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Following severe tissue injury, patients are exposed to various danger- and microbe-associated molecular patterns, which provoke a
strong activation of the neutrophil defense system. Neutrophils trigger and modulate the initial posttraumatic inflammatory
response and contribute critically to subsequent repair processes. However, severe trauma can affect central neutrophil
functions, including circulation half-life, chemokinesis, phagocytosis, cytokine release, and respiratory burst. Alterations in
neutrophil biology may contribute to trauma-associated complications, including immune suppression, sepsis, multiorgan
dysfunction, and disturbed tissue regeneration. Furthermore, there is evidence that neutrophil actions depend on the quality of
the initial stimulus, including trauma localization and severity, the micromilieu in the affected tissue, and the patient’s overall
inflammatory status. In the present review, we describe the effects of severe trauma on the neutrophil phenotype and
dysfunction and the consequences for tissue repair. We particularly concentrate on the role of neutrophils in wound healing,
lung injury, and bone fractures, because these are the most frequently affected tissues in severely injured patients.

1. Introduction

The severe inflammatory response after major injury is
known to contribute critically to primary healing complica-
tions or to induce secondary problems in remote organs,
which were not affected initially, including in acute respira-
tory distress syndrome (ARDS), sepsis, and multiorgan
failure (MOF). Neutrophils are part of the “first line of
cellular defense” and crucially modulate subsequent repair
processes after tissue damage. After injury, neutrophils are
rapidly recruited to the inflammation site after injury by
microbe- and danger-associated molecular patterns (MAMPs
and DAMPs, respectively, with MAMPs also known as
PAMPs or pathogen-associatedmolecular patterns). Multiple
inflammatory mediators are potent chemoattractants for
neutrophils, including C-X-Cmotif ligand (CXCL) 1–3, mac-
rophage inflammatory protein-1α, the anaphylatoxin C5a

and leukotriene B4 (LTB4), and interleukin-8 (IL-8) [1, 2].
Chemoattractants as IL-8 not only promote chemotaxis but
also contribute to a mobilization of immature leukocytes by
the bone marrow. This release of immature and, therefore,
less deformable neutrophils contributes to a subsequent
sequestration in distal organs, laying the foundation to
harmful side effects of neutrophils [3]. Following severe
trauma or during sepsis, antiapoptotic genes are tran-
siently upregulated, increasing the neutrophil circulation
half-time [4]. At the injury site, neutrophils themselves
produce a significant amount of LTB4 [5], phagocytize cellular
debris and bacteria, and subsequently may undergo NETosis,
forming neutrophil extracellular traps (NETs). Furthermore,
they generate reactive oxygen species (ROS), antimicrobial
peptides, serine proteases, and various cytokines and chemo-
taxins, including interleukin- (IL-) 1β, IL-6, IL-10, and
monocyte chemotactic protein-1 (MCP-1), which, in turn,
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modulate the inflammatory response and further attract
monocytes andmacrophages [6] (for a comprehensive review
of neutrophil-derived cytokines, see [7]). It is noteworthy that
the quantitative contribution of neutrophils to the overall
cytokine concentrations may be relatively low in compari-
son to macrophages. Nevertheless, the neutrophil response
contributes to reduced inflammation and ensures adequate
tissue repair [8, 9]. The mechanisms of neutrophil-
mediated resolution of inflammation include the clearance
of DAMPs and the production of anti-inflammatory cyto-
kines, including IL-10 and IL-1Ra [10], and of lipid media-
tors [11]. In addition, neutrophils degrade inflammatory
cytokines by aggregated NETs, secrete soluble factors, includ-
ing azurocidin, cathepsin G, lipoxins, and lysophosphatidyl-
serine, and are able to reprogramme macrophages to the
regulatory M2 phenotype [6, 12–15].

However, in the case of excessive posttraumatic inflam-
mation, neutrophils may become overactivated or dysfunc-
tional. Consequently, they secrete an altered cytokine profile,
increase ROS production, and undergo massive NETosis,
thereby aggravating tissue damage and even harming
surrounding healthy tissues [15–18]. The majority of stud-
ies evaluating neutrophil dysfunctions after trauma address
their impaired antimicrobial defense and role in sepsis
development [19, 20]. This review focuses on the roles of
neutrophils in those organs that are frequently initially
affected in traumatized patients: skin, lungs, and bones.

