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Abstract: The use of spatial data for coastal community resilience applications has diversified as
a consequence of the increasing availability of data, and extensive development in data process-
ing. However, the true value of spatial data is not fully exploited as a result of lacking scientific
managerial models that incorporate spatial data into decision-making. This article synthesizes the
cross-disciplinary literature review on deploying spatial data for coastal community resilience from
the managerial perspective. It systematically reviews research addressing the topic of deploying
spatial data for coastal resilience operations from the earliest available to 1999. The review uses
142 studies to address three research questions: (1) What kind of data can be obtained for coastal
resilience situational awareness? (2) What outcomes have spatial data attributed to coastal resilience
applications? and (3) What are the missing pieces (gaps) in connecting the spatial data with coastal
resilience applications? In addressing these research questions, the authors review articles based on
three dimensions including the availability of spatial data, the availability of applications, and limita-
tions. Based on the findings of the analysis, the authors conclude that the managerial perspective of
deploying spatial data in coastal hazards are understudies, and outline problem formulation, mission
prioritization, and information salience as an agenda for future research.

Keywords: keyword coastal community; resilience; spatial data; decision-making; sustainability

1. Introduction

In the past decades, the coastal communities in the United States have sustained
tremendous damages as a result of several severe coastal storm events such as Hurricane
Katrina (2005), Hurricane Sandy (2012) and Hurricane Harvey (2017). These extreme
events have led to substantial loss of livelihoods, costing billions of dollars in the form of
destroyed private and public property and mobilization of emergency response personnel
and resources. Volumes of scientific evidence and data suggest extreme weather events
will continue to multiply and intensify. Nevertheless, it seems that the resilience of natural
systems in coastal communities are prone to worsen in facing threats from climate change
and sea-level rise and evolving societal pressures from the growing coastal population and
needs for construction development [1]. Without actions and investment to strengthen
the resilience of communities, these extreme events will continue to drain federal, state,
and local budgets, hurt businesses’ bottom lines and threaten the prosperity of future
generations. To this end, improving community resilience is demanding.

To improve community resilience, situational awareness information is a neces-
sity. This is because extreme coastal events are more unique than history is averaging.
Take Hurricane Sandy as an example—the observed surge is estimated to occur every
400–800 years [2] or even over 1000 years [3]. Such low probability events are difficult
to predict based on historical data. In light of this, analysis of spatial data sets offers
tremendous opportunities in improving community resilience by better and more timely
situational awareness.
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Despite such opportunities, scholars have recently questioned the extent to which
geospatial data is capable of fulfilling the need for disaster management. Put differently,
the importance of incorporating spatial data in disaster response has been repeatedly
emphasized in literature [4–7]; operational-wise, the implementation is sparse during the
disaster management in practice [8]. This is because, on the one hand, spatial data is large
in volume, varied in format, and has high velocity in data streams, adding to the difficulties
in collecting, storing, and processing these spatial data. On the other hand, hazard response
is time sensitive which in turn requires timely information. The two conflicts, heavy in
computation and emergent in information demand, combine to have limited the usage of
spatial data in practice. While many works address the research topic of deploying spatial
data for functions such as situational awareness, vulnerability analysis, and sentiment
analysis, how to handle the large data sets on time remains challenging. The reality is
that while we are capable of deploying a growing number of spatial sensing technologies
for data collection during natural disasters, the vast quantities of collected data still have
to go through painstakingly manual analyses, and crucial information can often no way
be extracted from these data sets in time to support critical decision-making. Therefore,
in addition to the data processing algorithms’ development, coordination and integration
of spatial data with decision-making processes remains sparse.

In response, this article focuses on investigating the capability of spatial data in
community resilience applications from a managerial perspective. This review is not
intended to be comprehensive, but it is selective in the sense that it will focus on issues
on the coordination and integration of spatial data for coastal resilience decision support.
First, we selected coastal resilience as the scope of this review, and hurricane/typhoon is
selected as the main hazard. Compared to other hazards such as the earthquake that often
lasts less than 60 s, hurricanes form and grow in a much longer period, which squeezes
time for spatial data to step in to assist decision-making. Furthermore, this review is
performed based on a managerial perspective. Put differently, our main interest is not
to investigate the development of spatial data algorithms, but focuses on the managerial
perspective of deploying spatial data—how to coordinate and integrate spatial data to
support disaster management.

