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Abstract

Purpose: To evaluate the effectiveness of surface image guidance (SG) for pre‐imag-

ing setup of stereotactic body radiotherapy (SBRT) patients, and to investigate the

impact of SG reference surface selection on this process.

Methods and materials: 284 SBRT fractions (SG‐SBRT = 113, non‐SG‐SBRT = 171)

were retrospectively evaluated. Differences between initial (pre‐imaging) and treat-

ment couch positions were extracted from the record‐and‐verify system and com-

pared for the two groups. Rotational setup discrepancies were also computed. The

utility of orthogonal kVs in reducing CBCT shifts in the SG‐SBRT/non‐SG‐SBRT
groups was also calculated. Additionally, the number of CBCTs acquired for setup

was recorded and the average for each cohort was compared. These data served to

evaluate the effectiveness of surface imaging in pre‐imaging patient positioning and

its potential impact on the necessity of including orthogonal kVs for setup. Since

reference surface selection can affect SG setup, daily surface reproducibility was

estimated by comparing camera‐acquired surface references (VRT surface) at each

fraction to the external surface of the planning CT (DICOM surface) and to the VRT

surface from the previous fraction.

Results: The reduction in all initial‐to‐treatment translation/rotation differences

when using SG‐SBRT was statistically significant (Rank‐Sum test, α = 0.05). Orthogo-

nal kV imaging kept CBCT shifts below reimaging thresholds in 19%/51% of frac-

tions for SG‐SBRT/non‐SG‐SBRT cohorts. Differences in average number of CBCTs

acquired were not statistically significant. The reference surface study found no sta-

tistically significant differences between the use of DICOM or VRT surfaces.

Conclusions: SG‐SBRT improved preimaging treatment setup compared to in‐room
laser localization alone. It decreased the necessity of orthogonal kV imaging prior to

CBCT but did not affect the average number of CBCTs acquired for setup. The

selection of reference surface did not have a significant impact on initial patient

positioning.
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1 | INTRODUCTION

Optical surface imaging is an increasingly popular imaging modality

used in radiotherapy for patient setup and monitoring. It provides

real‐time feedback of the patient’s position with respect to a refer-

ence surface dictated by either the external body contour of the

treatment planning CT, or a surface capture acquired with the sur-

face imaging system cameras. At the time of treatment, the patient’s

surface in the room is read by an optical system and automatically

registered to the reference surface to calculate the deviation

between the real‐time and expected treatment positions using six

degrees of freedom (6DOF). This information can then be used to

evaluate and readjust the patient’s setup from within the room with-

out the use of ionizing radiation. More detailed descriptions of exist-

ing surface imaging systems can be found elsewhere.1 Although

trends may soon be changing in favor of eliminating the placement

of skin marks, this tool is currently often still utilized in conjunction

with laser alignment to tattoos. Radiographic imaging for image

guided radiotherapy (IGRT) is still performed to ensure the precision

of treatment delivery based on internal anatomy.2

IGRT is an essential component of SBRT which employs immobi-

lization devices and image localization techniques to treat small tar-

gets using hypofractionated dose regimens and millimeter PTV

margins.3 In the absence of optical surface imaging, it is common to

initially position the patient based on skin marks and lasers, use

orthogonal kV images to check overall alignment and match bony

anatomy or fiducial markers, and finally refine target localization

based on volumetric information from a cone beam CT (CBCT) scan.4

To streamline the process, some centers bypass orthogonal imaging

before CBCT. While this can be efficient if the initial patient position

is adequate, it can also lead to increased patient imaging dose and

extended setup time if alignment discrepancies, such as hip rotations

or mispositioned extremities, cannot be corrected with automated

couch movements and require re‐acquisition of the CBCT to confirm

satisfactory alignment prior to treatment. With surface guided radio-

therapy (SGRT), positioning can be refined based on real time feed-

back during initial in‐room setup, providing therapists the capability

of detecting and correcting possible rotations or large translational

discrepancies before leaving the room to acquire the CBCT. It is clear

that SGRT cannot replace internal imaging for SBRT, but quantifying

the effects of adding SGRT to the traditional IGRT chain for SBRT (re-

ferred to as SG‐SBRT for the remainder of the text) can help elucidate

the benefits of this technology. There is literature describing the ben-

efits of utilizing SGRT for deep inspiration breath‐hold treatments of

left‐sided breast cancer patients,5–9 other breast cancer treat-

ments,10–15 and stereotactic radiosurgery,16–19 but limited publica-

tions on its use for other sites or for initial positioning of SBRT

patients.20,21 The aim of this retrospective study is to establish the

utility of optical surface imaging for initial patient setup in SBRT

treatments and to formulate a proposed initial positioning process by

studying the impact of orthogonal kV imaging when SG‐SBRT is used

and the effects of reference surface type selection (from treatment

planning CT versus camera‐acquired in the room) on its performance.