2. Trauma-Induced Phenotype Changes and
Functional Consequences

Trauma and subsequent complications affect the phenotype
and function of circulating neutrophils, and, particularly, in
case of severe trauma, the development of dysfunctional neu-
trophils might play a detrimental role [21, 22]. Indeed, severe
posttraumatic inflammation induces a boost in the release of
banded and immature neutrophils into the circulation, lead-
ing to bone marrow exhaustion and a compromised immune
response, both associated with a poor outcome [21, 23, 24].
Additionally, morphological changes were observed after
trauma, including increased cell size and membrane plastic-
ity and a modified shape, wherein neutrophils become more
elongated [25, 26]. Within the population of neutrophils,
there is a degree of heterogeneity that has received growing
attention since the 1980s (see [27] for a summary of currently
described neutrophil subsets). Until today, there is no cer-
tainty to what extent neutrophil heterogeneity is biologically
relevant [27, 28]. However, as trauma induces not only an
activation of neutrophils, partly accompanied by an extended
life span of certain subsets, but also a rapid recruitment of
naïve cells as well as an emergency granulopoiesis, trauma
itself might contribute to neutrophil heterogeneity [29]. For
example, in trauma, there are immunosuppressive low-
density neutrophils (LDNs), a subtype of neutrophils named
after their discovery in the fraction of the peripheral blood
mononuclear cells (PMBC) [29, 30]. These granulocytes are
not only activated but express a high level of arginase activity,
which in turn might be linked to T-cell function providing an
interesting modulation and possible impairment of the

adaptive immunity mediated by neutrophils during trauma
[30]. In sepsis, it has been demonstrated that this granulocyte
subset inhibits T-cells, possibly via arginase release and/or
ROS production [29, 31, 32]. In contrast, there might be sub-
sets of neutrophils, which are beneficial to repair the initial
trauma impact. For example, a population of CD11b+/Gr-
1+/CXCR4hi neutrophils likely recruited by VEGF-A induce
revascularization via MMP-9 [33]. While neutrophil hetero-
geneity is often described in the context of chronic inflamma-
tion, for example, caused by cancer [27, 29], research in the
trauma context to elucidate the diametral effects of the
neutrophil collectively represents a promising field, which,
however, is beyond the scope of this review.

The egress of neutrophils from the bone marrow and
their recruitment to the injured tissue is crucial for mounting
an adequate inflammatory response. The impairment of
targeted chemotaxis has been described in many inflamma-
tory disorders, including diabetesmellitus and viral infections
(e.g., HIV and influenza) [34–36]. Adequate chemokinesis is
ensured by sufficient expression of surface receptors, includ-
ing the IL-8 receptors CXCR1 and CXCR2, FcγRIII (CD16),
IL-6 receptor (IL-6R), and complement receptor C5aR1
[37]. Indeed, trauma is associated with reduced expression
of CXCR1, CXCR2, and C5aR1, all of which may be partially
internalized by or released from neutrophils in microvesicles
[38–40]. IL-6R is actively shed from the neutrophil surface
to induce IL-6 transsignaling, which amplifies the inflamma-
tory effects of IL-6 [41], and to regulate T-cell responses
[42, 43]. Overall, these trauma-induced functional changes
may desensitize neutrophils towards persisting danger.

Killing of phagocyted pathogens in neutrophils is
ensured via two distinct mechanisms. One is oxygen based
and executed via the formation of ROS, whereas the other
is oxygen independent [37]. In trauma, neutrophils produce
increased amounts of ROS and increase the expression of
gp91PHOX, a membrane-residing subunit of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase, a key
enzyme in ROS production [44, 45]. The enhanced ROS
response might contribute to the damage of the endothelial
barrier and induce vascular leakage, resulting in further
complications, including edema and organ dysfunction,
for example, ARDS [44, 46]. Oxygen-independent mecha-
nisms include the release of neutrophil granules containing
digestive serine proteases, for example, neutrophil elastase,
cathepsin G, proteinase 3, and azurocidin [47, 48]. The
release of proteases is regulated by the intraphagosomal pH,
which, upon improper activation after injury, may lead to
impaired protease activation and disturbed microbial killing
[49]. Proteases released by neutrophils likely act predomi-
nantly locally, as the clearance capacity of antiproteases such
as α2-macroglobulin is sufficient to degrade the listed
enzymes in a systemic dimension and is increased in scenar-
ios of severe inflammation [50, 51].