To set an agenda for future research, we present a cross-disciplinary systematic lit-
erature review of using spatial data for coastal community resilience decision support.
It is deemed that the insights provided by this research help identify where gaps exist in
connecting the state of art spatial data to the practical decision-making in coastal resilience
applications. The analysis of this review is guided by three research questions

1. What kind of data can be obtained for coastal resilience situational awareness?
2. What outcomes have spatial data attributed to coastal resilience applications?
3. What are the missing pieces (gaps) in connecting the spatial data with coastal re-

silience applications?

To answer these research questions, we adhere to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) [9]. The review yielded 142 studies.
Based on our analysis, we summarized the capability of different forms of spatial data and
how these forms of spatial data fit into the decision-making process in coastal resilience
applications. We then highlighted gaps connecting the spatial data with decision-making
in coastal resilience. Based on these findings, we concluded by outlining a future re-
search agenda.

2. Methodology

In these studies, three strategies were used to identify eligible articles. The first choice
made was to include only published journal articles, because journal articles have been
through a review process that acts as a screen for quality [10]. Therefore, we used the ISI
Web of Science to conduct our literature search. The research period was expanded from the
earliest available data up to 30 December 2019. The keywords we used consist of two parts:
data type and field type. In the data type, “spatial data”, “LiDAR data” (and other forms
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such as laser scanning”,” imagery”, “GIS”, “user generated information” are set as the
search terms. Regarding the field, we used “hurricane”, “typhoon”, “storm surge”, “coastal
hazard” as searching keywords. We applied the AND logic operation between the data
type and field type and OR logic operation within each part when filtering the literature.
This was done to ensure that a broad spectrum of research on spatial data was included
for consideration. This search generated more than 1590 studies; it was last conducted in
December 2019.

The second choice made was to identify work related to the decision-making process.
Among the 1590 studies, according to the Web of Science, 1566 studies are attributed to
science and technology while only 655 articles are related to social science. As explained
earlier, the focus of this review is not on a technology perspective, but on a managerial
perspective, thus we further eliminated irrelevant articles by a full reading of abstracts.

2.1. Eligibility Criteria

Topic: Abstracts of articles included any of the following terms: “assessment”, “evalu-
ation”, “management”, “analysis”. It is important to note that terms such as “modeling”,
“monitoring”, “detection”, “mapping” were not included for analysis because these terms
are related to the technology perspective rather than the managerial perspective. Narrowing
our search in this way helped to focus on the managerial perspective of using spatial data.

Publication year: Studies that were between the earliest available and 2019
were included.

Language: Only articles written in English were eligible for incorporation.
Publication status: Only international peer-reviewed journal articles from the Web of

Science Core Collection were considered eligible. We acknowledge that some books have
been highly important in our analysis. However, we would need to exponentially increase
our time to review these books whereas the methods are often introduced in journal articles;
thus we determined to exclude books in our review analysis.

2.2. Review Method

Following the literature search, a total number of 1591 studies were identified. We then
engaged in a selection process following the steps outlined by Liberati, Altman [11] and
the flowchart for our review were illustrated in Figure 1.

Figure 1. PRISMA Flowchart for database searches and retaining studies.

Following the PRISMA screening process, studies were screened by scanning the
article title and abstracts based on the eligibility criteria. Those irrelevant and duplicate
articles were removed.



Int. J. Environ. Res. Public Health 2021, 18, 830 4 of 15

In the second step, we scanned the articles again by reading the full abstract and
the full text if necessary. In this step, studies that are not directly touching managerial
perspective or spatial data were removed. Following this screening process, 142 studies
remained and were included in the systematic review.

For each study in the systematic review list, we developed an information extraction
form to summarized articles according to the following criteria: authorship, publication
year, title, data source, and data type as outlined in Table 1.

Table 1. Extraction Form.

Category Extraction

Authorship, publication year, title, journal The basic information was extracted from
the title page.

Type of study

We used four classifications extracted from the
abstract: review, framework, analysis without

practical use cases, analysis with practical use cases,
and the information was extracted from the abstract.