2 | METHODS AND MATERIALS

2.A | Patient selection and simulation

The use of patient data was reviewed by the Virginia Common-

wealth University Institutional Review Board and deemed exempt.

This study includes 63 SBRT patients (284 fractions) treated

between 2015 and 2016 on a Varian Truebeam (Varian, Palo Alto,

California) linear accelerator with a standard (non‐6DOF) table and

an AlignRT system (Vision RT Ltd, London, UK, Version 5.0.1747)

with standard definition cameras. This system consists of three pods,

with two cameras each. Each pod also contains a projector that

emits a pseudo‐random speckled pattern of red light. The system

uses this pattern to reconstruct the topography of the patient or

object in its field of view. The resulting surface is then rigidly aligned

to a reference surface based on a user‐defined region of interest

(ROI). For a more extensive description of the system, refer to the

literature.1

Patient data were divided into two cohorts based on whether or

not surface imaging guidance was included in their treatment. The

non‐SG‐SBRT group, treated in 2015 prior to clinical implementation

of AlignRT, includes 37 patients (171 fractions). The SG‐SBRT group

consists of 26 patients (113 fractions) treated in 2016. All treatment

courses ranged from 3 to 5 fractions, and treatment sites included

primary and metastatic cancers of the lung, liver, spine, pancreas,

and lymph nodes. Table 1 summarizes the information of the patient

treatments included in this study. Some treatments were planned

and delivered with the use of an active breathing coordinator (ABC)

(Elekta Limited, Crawley, UK). For those patients, the planning CTs

were obtained during inspiration breath hold. Patients treated in free

breathing were simulated using a 4DCT scan with the 30% phase of

the scan used as the primary image set to represent the mid‐ventila-
tion position. Spine patients were simulated in free breathing since

respiratory motion does not affect the location of the target. Plan-

ning CT scans were acquired with a Philips Big Bore (Philips, Amster-

dam, Netherlands) and the techniques used varied between 120 and

140 kVp depending on the patient’s size and treatment site and

280 mAs for standard simulations and 600 mAs for 4DCTs, with

3 mm slice thickness for all scans, except spine (1.5 mm). The

patients included in this study were planned in Pinnacle (Philips

Radiation Oncology Systems, Fitchburg, Wisconsin, Version 9.6) and

all external body contours were automatically created by using an

outside‐patient air threshold of 0.6 g/cm3. This structure, along with

the treatment plan information, was sent to AlignRT using the

RTPLAN and RTSTRUCT DICOM files.

2.B | Patient setup workflows

We investigated the differences between two patient setup work-

flows: the original procedure (non SG‐SBRT) and the new one (SG‐
SBRT). The original clinical workflow involved laser alignment to

patient skin marks, with couch shifts to the treatment isocenter if

needed, followed by orthogonal kV imaging to correct for
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translational and rotational setup deviations with respect to bony

anatomy. A CBCT was obtained for final target localization prior to

the delivery of SBRT. In the new workflow, AlignRT was introduced

after laser alignment and before kV imaging to refine the patient’s

position in the room (Fig. 1). Although skin mark alignment can be

replaced with SG, this step was kept in the new workflow for easier

implementation of surface imaging as therapists were still growing

accustomed to the system.

When using AlignRT for initial setup, an in‐room monitor displays

the adjustments needed to correct the patient position in real‐time

using a continuous feedback loop. These adjustments are given as

three translational (vertical, longitudinal, lateral) and three rotational

(yaw, roll, pitch) deltas based on an automatic rigid registration

between the real‐time surface of the patient in the room and the

selected reference. As mentioned in the introduction, the reference

surface can be based on the external body contour of the planning

CT (DICOM reference), or acquired using the in‐room optical cam-

eras (VRT reference). The registration only focuses on the area

encompassed by the user‐defined region of interest (ROI). Both the

accuracy and refresh framerate of the deltas depend on the ROI

used for registration. In our workflow, the DICOM reference was

always used for initial positioning throughout the treatment, and the

ROI was defined following vendor recommendations for different

treatment sites (Fig. 2). Prior to clinical use each day, therapists were

instructed to perform the vendor‐recommended daily test verifica-

tion on the surface imaging system to ensure performance was satis-

factory (root‐mean‐square position of the isocenter as measured by

the system was within 1mm of calibration). If this test showed a

deviation beyond the expected value, the system was recalibrated.