Apoptosis and NETosis represent mechanisms of pro-
grammed death of neutrophils. Inflammatory stimuli may
prolong the circulation half-life of neutrophils from 6h up
to several days based on the upregulation of antiapoptotic
proteins, including induced myeloid leukemia cell differenti-
ation protein Mcl-1, and a reduced level of proapoptotic
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proteins, including apoptosis regulator Bax [11, 52]. How-
ever, the functional capacity of such neutrophils remains
questionable. NETosis is a mechanism of extracellular
neutrophil-mediated killing after cell death. NETs consist
of fibrils containing ROS, DNA, chromatin, and granular
proteins and are released by active expulsion via an NADPH
oxidase-dependent mechanism. Although NETosis is
believed to induce programmed cell death, recent data imply
that neutrophils may remain viable afterwards [53]. Because
NET-mediated destruction is unspecific, excessive NETosis is
thought to contribute to tissue damage after trauma [54, 55].
Trauma-induced changes in neutrophil phenotype and func-
tions are summarized in Figure 1.

3. Neutrophil Actions in Specific
Trauma Settings

Neutrophil functions may depend on the micromilieu of
the damaged tissue. Confirming this, different trauma
models frequently produced contradictory results regarding
neutrophil functions in different organs. For example, in a
model of severe injury, neutrophil depletion did not improve
bone regeneration [56], but did mitigate pulmonary damage
[17, 57]. Interestingly, a recent study showed that fracture-
associated mitochondrial DAMPs may “prime” pulmonary
neutrophils, thereby desensitizing them towards pathogens
and impairing the pulmonary response to lung infection
[58]. These findings could be explained by the compartmen-
talization of the immune response and by different expres-
sion patterns of inflammatory mediators and adhesion

molecules in various tissues. Indeed, as already reviewed
elsewhere [59], distinct tissues and cell types contribute
differently to the production of inflammatory mediators in
trauma and sepsis. For example, in sepsis, tumor necrosis fac-
tor α (TNFα) is predominantly expressed in the liver, spleen,
and lungs by Kupffer cells, leukocytes, and lung epithelial and
immune cells, respectively. Additionally, in downstream
signaling, for example, in nuclear factor kappa-light-chain-
enhancer of activated B cell (NF-κB) activation, the highest
activities were observed in the skin, lungs, and spleen, with
minor involvement of the liver, kidney, and heart [60].
Because many inflammatory mediators are important
chemotaxins for neutrophil recruitment, it is unsurprising
that different organ injuries result in different local and
systemic inflammatory patterns. Another possible explana-
tion might be the organ-specific expression of different adhe-
sion molecules, including intercellular adhesion molecule 1
(ICAM-1), vascular cell adhesion protein 1 (VCAM-1), selec-
tins, and CD11b, which are important for the neutrophil
influx from the blood vessels into the tissue by mediating
their adhesion, rolling, and subsequent migration [59].

In this review, we concentrate on the most frequently
injured organs: the skin, as a first target for surface damage;
the lungs, which represent a frequent target and major effec-
tor organ in trauma, because they are also actively involved in
hematopoiesis and coagulation [61]; and the bone, which has
a unique micromilieu due to the enclosed bone marrow.