Type of spatial data LiDAR, imagery, crowdsourcing, GIS. The
information is extracted from the abstract.

Outcomes We extracted both the potentials and the limitations
of spatial data from the full text.

3. Results

A total of 142 articles were included in the systematic review. Among them, 89 articles
were based on the GIS platform; the articles related to LiDAR data, remote sensing imagery
data, and the user-generated information or crowdsourcing were 27, 17, and 9 respectively.
It is worthwhile mentioning that each article only counted once in the type. For instance,
in an article that incorporates different spatial data such as LiDAR or imagery into the
GIS for analysis, we attributed this article as GIS type and it is not counted in the LiDAR
or imagery articles. In all, it is reported that coastal hazards are increasingly observed
and monitored using a loosely coupled network of geospatial sensors. Different data
acquisition and processing technologies are often deployed to gather information. In the
following, the systematic review results will be introduced based on the availability of data,
the availability of applications, and the availability of managerial tools.

3.1. The Availability of Data

In all, the identification of suitable data is the prerequisite for further incorporating
them into the decision-making process [12]. Despite the potential of spatial data, the avail-
ability of such datasets remains challenging. A summary of different data is depicted in
Table 2.

GIS data are ancillary data previously collected and stored in transactional databases.
These data provide essential baseline information including but not limited to demograph-
ics, elevation data, land use, municipality boundary, flood zone, and so on. Most GIS
data are prepared and summarized by federal agencies such as the U.S. Geological Survey
(USGS), Federal Emergency Management Agency (FEMA), and state agencies such as
the New Jersey Office of Information Technology (NJGIN), which are publicly available.
However, these data are static and carefully prepared for more general purposes: they sacri-
fice processing efficiency for details, and they do not convey real-time situation information
about the impacted areas. Therefore, under normal circumstances, these ancillary spa-
tial data are potent in predictive analysis, but not equally effective in invalidation or
interactive analyses.

Citizens in the surrounding communities have the quickest access to the disaster,
which has a strong potential capability of sensing time-sensitive disaster information [13],
contributing disaster information in the form of user-generated information or crowdsourc-
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ing. The development of IoTs and social media have provided new paths for the public to
share their “voice”. Average citizens even without domain knowledge are able to record
disaster situations [14] through different channels as summarized in Table 2. Micro-blogs
(e.g., Twitter, Blogger, Weibo) contain rich-in-detail geo-tagged text messages, which are
extensively used for situation description [15,16] and sentiment expression [17,18]. In addi-
tion, crowdsourcing imagery data from social media (e.g., Facebook, Weibo, WeChat) are
playing an increasingly important role during crisis events [19]. Other platforms such as
discussion forums (e.g., Quora, Reddit), social gaming sites (e.g., Gree, Mobage), digital
content sharing platforms (e.g., Flickr, Instagram, YouTube) provide additional data that
can be further explored for coastal community resilience applications’ purposes.

Table 2. Summary of the availability of data.

Category Type of Data Data Source

GIS

Demographics US Census Bureau (www.census.gov)

Elevation Data

USGS
(www.usgs.gov/products/data-and-tools/gis-data),

DATA.GOV (catalog.data.gov);
Open Data; Houston; NYC Open Data

Transportation Network TIGER/Line (www.census.gov),
State Geography Information Network (e.g., NJGIN)

Municipality Boundary TIGER/Line (www.census.gov),
State Geography Information Network (e.g., NJGIN)

Hospitals and Medicare facilities DHS Homeland Infrastructure Foundation-Level
Data (HIFLD)

Flood Zone

FEMA National Flood Hazard Layer (NFHL),
FEMA Flood Insurance (NFIP),

USGS (https://www.usgs.gov/products/data-and-
tools/gis-data)

Other Web Services Google Map, Microsoft Bing, OpenStreetMap

Crowdsourcing/
User-Generated Information

Micro-blogs Twitter, Twitter, Blogger, WordPress, Facebook

Discussion forums Quora, Reddit

Digital content sharing platforms Flickr, Instagram, Pinterest, YouTube, Bilibili