When positioning patients, therapists were asked to achieve delta

values as close to zero as possible before completing the in‐room
portion of the setup phase. After refining the patient position with

surface imaging, the remaining setup proceeded as usual, with

orthogonal kV imaging followed by CBCT. After the treatment posi-

tion was confirmed based on CBCT, a VRT reference image was cap-

tured for intrafraction treatment monitoring.

For either workflow, due to the lack of 6DOF capabilities of the

treatment couch, therapists manually adjusted the patient to correct

rotational discrepancies deemed large enough to affect the quality of

the treatment delivery upon CBCT inspection by the physicist and

attending physician. Any time a rotational modification was per-

formed, a second CBCT scan was then acquired to verify the

adjusted patient position. Per department policy, an additional CBCT

scan is also required to confirm the patient’s alignment prior to

treatment if translational shifts on imaging are found to be larger

than 8mm in any direction, or 15mm when the absolute value of all

three translational shifts are summed. This policy is in place to

ensure that the patient’s position is still satisfactory before starting

treatment after large imaging shifts have been applied.

2.C | Data analysis

The 284 SBRT fractions in this analysis included 171 fractions trea-

ted prior to the clinical implementation of surface imaging (original

workflow, non‐SG‐SBRT), and 113 treated with the inclusion of

AlignRT (SG‐SBRT workflow).

To assess the impact of SG on initial setup, we compared the dif-

ference in the initial couch position after in‐room alignment but

before kV imaging, to the treatment couch position after final target

localization using CBCT, for setups with and without surface imag-

ing. The shifts applied based on every image registration at the treat-

ment machine are automatically saved with each image in the record

and verify system, Aria (Varian, Palo Alto, California, Version 11).

Hence, these provide the difference in the couch position before

and after imaging. The absolute value of these differences was used

in the analysis. Although this is a simple analysis, with limitations

that will be discussed in a latter section, it is a useful quantitative

metric to compare in‐room positioning performance of AlignRT ver-

sus laser localization alone. The time difference between the two

workflows could not be quantified since the record and verify sys-

tem has no way to track the time taken to perform laser localization

or surface imaging adjustments. The necessity of orthogonal kV

TAB L E 1 Characteristics of the patient treatment fractions included
in each group (SG‐SBRT: SBRT with surface image guidance, non‐
SG‐SBRT: traditional SBRT).

SG‐SBRT Non‐SG‐SBRT

Total Number of Fractions 113 171

Breakdown by Anatomical Region

Chest 55 112

Abdomen 48 32

Bones 10 27

Breakdown Based on Breath‐Hold Usage

ABC 50 10

No ABC 63 161

SBRT, stereotactic body radiotherapy.

F I G . 1 . Diagram of SBRT patient in‐room setup and imaging
workflow with and without the inclusion of surface imaging
guidance (SG). SBRT, stereotactic body radiotherapy.
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imaging in the setup chain for each group was investigated by ana-

lyzing if the shifts from orthogonal kV images led to smaller shifts

on CBCT. Orthogonal planar kV imaging was deemed to be neces-

sary if its inclusion reduced CBCT shifts to below the threshold

defined by the department’s re‐imaging policy described in the previ-

ous section. The number of CBCTs required to achieve the final

treatment position for each fraction was also recorded. Since 6DOF

registration was not available to register the CBCT to the planning

CT in real time, this alignment was performed offline with MIM

6.9.2 (Cleveland, OH). An automatic rigid registration was performed

for each fraction using a volume‐of‐interest to focus the alignment

around the treatment area, if general alignment led to a registration

considered unacceptable for treatment. For fractions with multiple

CBCT scans, only the first scan was used to calculate the rotational

discrepancies to reflect the patient position based on surface imag-

ing guidance prior to any corrections based on volumetric internal

imaging. Rotations for each fraction were recorded and analyzed to

compare the values between the two cohorts.