3.1. Role of Neutrophils in Wound Healing. The skin is the
first body barrier and is the most frequently injured in
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Figure 1: Trauma-induced changes in neutrophil phenotype lead to neutrophil overactivation and dysfunction, thus negatively affecting
migration and maturation, impairing antimicrobial defense and clearance of cell debris, and delaying resolution of inflammation.
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trauma. Because skin wounds allow pathogen access to the
body, they require an efficient clearing of pathogens and a
rapid healing process. Wound healing consists of the inter-
connected phases of hemostasis and inflammation, tissue
regeneration, and remodeling. Hemostasis is initiated within
minutes after injury and is accompanied by inflammation
and platelet activation, resulting in a stable fibrin clot with
an active neutrophil influx [8, 9, 62, 63]. In wounds, neutro-
phils are recruited by proinflammatory cytokines, including
TNFα, growth factors, including platelet-derived growth fac-
tor (PDGF) and transforming growth factor β (TGF-β), and
arachidonic-acid derivates, including leukotrienes and pros-
taglandins. Furthermore, neutrophils are attracted by the
complement anaphylatoxins C3a and C5a [8, 48, 64, 65].
The physiological role of neutrophils in wound healing does
comprise the clearance of not only pathogens but also the
abundant erythrocytes [66]. The role of neutrophils in the
downstream repair processes remains unclear. On the one
hand, neutrophils do not enhance collagen synthesis or gran-
ulation tissue formation [67]. Wound healing in germ-free
mice, fetuses, and oral mucosa is associated with lower
neutrophil-driven inflammation and scarless regeneration,
which demonstrates the benefits of a limited neutrophil
involvement [64, 68–70]. Additionally, the reduced presence
of neutrophils in germ-free lesions correlated with increased
levels of the anti-inflammatory cytokine IL-10 and vascular
endothelial growth factor (VEGF) and was associated with
an accelerated wound epithelialization [68]. On the other
hand, inwounds, neutrophils express cytokines, amongothers
TNFα, which can contribute to reepithelialization and wound
closure [71, 72]. Furthermore, stimulated neutrophils secrete
VEGF, which may contribute to wound healing by encourag-
ing angiogenesis [73]. The process of efficient wound heal-
ing also requires neutrophil clearance [48, 74], and it was
shown that macrophage stimulation promoted neutrophil
removal and wound healing [75]. Indeed, after clearance
of MAMPs and DAMPs, neutrophils—via β2 integrins
[76]—are phagocyted by macrophages and this is a very
strong signal for the macrophage to release TGF-β1.
TGF-β1 stimulates differentiation of myofibroblasts, which
contribute not only to wound contraction but also to a
collagen synthesis [77].

While the presence of neutrophils is generally restricted to
the inflammatory phase, it can be prolonged by physical
trauma and/or ongoing contamination, thus exerting deleteri-
ous effects and inhibiting efficient wound healing [62, 74, 78].
DAMPs and MAMPs combined with cytokine release after
trauma further extend the inflammatory response of neu-
trophil in wounds, among others via NF-κB signaling
[79, 80]. The toxic arsenal of neutrophils primarily directed
against pathogens leads to collateral damage via distinct
mechanisms—particularly, when released as a consequence
of necrosis rather than apoptosis. These unwanted side
effects damage the extracellular matrix and affect clotting
and further mechanisms that are involved in wound healing
[48, 62, 81]. The harmful potential of neutrophils is further
reflected in the setting of second hits, including in reperfu-
sion injury, which has been demonstrated to increase the
invasion of neutrophils, thereby leading to sustained

inflammation [82]. Another example of unsolicited effects
of neutrophils is excessive NETosis, which has been
described as an inhibitor of wound healing in diabetes
patients [18]. There are several mechanisms to control neu-
trophil effects and induce repair. For example, radicals gener-
ated by hyperactivated neutrophils are cleared via superoxide
dismutase 3 (SOD3) from mesenchymal stem cells (MSCs)
[83]. In addition, mesenchymal stem cells can decelerate neu-
trophil migration via IL-10 and TNF-stimulated gene/pro-
tein-6 [84]. Furthermore, epidermal growth factor as part of
the saliva lessens neutrophil recruitment and activity,
explaining a beneficial effect of wound licking in animals
[85].

By contrast, neutrophils also have many positive effects
in wound healing. For example, neutrophils counterbalance
hyperproliferation, thereby preventing malignancy [64].
From an evolutionary point, the wound-healing mechanism
developed when wounds were more likely to be contami-
nated. Therefore, a pronounced inflammatory response with
neutrophils at the wound site neutralizing bacterial intruders
might have been crucial to allow for subsequent keratinocyte
proliferation [64]. Moreover, neutrophils are required to
keep the commensal microbiota in check [68]. Furthermore,
delayed healing of infected wounds supplies proliferating
skin cells with sufficient oxygen. The oxygen also acts as
bactericide and is a prerequisite for neutrophil ROS genera-
tion [86]. Additionally, neutrophils support an additional
recruitment of macrophages and T-cells by upregulation
of MCP-1 and chemokine ligand 3 (CCL3) [4]. The release
of carbonic anhydrases by neutrophils alters the wound
microenvironment, which supports healing processes under
compromised conditions [87].