Social gaming sites Gree, Mobage, Zynga

Social networking sites Facebook, Google+, LinkedIn, Mixi, Orkut

Remote Sensing

Aerial photographs USGS National Assessment of Coastal Change
Hazards (NACCH) project

Satellite Imagery NASA Earth Observatory,
Google Imagery

LiDAR

Airborne (NOAA Digital Coast
https://coast.noaa.gov/digitalcoast),

Mobile LiDAR (2012 Rutgers Post-Sandy Mobile
LiDAR,2014–2016 Rutgers Ocean County Mobile Lidar,

2017 Rutgers Post-Harvey Mobile Lidar, [20])
Terrestrial LiDAR(USGS [20])

Moreover, many remote sensing techniques are now capable of facilitating the captur-
ing of real-time spatial data. Imagery is one of the most common types of data collected
during natural disasters. Real-time or near real-time observations from satellite, aerial,
and ground platforms serve as essential means for imagery data collection for situation
awareness. Among them, aerial imagery is the primary source [21] because aircraft or
drones are often ready to be deployed to capture either vertical or oblique imagery in a
timely manner. Meanwhile, oblique aerial imagery often has a higher resolution than the

www.census.gov
www.usgs.gov/products/data-and-tools/gis-data
catalog.data.gov
www.census.gov
www.census.gov
https://www.usgs.gov/products/data-and-tools/gis-data
https://www.usgs.gov/products/data-and-tools/gis-data
https://coast.noaa.gov/digitalcoast
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satellite imagery data, making it more accurate for supporting detail visualization [22].
In addressing Hurricane Sandy, the National Assessment of Coastal Change Hazards
(NACCH) conduct surveys to provide robust scientific findings that help to identify coastal
community resilience including beach morphology change, dune erosion, and sea-level
rise. On the other hand, satellite imagery data is most efficient in terms of capturing the
terrain condition of a spacious area [23]. Satellite imagery data can be obtained from NASA
Earth Observatory and Google Imagery. Since the repeat interval of most satellites is often
daily to monthly [24], it is most suitable for monitoring and modeling the relationship
between human activity and long-term environmental or climate impact [23].

Light Detection and Ranging (LiDAR) is another emerging technology that facilitates
the collection of spatial data in a disaster environment [25]. Depending on the difference of
the data acquisition system and platform, LiDAR technologies accommodate the needs
of mapping both large-scale objects such as terrain [26] and small-scale objects such as
buildings and vegetation [27]. Airborne LiDAR mapping has more or less become the
routine survey to track the vulnerability of the coastal communities. For instance, for the
New Jersey shoreline alone, at least 10 data sets (2012 USGS EAARL-B Pre-Sandy Lidar,
2012 USACE NCMP Post-Sandy Lidar, 2012 USGS EAARL-B Post-Sandy Lidar, 2013 US-
ACE NCMP Topobathy Lidar, 2013 NOAA NGS Topobathy Lidar, 2014 NOAA OCS
Topobathy Lidar, 2014 USGS CMGP Lidar, 2014 NJMC Lidar, 2015 USACE NCMP Topo-
bathy Lidar, 2017 USACE NCMP Topobathy Lidar) are available in NOAA digital coast.
Besides, other research agencies also collected valuable mobile (2012 Rutgers Post-Sandy
Mobile LiDAR, 2014–2016 Rutgers Ocean County Mobile Lidar; 2017 Rutgers Post-Harvey
Mobile Lidar.) [28] and terrestrial LiDAR data [20] to trace the coastal community resilience.
LiDAR data have multiple benefits. LiDAR uses active sensing mechanisms, eliminat-
ing the need for ambient light to operate. Moreover, compared to imagery approaches,
the LiDAR system provides data with better spatial accuracy [29,30]. Last but not least,
LiDAR data are rich with in-depth information, which has better potential in providing
component-level insights.