Since AlignRT allows users to choose either the DICOM or VRT

surfaces as references during setup, the effect of this choice on

patient positioning was also investigated. Although our workflow

dictated positioning patients to the DICOM reference every time,

the daily VRT surfaces acquired for intrafraction monitoring provided

the necessary data to perform an offline analysis of the effects of

reference surface selection. In order to quantify the differences

between the DICOM and the daily VRT surface positions, these two

surfaces must be registered to each other to obtain the translational

and rotational differences between the two. To measure the inter-

fraction consistency of the daily VRT surfaces acquired throughout

the course of treatment, each daily VRT surface must be registered

to that of the previous fractions. These off‐line registrations were

performed using the “Retrospective analysis” module provided by

Vision RT through a research agreement. This module allows the

user to load the surfaces captured with the system and compare

them to any of the other stored surfaces. It utilizes the same regis-

tration algorithm as the clinical AlignRT package and provides the

same set of translational and rotational deltas one would obtain in

clinical mode.

The differences in registration between the VRT surfaces cap-

tured at each fraction were evaluated to assess day‐to‐day surface

reproducibility, both against the DICOM reference surface, as well

as to the VRT surface captured at each previously treated fraction

(Fig. 3). While the first comparison of each daily VRT reference to

the DICOM surface reflects the actual deviations of daily surfaces to

the ideal patient position from the treatment plan, the second com-

parison was performed to evaluate if updating the reference surface

at every fraction could improve setup. The results from this analysis

can be used to make a better decision on what reference surface to

use when implementing SG‐SBRT.
The p‐values of the differences between the two data sets for all

parameters studied were calculated using a Wilcoxon Rank‐Sum test

(α = 0.05) since the data are not normally distributed.

3 | RESULTS

A comparison of the initial couch position at the start of kV imaging

to final couch position after CBCT imaging demonstrates a smaller

range and median deviation in all three translational directions and

vector magnitude when optical surface imaging is included in the

workflow. Table 2 displays the absolute median, quartile 1, quartile

3, and maximum couch position differences for the absolute value of

all individual translations and magnitudes of the two cohorts. The

minimum is not shown as it is 0 in all cases. Figure 4(a) presents

these data, with their original sign – no absolute value, in box plots,

demonstrating the couch position differences for each translation

direction and their magnitude, with and without SG. The differences

along all translations and magnitude between the two groups are

statistically significant. Additionally, the maximum observed devia-

tions in the SG‐SBRT group were much smaller than in the non‐SG‐
SBRT group (vertical, longitudinal, and lateral directions were

2.41 cm, 2.26 cm, and 1.42 cm, and 3.31 cm, 11.98 cm, and

5.21 cm, respectively). In total, there were 19 fractions (16.8%) in

the SG‐SBRT group and 78 fractions (45.6%) in the non‐SG‐SBRT
group where the translational deviation was greater than 1cm. There

was also a statistically significant difference in the rotations found

amongst the two groups. Table 2 also shows the median, quartile 1,

quartile 3, and maximum rotations along the three directions (pitch,

yaw, roll). Overall, the rotations for the SG‐SBRT group were smaller

in a statistically significant manner, although the maximum roll value

calculated for that group was slightly larger than that of the non‐SG‐
SBRT arm. Figure 4(b) shows the box plots of the rotations.

Internal institutional policy dictates that reimaging with CBCT is

necessary to confirm the patient’s position prior to treatment if the

shifts on the first CBCT are greater than 15mm (absolute value of all

translational shifts added together), or larger than 8mm in any one

F I G . 2 . Sample regions of interest (ROIs) drawn on the DICOM
reference surfaces (left, pink) and compared to VRT reference
surfaces (right, green) in AlignRT.
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translational direction. Therefore, if a shift of 6 mm was recorded on

the orthogonal kVs along the vertical direction for example, and the

subsequent shift along that same direction on the CBCT was only

3 mm, the inclusion of planar kV imaging was deemed useful as it kept

the vertical CBCT shift below the 8 mm threshold. Based on these

guidelines, the addition of planar kV imaging helped in 87 (50.9%) of the

non‐SG‐SBRT fractions, and in 21 (18.6%) of SG‐SBRT ones. When

investigating if there was a general anatomical area of soft tissue targets

(chest or abdomen) that benefitedmore from the addition of orthogonal

kV imaging, the results did not show a difference (see Table 3). Not sur-

prisingly, the addition of orthogonal kV imaging is beneficial for bony

targets in the non‐SG‐SBRT group. The difference in the average num-

ber of CBCTs between the two groups is not statistically significant.

