!2n(n/2)−2j � 1 and ρ

(2n)
2j /

[
ρ
(n)
2j

]2
∼
√
(2j)!2n(n/2)−j � 1 in this case.

However, the boundaries of two kinds of squeezing are quite different if n is not very big.

10. Conclusions

Let us emphasize the main results of our study. We have analyzed the high-order moments
of x̂ and p̂ operators in the most general pure inhomogeneous Gaussian (squeezed) states:
see, e.g., Formulas (12) and (14). We have found that the minimal product of the fourth order variances
Π(4)

σ for this specific family of quantum states is attained for all of the uncorrelated vacuum squeezed
states: see Equation (15). However, this product can be diminished by more than 20% in the two-Fock
superpositions |ψ4〉 (see Equation (27)) and in the compass (four-photon) states [see Section 6.2].

We have shown that all of the Fock states are Robertson–Schrödinger intelligent states (RSIS)
for the pair of operators x̂2 and p̂2, although they are not ordinary intelligent states for this pair.
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Additionally, we have discovered that the only Gaussian ordinary intelligent state for the pair x̂2, p̂2 is
the correlated coherent state with the correlation coefficient r = ±1/

√
2.

We have analyzed in detail the uncertainty products of the 4th and 6th orders in the two-Fock and
three-Fock superpositions. In this connection, we have found new explicit expressions for the mean
values and matrix elements between arbitrary Fock states for arbitrary powers of operator x̂ (as well as
for p̂): see Equations (A7) and (A11) in Appendix B. Using these expressions, we have obtained the
asymptotic Formula (34) for the uncertainty product Π(2n) with n� 1 in the two-Fock superpositions,
clarifying the earlier results of paper [4].

We have introduced the new concept of weak and significant high-order squeezing. It was
illustrated in the examples of Gaussian states and two-Fock superpositions. The distinguished role of
the superposition of the vacuum and the fourth Fock state was demonstrated.

One of the most impressive results is that very small deformations of the vacuum state can result
in big changes of such quantities as the high-order uncertainty product or high-order squeezing. This is
an indication to the insufficiency of the concept of quantum “fidelity” (the scalar product between two
states in the case of pure quantum states) as a measure of distinguishability between quantum states in
certain physical situations. See, in this connection, e.g., earlier papers [69–75].

Several interesting questions and problems arise in connection with our study. For example, is it
possible to obtain more precise limits for the high-order uncertainty products for several degrees of
freedom, generalizing known results for the products of variances [2,29,76–82]? Probably, applications
to the problem of intensity-difference squeezing [83,84] can be found. Or, how to generalize our results
to the case of mixed quantum states with the fixed value of quantum purity (see, e.g., studies [85,86]
for the second-order uncertainty products)? It would be interesting to verify the new relations in
experiments, for example, using the scheme of measuring high-order moments of canonical variables
proposed in [87] (some experiments related to uncertainty relations for the second-order moments were
performed in [88]; experimental verifications of the uncertainty relations for the angular momentum
operator and other quantum systems in finite-dimensional Hilbert spaces were reported in [89–94]).
Other interesting areas, where high-order uncertainty relations can be useful, include entanglement,
steerability, and Bell nonlocality (see, e.g., studies [95–97]). However, all of these problems need
separate investigations.
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Appendix A. Details of Calculations for the Gaussian States

To derive the first formula in Equation (12), we start from the expressions

〈x̂n〉 =
( a

π

)1/2 ∫ ∞

−∞
xn exp

[
−a
(

x− c
a

)2
]

dx = (πan)−1/2
∫ ∞

−∞
yn exp

[
−
(

y− c√
a

)2
]

dy.

The second integral is well known: see, e.g., Equation 3.462.4 in [98]. It results in the formula

〈x̂n〉 =
(
2i
√

a
)−n Hn

(
ic/
√

a
)

, (A1)

where Hn(z) is the Hermite polynomial, defined according to the formula
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Hn(y) = (−1)n ey2
(

dn

dyn

)
e−y2

. (A2)

Using the relations (11), we obtain from (A1) the first equality in Equation (12). Then, the second
equality in (12) is the consequence of the fact that the Fourier transform of any Gaussian function is a
Gaussian function again. A formula similar to (A1) for the powers of linear momentum has the form

〈 p̂n〉 = i−n
[
(a2 + b2)/(4a)

]n/2
Hn

(
i(ad− bc)√
a (a2 + b2)

)
. (A3)

In particular, the special cases of (A1) and (A3) for n = 1 and n = 2 yield the formulas

〈x̂〉 = c/a, σx = (2a)−1, 〈 p̂〉 = (ad− bc)/a, σp = (a2 + b2)/(2a), (A4)

confirming the known fact that all moments in the Gaussian states are determined by the first-order
mean values and variances. We can write (A1) and (A3) also in terms of the complex numbers
α = a + ib and β = c + id:

〈x̂n〉 =
(

2i
√

Re(α)
)−n

Hn

(
i Re(β)√

Re(α)

)
, 〈 p̂n〉 = i−n

(
|α|2

4Re(α)

)n/2

Hn

(
i Im(α∗β)√
|α|2Re(α)

)
. (A5)

A simple formula for the mean value 〈x̂n p̂n〉 can be obtained, if 〈x̂〉 = 〈 p̂〉 = 0. Indeed, using the
relation −α∗ = α− 2a and the definition (A2), one can see that

〈x̂n p̂n〉 = in√a/π(α/2)n/2
∫ ∞

−∞
xne−ax2

Hn

(
x
√

α/2
)

.

Then formula 7.385.2 from [98] yields Equation (14).

Appendix B. Explicit Expressions for the Coefficients of Nth Order Moments in the Two-Term
Even Fock Superpositions

For relatively small values of integers n and j, the coefficients ν
(2n)
2j and ρ

(2n)
2j (19) can be calculated,

using the standard bra-ket technique. However, for big values of these indexes it is better to use
integrals containing the wave functions. Then, coefficient ρ

(2n)
2j equals

ρ
(2n)
2j =

21−j√
π(2j)!

∫ ∞

0
x2n exp(−x2)H2j(x)dx. (A6)

This integral is a special case of formula 7.376.2 from [98] (we have changed the notation):

∫ ∞

0
e−sx2

xg H2j(x)dx =
(−1)j22j−1
√

πs(g+1)/2
Γ[(g + 1)/2]Γ(j + 1/2)F (−j, (g + 1)/2; 1/2; 1/s) .

Here Γ(z) is the Gamma-function and F(a, b; c; z) is the Gauss hypergeometric function. The next step
is to use formula 8.962.1 from [98] and to rewrite the hypergeometric function with the first negative
integral parameter a = −j in terms of the Jacobi polynomial:

(−1)jF (−j, (g + 1)/2; 1/2; 1/s) =
j!Γ(1/2)

Γ(j + 1/2)
P(g/2−j,−1/2)

j (2/s− 1).

Consequently,

∫ ∞

0
e−sx2

xgH2j(x)dx =
22j−1 j!

s(g+1)/2
Γ[(g + 1)/2]P(g/2−j,−1/2)

j (2/s− 1).
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In the case of (A6), we have s = 1 and g = 2n. Then, using the formulas

P(a,b)
j (1) =

Γ(j + a + 1)
j!Γ(a + 1)

, Γ(n + 1/2) =
√

π2−n(2n− 1)!!,

we finally obtain the expressions

ρ
(2n)
2j =

2j−nn!(2n− 1)!!
(n− j)!

√
(2j)!

=
2j−2n(2n)!

(n− j)!
√
(2j)!

, (A7)

which clearly show that ρ
(2n)
2j = 0 if n < j. An immediate consequence of (A7) is Equation (24) for the

normalized coefficient ρ̃
(2n)
2j .

The coefficient ν
(2n)
2j is given by the integral

ν
(2n)
2j = 2

(√
π 22j(2j)!

)−1 ∫ ∞

0
x2n exp(−x2)

[
H2j(x)

]2 dx. (A8)

Here we can use Equation 2.20.16.15 from [99] in the form

∫ ∞

0
x2ge−x2

H2j(x)H2m(x)dx =
22j+2m−2g−1√πΓ(1 + 2g)

Γ(1 + g− j−m)
F(−2j,−2m; 1 + g− j−m; 1/2).

Therefore,

ν
(2n)
2j =

4j−n(2n)!
(2j)!(n− 2j)!

F(−2j,−2j; 1 + n− 2j; 1/2). (A9)

However, this formula is good for n ≥ 2j. If n < 2j, then we can use the identity 9.131.2 from [98]:

F(a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

F(a, b; a + b− c + 1; 1− z)

+(1− z)c−a−b Γ(c)Γ(a + b− c)
Γ(a)Γ(b)

F(c− a, c− b; c− a− b + 1; 1− z). (A10)

For a = b = −2j, the second term in (A10) turns into zero (we assume initially that c is not an integer),
so that we arrive at the formula

ν
(2n)
2j =

4j−n(2n)!(n + 2j)!
(2j)!(n!)2 F(−2j,−2j;−n− 2j; 1/2), (A11)

which has no restrictions on the values of n and j. One can check the validity of Formula (A11) in
the case of n = 0. Using the formula 1F0(a; z) = (1− z)−a, one obtains ν

(0)
2j = 1, i.e., the correct

normalization of the wave functions 〈x|2j〉. For j = 0, Formula (A11) yields the correct value of
coefficient µ(2n). The consequence of (A11) is Equation (25) for the normalized coefficient ρ̃

(2n)
2j .
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