3.2. The Availability of Applications

Spatial data applications are playing an increasingly important role in disaster man-
agement and have proven to offer a variety of opportunities to enhance community re-
silience [31]. Impacts of disasters are geographically located and have geographic ad-
dresses [14]. Compared to attribute information obtained from other sources, spatial data
will provide rich information with global-wise perception on how the event happens,
and to what extent the event has. Spatial data are reliable tools that have been used in pre-
dicting, modeling, simulating, evaluating, assessing, and analyzing the geo-environment
catastrophes, which overcomes the bottlenecks caused by the conventional attribute data in
reflecting the real-time disaster information cost-effectively and accurately. In this section,
we perform a literature survey on how different types of spatial data address the four
dimensions (built-up, environment, social, economic) of community resilience as depicted
in Table 3. As the social and economic dimensions are difficult to directly extract or quantify
from the spatial data, thus, we merge these two dimensions.

GIS data inherently cover all dimensions of community resilience (summarized in
Table 2), and as a result, they have been naturally extended to further analysis. The value
of ancillary geospatial data in resilience analysis is widely recognized such as in flood
inundation modeling [32] and disaster operation support [33]. Nonetheless, restricted
by the temporal resolution, GIS data fall short in reflecting real-time disaster situations.
This barrier has limited the merit of GIS data in real-time scenario analysis. Instead,
since many alternatives lack such integration [34], GIS, as a system, has grown as an
important decision support tool [35–37], especially when a decision involves integrating
data from many different structures and sources [14] as well as consideration of situations
over time [38]. For instance, SLOSH [39] and HAZUS [40] are two famous GIS-based models
to address coastal community resilience. National Weather Service (NWS) integrated the
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SLOSH model with GIS to visualize storm surge vulnerability, estimate storm surge heights,
and to predict hurricanes [39]. FEMA HAZUS along with GIS enables the capability
of economic and social losses’ estimation, which allow officials to evaluate, plan for,
and mitigate the effects of hurricane winds and surge [41]. There are numerous studies
built upon the SLOSH [2] and HAZUS [41]. In addition, other researchers extended
the capability of GIS as a Decision Support System (DSS) by proposing a conceptual
framework [33,37,42,43], developing systems [35,42], and spatial analysis tools [43,44].

Crowdsourcing data provides a unique channel for the community-based participation
through “citizens as sensors” [45,46]. A systematic literature review on using crowdsourcing
data for disaster management can be found in Horita et al. [47]. The increasing development
of crowdsourcing data, as well as corresponding data analytics tools, has enabled a new
bottom-up channel between citizens and public authorities [23]. “Citizens as sensors” is a
novel and vital approach to encourage communities to collect, process, and deliver informa-
tion. Specifically, in Oxendine, Schnebele [48], the authors illustrated how non-authoritative
data can supplement traditional data sources by providing valuable information during
emergencies. The most significant contribution of crowdsourcing data is that it fills the
gap of other objective data (GIS, remote sensing data) and provides a pathway to discover
and analyze the social and economic dimensions of community resilience. It empowers
authorities or experts to hear from the “people’s voice” through “crowd voting”, which can
be extended human activity pattern analysis [38], sentiment analysis [17,49], and crisis
communication [50]. For instance, Sakaki, Okazaki [16] argued that the proposed method
of using microblogging for earthquake detection is faster than the rapid broadcast of an-
nouncements of the Japan Meteorological Agency (JMA). In addition, crowdsourcing or
“people’s voice” offers a new dimension of information—that government and authorities
are largely absent—to understand the psychological condition of the victims through senti-
ment analysis [17,18,49]. Despite this, other studies integrated crowdsourcing data as part
of the Spatial Decision Support Systems (SDSS) [15,36,51] and developed new machine
learning [15,16,49,51] and statistical analysis [51] tools.