Of the 113 patients in the SG‐SBRT group, 102 had VRT reference

captures. Table 4 displays the absolute median, quartile 1, quartile 3,

minimum, and maximum differences for the DICOM versus daily VRT

references as well as the daily VRT versus previous fraction VRT refer-

ences for all translations, magnitudes, and rotations. Table 4 also dis-

plays the P‐values for the two groups, once again calculated with a

Rank‐Sum test using an alpha of 0.05. None of the values were found

to be statistically significant. In both groups, the largest deviations

were in longitudinal translations and pitch rotations.

4 | DISCUSSION

The results of this retrospective study show that the addition of

optical surface imaging into the clinical workflow for SBRT reduces

the magnitude of setup deviations between in‐room setup and final

CBCT localization. Since all the shifts and rotations are statistically

significantly less when using SG‐SBRT than those for laser localiza-

tion alone, it may be reasonable to use surface imaging as a replace-

ment for laser alignment. The superior accuracy of surface imaging

guidance over laser localization has also been demonstrated by Stan-

ley et al. for the magnitude of 3D shift vectors in a study containing

6000 fractions over a large range of treatment sites using the C‐
RAD CatalystHD system (C‐RAD, Uppsala, Sweden).22 However,

publications on the use of surface imaging for initial positioning of

SBRT alone remain limited.

The statistically significant differences in shifts (both translations

and rotations) indicate potential drawbacks of skin mark and laser

localization for initial setup. For instance, for patients with loose

skin, these marks can be easily and superficially manipulated to align

with the lasers without producing the necessary correction of the

patient’s internal anatomy. Because surface imaging systems evaluate

several thousands of points on the patient over a region of interest,

F I G . 3 . Comparison of differences in
daily VRT reference captures compared to
1) the DICOM reference surface (top) and
2) the VRT reference capture from the
previously treated fraction.

TAB L E 2 Couch position differences from pre‐orthogonal kV imaging to post‐CBCT localization, for the non‐SG‐SBRT and SG‐SBRT groups.

Absolute Imaging Couch Position Differences (cm)
Absolute Rotation Differences
(deg)

Average number of CBCTsVertical Longitudinal Lateral Magnitude Pitch Yaw Roll

Non‐SG‐SBRT

Median 0.41 0.39 0.32 0.92 0.6 0.8 0.7 1.13

Quartile1 0.17 0.14 0.14 0.57 0.32 0.31 0.34

Quartile3 0.64 0.83 0.67 1.35 1.17 1.32 1.24

Max 3.31 11.98 5.21 12.17 3.82 4.32 2.73

SG‐SBRT

Median 0.26 0.23 0.25 0.56 0.54 0.63 0.54 1.12

Quartile1 0.10 0.11 0.11 0.39 0.27 0.28 0.23

Quartile3 0.44 0.46 0.41 0.85 0.93 1.09 1.09

Max 2.41 2.26 1.42 2.66 2.14 2.35 2.85

P‐value, α = 0.05 0.0004* 0.0017* 0.0242* <0.0001* 0.0404* 0.0270* 0.0336* 0.3115

CBCT, cone beam CT; SBRT, stereotactic body radiotherapy.

The rotational differences shown were calculated off‐line using rigid registration through MIM 6.9.2, for the non‐SG‐SBRT and SG‐SBRT groups. Mini-

mum values not shown since they are all 0.

*denotes statistical significance.
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they provide a more comprehensive and robust method of assessing

the patient’s position relative to the plan. Since some surface imag-

ing commercial systems require users to manually select the region

of interest, the quality of the setup achieved based on surface imag-

ing will depend on appropriate ROI definition and user proficiency.

Nevertheless, the data also demonstrates that surface imaging helps

detect large setup errors prior to imaging (see Table 2). For the non‐
SG‐SBRT group, 2.9% of fractions had translational differences

greater than 3 cm, 5.8% had greater than 2 cm, and 45.6% greater

than 1 cm. The SG‐SBRT group did not have any fractions with dis-

crepancies larger than 3 cm, had 1.8% with differences greater than

2 cm, and 16.8% of fractions with differences exceeding 1 cm. Large

deviations may arise from patients being set up to incorrect skin

marks (from previous treatments, for example), or by inaccurately

applying shifts to move from marked to treatment isocenter. These

errors become evident with surface imaging and can therefore be

avoided.