Remote sensing data fits right in the context of community resilience applications
since it objectively records the morphology change of the earth’s surface over a large
area within a short time interval [52]. Imagery data are the primary source and based
map for disasters [21]. Carried by different data acquisition platforms (e.g., satellite,
UAV), the image data comes with different resolutions and characteristics. Satellites can
cover a large-scale area within a short interval of time. Such rapidness contributes to the
prompt capture of the earth’s surface such as sediment plume [53] and land surface [54,55].
A thorough review of the status of satellite remote sensing and image processing techniques
for mapping natural hazards can be found in Joyce, Belliss [56]. The authors conducted
a comprehensive review of using satellite imagery data for different hazards analysis
including coastal flooding. Despite this, the advancement in high-resolution imagery
sensors also enables the capability for satellite imagery to capture community-level features.
For instance, Sohn and Dowman [57] combined satellite imagery data with LiDAR data to
extract building information. Compared to satellite imagery, oblique imagery data collected
by helicopters or UAVs have proven potential in community-scale damage assessment [58].
Helicopters and UAVs have been increasingly used to generate real-time or near real-time
hazard maps [22,59] including land surface buildings and infrastructure. More recent
studies investigated the feasibility of advanced image processing algorithms to extract
component-level details. For instance, Zhou, Gong [30] proposed a structure from motion-
(SFM) based method to reconstruct 3D disaster scenarios from oblique images. Besides built-
up and environment dimensions, a recent study by Jean, Burke [60] also proved potential
and pointed to a direction of integrating imagery data for social and economic studies.



Int. J. Environ. Res. Public Health 2021, 18, 830 8 of 15

Table 3. Summary of different spatial data in addressing different dimensions of community resilience.

Category Description Built-Up Environment Social and Economic

GIS Decision support tools [37] Building polygons,
Critical infrastructure

SLOSH: Sea, lake, and
overland surges [2,39],
Terrain and Wind Load
Modeling (HAZUS) [40]

Damage and Loss
estimation (HAZUS) [41,61],

Demography, etc.

Crowdsourcing
(User-Generated

Information)
Citizens as sensors [45,46] - -

Human activity pattern [38],
Sentiment analysis [17,49],
Crisis communication [50];

Remote Sensing

Primary source and base
map: Imagery [21]

Building [57],
Infrastructure [22]

Sediment plume [53],
Land surface
[22,54,55,59]

Property [60]

Rich-in-detail layers:
LiDAR

Building [57,58,62],
Infrastructure [63],

Street furniture [64,65],
Hydraulic feature [20,66]

Land surface [67],
Forest and trees [68,69],

Dune and beach [70]
Population [71]

Besides, LiDAR data provides additional rich-in-detail layers for community resilience
applications. It is extensively extended for coastal hazards’ visualization [27], terrain anal-
ysis [68], damage assessment [30,58,72,73], features extracted for modeling, simulation,
and knowledge finding [74,75]. LiDAR data can be utilized to not only qualify (what im-
agery data also does) but more importantly, quantify the earth’s surface features and keep
track of the time series morphology changes. Popular artifact built-ups that can be quan-
titatively measured using LiDAR data include but are not limited to building [57,58,62],
transportation infrastructure [27,63], hydraulic infrastructures [20,66], and street furni-
ture [64,65]. Besides, other researchers exploit LiDAR in environment mapping such as
land surface [67], forest and trees [68,69] and dune and beach [70]. The importance and
capability of LiDAR in disaster response are highlighted in many studies [30,58,72,73],
and as a result, LiDAR processing has evolved from basic visualization to more advanced
change detection, and more advanced computer vision and machine learning-based algo-
rithms. Besides visualization, one of the most easy-to-operate methods for LiDAR-based
analysis is change detection. Multiple temporal resolution data sets are geo-referenced
and compared to trace the pre-event and post-event differences [76,77]. Other researchers
investigated the feasibility of using computer vision-based algorithms [73] and machine
learning-based algorithms to segment and classify LiDAR data for more advanced feature
extraction [58,69,72]. Similar to imagery data, LiDAR data is often not directly extended
to analyze the social and economic impact. One exception is the work by Lwin and
Murayama [71], who deploy LiDAR for human population estimation.

3.3. Limitation in the Spatial Data

Yet, spatial data is not perfect, and it should be noted that from the technical perspec-
tive, there are problems that remain undressed. Table 4 summarizes techniques, strengths,
weaknesses, and gaps in decision support of different spatial data. For any spatial data,
quality is always worth special concern [34]. These quality issues of spatial data include
error propagation in the GIS system [78], credibility in crowdsourcing data [19], and resolu-
tion [57,79]. The second problem is how to address time and resource-constrained disaster
environments by improving data processing efficiency. Disasters are often characterized by
limited resources and response time. Under such circumstances, it is challenging to process
spatial data effectively and efficiently. Especially when advanced data processing algo-
rithms (e.g., computer vision-based, machine learning-based) are adopted, the availability
of labeled training datasets [80] and scalability of data processing in cloud or other bin com-
putation infrastructures [81] require further investigating. Last but not least, the dynamic
change in the environment of coastal hazards urges for more adaptive algorithms such as
service-oriented [82,83] or human interaction [84], which require further implementation.
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Table 4. Summary of techniques, strengths, weaknesses, and gaps in decision support.