Our analysis on how SG affects the usefulness of orthogonal kV

imaging during treatment setup shows that the contribution from

orthogonal kVs decreases with the addition of surface imaging. How-

ever, the use of kV imaging still proved necessary to avoid re‐CBCT
imaging in almost 19% of the SG‐SBRT fractions, versus almost 51%

F I G . 4 . (a) Box plots demonstrating the differences between initial (pre‐radiographic imaging) and treatment couch positions for each
translational direction and vector magnitude, for non‐SG‐SBRT and SG‐SBRT. (b). Box plots displaying the residual rotations for patient setups
of non‐SG‐SBRT and SG‐SBRT. SBRT, stereotactic body radiotherapy.
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in the non SG‐SBRT group. This indicates that orthogonal kV imaging

could have been excluded from over 80% of the SG‐SBRT fractions

studied in this work without impacting the quality of the setup. The

sample studied is not large enough to reliably extract characteristics to

identify ahead of time what patients will need orthogonal kV imaging.

Patients with lesions that correlate more closely to bony anatomy or

patients that are larger and have more posterior lesions should gener-

ally benefit from orthogonal kV imaging; however, this is not always

the case. Because of this, the new workflow established in our clinic

indicates that patients should be imaged with orthogonal kV prior to

CBCT for the first fraction, and the physicist can then identify if this

step adds value or can be bypassed for subsequent treatments. In

cases where the use of kV imaging is beneficial, the addition of surface

imaging to the process still improves the safety of treatment as it

ensures that gross initial positioning errors are avoided, allows for real

time intrafraction monitoring during treatment, and highlights topo-

graphical anatomical changes that could potentially affect the dose

delivery (i.e. swelling, abdominal distention, etc.) as these alter how

the surface correlates with the internal structures.20 Hence, all SBRT

patients in our clinic are monitored with SG, unless there is a factor

that impedes it (patient is being treated with a mask, patient does not

want to be uncovered during treatment, etc.). An additional benefit of

implementing SG‐SBRT for every patient is the possibility of terminat-

ing the use of skin marks. Tattoo‐less radiotherapy potentially reduces

patient discomfort and stress in a difficult period of their life.23 This

approach has been heavily discussed among SGRT users at various

professional conferences, but very few publications exist in the litera-

ture. However, there is published work showing that breast patients

have improved body image scores at 1 and 6 months‐post therapy

when UV tattoos (invisible in ambient lighting) are used versus con-

ventional dark ink skin marks.24 This indicates that bypassing tattoos

as part of the setup workflow can potentially improve patient experi-

ence.

It is important to discuss the limitations that stem from evaluat-

ing the quality of the initial positioning of the SG‐SBRT and non‐SG‐
SBRT groups based on the imaging shifts in the record and verify

system. Many imaging corrections must be performed manually by

the therapists in the room that may shift the patient’s position rela-

tive to the position of the couch – e.g. correcting a misplaced

extremity, or a manual rotation adjustment. As our method uses the

magnitude of differences in kV imaging couch positions between the

first image and last CBCT, these in‐room manual corrections would

introduce alterations from the initial position that would not be

reflected on the couch coordinates. These uncertainties are unavoid-

able in the design of the study due to its retrospective nature. With

TAB L E 3 Number of fractions, with corresponding percentage in
parenthesis, in which the inclusion of orthogonal kV imaging resulted
in CBCT shifts below the reimaging thresholds set by the in‐house
clinical protocol.

Number of fractions necessitating
the inclusion of orthogonal kV

SG‐SBRT Non‐SG‐SBRT

Total Number of Fractions 21/113 (18.6%) 87/171 (50.9%)

Breakdown by Anatomical Region:

Chest 10/55 (18.2%) 53/112 (47.3%)

Abdomen 10/48 (20.8%) 15/32 (46.9%)

Bones 1/10 (10%) 19/27 (70.4%)

Breakdown Based on Breath‐Hold Usage:

ABC 14/50 (28%) 4/10 (40%)

No ABC 7/63 (11.1%) 83/161 (51.6%)

ABC, active breathing coordinator; CBCT, cone beam CT; SBRT, stereo-

tactic body radiotherapy.