Category Techniques Strengths Weaknesses Gaps in Decision
Support

GIS

Exploratory data analysis [43],
Spatial Database [35],

Operational Models [33,85],
Communication [46],

Hazard modeling [39,41],
Decision Support [35–37]

Prevailing platform for
spatial data storage and
integration [33,37,42,46]

Deficiency in the data [34],
Error propagation [78],

Adaptability to
decision criteria [82,83]

Crowdsourcing
(User-Generated

Information)

Major Communication
Channel [15,46,50,51],

Sentiment Analysis [17,49],
Prediction [16,80]

Opportunity to be
Spatial Decision
Support Systems
(SDSS) [15,36,80]

Unavailability of
training dataset [80],

Credibility [19],
Spatial Registration [86]

Timely issues [50]

Remote Sensing

Situation Awareness
(Hazard Mapping) [56,59],
Quantify Detailed Change

Information [76,77],
Quantify Detailed

Information [21,62,68],
Quantify Physical Geographic

Phenomena [24,53],
Vulnerability

Analysis [32,58,74,75],
providing insights into

management, policy,
and science.

Visualization tool for
situational awareness

and support rapid
damage detection
through change

detection [62,76,77],
potential to identify

damage details [62,72]

Resolution [57,79],
Accuracy [67,87],

Computation
expensive [81],

Human Interaction [84]

Adaptability to
decision criteria [12,88],

Timely issues [88]

While the potential of spatial data may not be fully exploited from the technical
perspective, managerial tools might be good complementation to step in to leverage spatial
data in decision-making in coastal hazards. As indicated in Table 4, all types of spatial
data are subjected to managerial gaps. From our review analysis, it is evidenced that GIS
is the major platform for collecting, storing, and analyzing spatial data in coastal hazard
response, as we reported that 89 out of the 142 articles are GIS-related. Specifically, GIS as
a system, has grown as an important decision support tool [35–37], integrating data from
many different structures and sources [14]. GIS can support the decision-making task
by providing a framework to locate all spatial data [89]. However, decision-making in
practice is not determined by the potential of spatial data or what GIS can offer, but by
the intelligence required from the decision-makers’ side. Put differently, while disaster
data and the processing algorithms are more abundant than required, the selection of
appropriate datasets, criteria, and scale is a critical part of transferring spatial data into
intelligence required by the decision-making process, which is not fully incorporated into
GIS or other existing platforms.

For instance, Hoque, Phinn [12] argued that effective risk assessment requires the
weighting of spatial data processing criteria in the context of decision-making analysis.
They further formulated the selection process of suitable criteria as multi-criteria decision
analysis (MCDA); specifically, analytical hierarchical process (AHP), multi-attribute utility
theory and outranking. Outranking methods are considered appropriate for connecting
spatial data with practical use cases. In these methods, criteria weighting are determined
based on the judgment of the stakeholders, rather than the data processing. Hu and
Gong [88] further proposed a Data Envelopment Analysis (DEA) based framework to
integrate judgment from both stakeholders and data processing teams. Nevertheless,
these studies only address a few use cases, further exploration is necessary.
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4. Discussion: Future Directions on Managerial Perspective

Our analysis demonstrates sustained and widespread growth in research on the topic
of deploying spatial data for coastal community resilience from a managerial perspective.
All told, the articles reviewed identified the significant potential of different kinds of
spatial data and their applications in decision-making in coastal resilience. However,
while most studies emphasized on leveraging the use of spatial data in coastal hazards
from a technical perspective, the study on the managerial perspective is sparse. According
to Cash et al. [90], it was pointed out that in practice, decision-making is still hindered
by lack of coordination, poor information flow, and the inability of the disaster manager
to validate and process accurate information within a realistic time frame. To this end,
the inconsistency and limitations in existing literature in deploying spatial data in coastal
hazard decision-making may be viewed as a starting point, therefore, we argue that these
limitations, in large part, help establish a framework for a future research agenda.