TAB L E 4 Differences in daily camera‐acquired reference surfaces compared to the DICOM references, as well as to the camera‐acquired
surface acquired at the previously treated fraction.

Deviations in Reference Surface Comparisons

Vertical (cm) Longitudinal (cm) Lateral (cm) Magnitude (cm) Yaw (°) Roll (°) Pitch (°)

DICOM to VRT Reference

Median 0.20 0.25 0.18 0.46 0.90 0.80 0.90

Quartile1 0.11 0.12 0.08 0.30 0.40 0.30 0.40

Quartile 3 0.36 0.46 0.28 0.71 1.48 1.20 1.70

Min 0.00 0.00 0.00 0.09 0.00 0.00 0.10

Max 0.93 1.19 0.72 1.36 3.20 3.80 6.90

VRT to VRT Reference

Median 0.18 0.20 0.18 0.44 0.70 0.70 0.80

Quartile1 0.08 0.09 0.09 0.29 0.23 0.40 0.40

Quartile 3 0.32 0.36 0.30 0.66 1.20 1.40 1.58

Min 0.00 0.00 0.00 0.03 0.00 0.00 0.10

Max 0.93 1.12 0.94 1.36 3.10 4.10 7.40

P‐value, α = 0.05 0.54 0.10 0.82 0.09 0.73 0.30 0.27

SBRT, stereotactic body radiotherapy.
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the study being retrospective, it is also impossible to acquire time

estimates of how long therapists spent during initial setup perform-

ing laser localization with skin marks alone versus SG prior to imag-

ing. This information would also be valuable in comparing the two

processes, since if one is considerably longer than the other, assum-

ing the comfort level of the users is the same for both, this should

be factored into the evaluation as it can affect clinical workflow and

patient comfort.

While the reference surface study found that the mean devia-

tions between the DICOM surface and VRT captures were small, the

maximum deviations were near the order of 1.0 cm in translations

and >3.0° for rotations in both groups. These deviations may be the

result of varying causes including periodic intrafraction motion such

as free breathing during setup and reference capture, transient

anatomical changes such as bloating, and different proficiency levels

of the therapists in the use and interpretation of the surface imaging

feedback. Since the data included in this study encompasses the

early use of surface imaging in our clinic, some of the reference cap-

tures acquired with the cameras have portions of missing anatomy

due to gantry occlusion. Surfaces were inspected prior to inclusion

in this study, and only surfaces where the anatomy encompassed by

the ROI was complete were used. Partly incomplete anatomy might

affect registration accuracy, but its effects on these results should

be minimal as surfaces with significant occlusion were discarded.

Longitudinal translations and pitch in the reference surface study

demonstrated maximum differences greater than 1.0 cm and 6.0°

respectively. The drastic deviation in pitch may in part be caused by

the difficulty in performing corrections in that rotational axis without

the use of a 6DOF couch. Patient nonconformity and varying angles of

the pelvis or lumbar spine due to different muscle contraction from

changing levels of comfort and stress between simulation and treat-

ment are all compounding factors that can contribute to nonrepro-

ducibility. Further differences can be introduced by the use of breath

hold for patients that are not coached properly or have difficulty

undergoing the process in a reproducible manner. Even though no sta-

tistically significant difference was found in our study between initial

positioning to DICOM versus VRT surfaces, it is important to under-

stand that subsequent setup to the VRT reference rather than the

DICOM reference may systematically propagate any residual devia-

tions from the planned position captured at the previous fraction. This

is demonstrated in Fig. 5, which shows a hypothetical situation in

which the VRT reference capture at fraction 1 is obtained, after inter-

nal imaging verification, when a 0.6° residual roll is present. At fraction

2, the patient setup includes a 1.2° roll in the same direction with

respect to DICOM. Assuming a 1.0° tolerance for rotations, the setup

would be displayed correctly as being out of tolerance if the DICOM

reference is used. However, relative to the VRT reference at fraction

1, the deviation would be calculated as 0.6°. Although the initial 0.6°

rotation might have been acceptable for treatment, the increased 1.2°

could differ too much from the desired treatment position, thus lead-

ing to a rotational discrepancy that would require the acquisition of a

second CBCT after its correction.

On the other hand, the DICOM surface is also susceptible to certain

uncertainties and may not be a perfect representation of the ground

truth. In our clinical protocol, all SBRT CT simulation scans for nonspine

SBRT are acquired using a 3.0 mm slice thickness. Thus, the resolution

in the cranio‐caudal direction includes more coarse interpolation in the

generation of the DICOM surface compared to the axial plane and to

the finer resolution of the AlignRT cameras used to capture the VRT

surface. This could be a contributing factor in the larger deviations

observed along the longitudinal direction when comparing the DICOM

and VRT surfaces. While breathing motion artifacts at simulation may

introduce uncertainties in the segmentation of the external contour for

patients being treated in the thoracic and abdominal regions, all lung,

liver, and pancreas SBRT patients were simulated either with a 4DCT or

active breathing coordinator. Only 17 fractions over two T‐spine, one
adrenal gland, and one para‐aortic node patient were simulated without

accounting for breathing motion. The choice of patient air threshold in

the treatment planning system also has implications on the segmenta-

tion of the surface, although this effect has been shown to be submil-

limeter in other studies.25 When available, these differences could be

evaluated by obtaining a reference capture using surface imaging cam-

eras installed in the simulation room and comparing the agreement

between the two surfaces.

As this study evaluates the setup accuracy for SBRT treatments,

our data focuses on hypofractionated regimens, so these conclusions

may not hold true for more conventionally fractionated courses

where the patient may demonstrate physical changes over time, such

as tumor shrinkage or weight loss, that may cause considerable devi-

ations from the DICOM surface generated from the initial simulation

scan. When such deviations are not large enough to call for resimu-

lation and adaptive replanning, a VRT reference captured prior to

treatment would allow for more accurate daily setup as it reflects

these external changes, but is acquired after internal anatomical veri-

fication. Otherwise, the VRT reference should primarily serve as a

tool for intrafraction monitoring. When the treatment position does

not perfectly replicate the DICOM reference due to the aforemen-

tioned interfraction variations, any residual deviations after localiza-

tion with volumetric internal imaging may mask small changes in the

patient’s position. If the DICOM reference is used for intrafraction

monitoring, patient motion during treatment may go unnoticed.

As this is an offline retrospective analysis, the surface study is a

simplified representation of the potential differences between the

DICOM and VRT reference surfaces. It does not include data from

F I G . 5 . Illustration of the potential propagation of systematic
errors when performing initial setup for a patient based on a surface
imaging system acquired daily reference surface.
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actual patient setup to daily reference captures, so it lacks the varia-

tions that the manual alignment would introduce when therapists

process the feedback from the system in real time as they are

adjusting the patient’s position. To truly assess whether such an

effect exists, a prospective trial randomizing patients to daily setup

after the first fraction using the DICOM versus the previously

acquired VRT reference surface must be conducted to determine

whether there is a statistically significant difference in shifts

between the two methods.

Lastly, the data collected from the treatments delivered with

AlignRT began when the system was newly implemented and thus, pre-

sents a gradual refinement in procedural definition and proficiency of

therapists in its use. While familiarity with the system gradually

improved over time, AlignRT was installed on a single TrueBeam linear

accelerator at our institution. As a result, proficiency in setup with the

system was not uniform among radiation therapists, who routinely

rotate assignments between treatment machines. Thus, the patient set-

ups with AlignRT may not demonstrate maximum proficiency attained

in comparison to setup with laser localization, which is a standardized

skillset among all radiation therapists at our institution. Despite this,

the SG‐SBRT cohort still shows a statistically significant decrease in

positional discrepancies when compared to the non‐SG‐SBRT group.

5 | CONCLUSIONS

The addition of surface imaging was found to improve the precision

and safety of initial patient setup for SBRT treatments. Patients in the

SG‐SBRT cohort had translations and rotations between the initial

position and treatment position that were statistically significantly

less than the non‐SG‐SBRT cohort. Although the number of CBCTs

acquired for setup was similar in both groups, the addition of orthog-

onal kV imaging to the initial setup process was only valuable to keep

the CBCT shifts below re‐imaging thresholds for less than 19% of the

SG‐SBRT fractions compared to 51% of the non‐SG‐SBRT ones.

Hence, the inclusion of orthogonal kV imaging as part of the initial

setup process could be re‐evaluated for SBRT patients when using

surface image guidance. The choice of reference surface for initial

positioning with surface imaging does not make a statistically signifi-

cant difference in the outcome; however care should be taken to

avoid systematic propagation of positional discrepancies when using

a camera‐acquired instead of a DICOM reference.
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