4.1. Formulate the Problem

The coordination between data providers and decision-makers are restricted due to
the nature of these two parties. Decision-making is a rational managerial process to select
among alternative operations and to arrange them in a logical order. The decision-making
unit is either the location or the operation. On the other hand, the end products of infor-
mation processing have strong potential but are not yet ready to use in decision-making.
In disaster response, the usefulness of information is no longer determined by the per-
formance of the algorithm, but a fuzzier criterion: how the processed information from
these tasks supports decision-making. In the literature, numerous studies are investigating
how to model the decision-making’s need from the processing goals [91–96]. For instance,
Timmerman, Boer [91] clarified the process and participant for the process of identifying
information need. In another example, Kuhlthau [94] proposed that information seeking
should be based on the user’s perspective. All studies have profound influences in provid-
ing a theoretical background in enhancing the information coordination and collaboration,
yet application-wise, this remains unaddressed [91].

4.2. Prioritize the Mission

Decision-making during a disaster environment has multiple objectives [97,98]; it in-
volves varying data processing tasks and integrates multiple algorithms. For instance,
during disaster response, humanitarian relief often consists of a series of tasks such as
minimizing human suffering and death [71,99], designing routes for search and rescue
(SAR) operations [63,100], allocating disaster relief resources, and assessing the risk of
critical infrastructures to prevent secondary hazards [101–103]. In addition, collaboration
and coordination between governmental agencies, relief organizations, and commercial
companies remain problematic due to conflicting missions [46]. Nevertheless, there is
limited research in identifying the importance of each disaster mission [91,93,104] and
prioritizing the disaster operations [105] accordingly to maximize decision efficiency.

4.3. Identify the Information Salience

To support evidence-based decision-making, it is essential to ensure that informa-
tion supplied by the data processing team is tailored to the needs of users [92,95,106].
Salience deals with how relevant and usable information is to decision-making bodies [107].
Salient information has repeatedly been identified as essential in evidence-based decision-
making [93,108,109]. It is typical because there exists overwhelming data that may not be
relevant or useful. In the meantime, spatial data acquisition will expand size and scope
in the coming years [110]. Without clearly specifying the salience of different informa-
tion, data suppliers could generate an excessive amount of data that might fail to provide
timely and relevant information. Ward, Loftis [111] described such a situation as “data-rich
but information-poor syndrome”. Even after three decades, this syndrome still exists.
Identifying the salience of information remains challenging [95].
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5. Conclusions

Disasters are increasingly observed and monitored using a loosely coupled network
of geospatial sensors. The use of spatial data for coastal community resilience applications
has diversified as a consequence of the increasing availability of data, and extensive
development in the data processing. Overall, this study aims to provide insight into ways
of deploying spatial data in coastal hazard decision-making.

Spatial data have proven to offer a variety of opportunities to enhance community
resilience applications. GIS data have been expanded as an integrated information system
and decision support tool for disaster response. Crowdsourcing and remote sensing data
play two complementary roles. Crowdsourcing applications enable a bottom-up “voice”
channel from “citizens as sensors”. On the other hand, remote sensing can objectively
record the morphology change of the earth’s surface and serve as a primary resource base
map as well as provide rich-in-detail layers. We conducted a thorough literature survey for
these three types of spatial data and summarized their roles and limitations.

While existing literature on spatial data exploits the potential of spatial data through
developing complicated algorithms, our review analysis suggests that such technical solu-
tions may not address practical needs as computational resources and that time is highly
constrained with disaster data and the processing algorithms being more abundant than
required. This finding has suggested that a managerial solution may be good complemen-
tation to step in to leverage spatial data in coastal hazards’ applications [12,88].

Therefore, rather than investigating the technical perspective of spatial data, it is
deemed to incorporate the managerial perspective as the second dimension to improve the
practical use. In this systematic review, we provide an analysis of what spatial data can
do and what it cannot do, and based on this analysis, outline missing pieces that future
research can take to improve the value of spatial data in coastal hazard operations.
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