In summary, neutrophils contribute to the clearing of
DAMPs and MAMPs in nonsterile skin lesions, thereby pro-
moting wound healing. However, the presence and activity of
neutrophils require tight regulation, which is a challenge,
particularly in the setting of severe trauma.

3.2. Role of Neutrophils in Lung Injury. The lung is a unique
organ with respect to neutrophil migration, resulting in high
neutrophil numbers even in healthy humans. There is grow-
ing evidence that under physiological conditions, peripheral-
activated neutrophils are cleared and deprimed in a healthy
lung [88, 89]. In contrast to other tissues, neutrophils do
migrate not only in high endothelial venules via β2-integ-
rin but also in the alveolar capillary bed via a L-selectin-
and β2-integrin-independent pathway [90–94]. The capil-
laries’ interwoven network results in a high concentration
of neutrophils in the pulmonary vessels compared to blood
in the large vessels, which might explain partially the vulner-
ability of the lung against neutrophil-mediated tissue injury
[88, 90, 91, 95]. Another hypothesis emphasizes the role of
the lung as a control site for primed neutrophils. If over-
loaded, the lung might lose its property as site of surveillance
and depriming but might even contribute to it [89]. The
small diameter of capillary segments (approximately 5μm)
compared with the size of a neutrophil (approximately 7-
8μm), on the one hand, improves neutrophil contact with
the vascular wall, thereby facilitating extravasation, but, on
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the other hand, requires a high degree of cellular deformabil-
ity [90, 96]. Neutrophil deformability is modulated by che-
motactic factors, including anaphylatoxin C5a [25, 97] and
chemotactic tripeptide fMLF (N-formylmethionyl-leucyl-
phenylalanine, previously known as fMLP) [98–100], and
by various bacterial compounds, including lipopolysaccha-
rides (LPS) [25, 101]. Transient pulmonary overfishing of
neutrophils results in sequestration within the lungs and
might contribute to a succeeding reduced cell count in the
blood, particularly during the early stage of pulmonary
inflammation [97, 101]. Another characteristic of the capil-
lary bed of the lungs are tricellular corners. There, three
endothelial cells intersect, building discontinuous tight junc-
tions. Therefore, they provide a possibility to migrate around
instead of through endothelial tight junctions, thus contrib-
uting to >75% of neutrophil extravasation when stimulated,
for example, with IL-1 [102]. In healthy humans, the stimu-
lation of neutrophil pulmonary extravasation by LTB4 with-
out further significant inflammatory impact does not cause
deterioration in pulmonary barrier permeability, which
indicates that physiologically, neutrophils can extravasate
without harming the barrier [103]. Accordingly, neutrophils
do not require matrix metalloproteinase or serine protease
for pulmonary extravasation [104]. In conclusion, in the
lungs, neutrophils display unique migration mechanisms,
resulting in a large neutrophil number, which is highly
relevant in trauma.

ARDS (withmild ARDS being a term for acute lung injury
(ALI)) is defined as an “acute diffuse, inflammatory lung
injury” caused by primary pulmonary factors (e.g., pneumo-
nia and pulmonary contusion) or secondary harmful events
(e.g., polytrauma, shock, burns, and aspiration) [105, 106].
Among trauma patients, mild and severe ARDS occur in 4%
and 12%, respectively, and are associated with a longer inten-
sive care unit stay and increased hospital costs [107]. A char-
acteristic of ARDS is severe hypoxemia, which is caused by the
leakage of pulmonary vessels with the recruitment of neutro-
phils, a marked right-to-left shunt and an increased dead
space as well as a decrease of pulmonary compliance and a
dysfunctional pulmonary epithelium [106]. Although there
is numerous data on ARDS and neutrophils [90, 93, 94], the
exact role of these cells in ARDS remains poorly understood.
In ARDS, inflammatory mediators, including IL-1β, IL-6,
and IL-8, which are abundantly secreted by type-2 alveolar
cells, macrophages, and endothelial cells after blunt chest
trauma, induce a hyperactivation of neutrophils [17, 93, 94,
108, 109]. High levels of IL-6 and IL-8 are risk factors for
ARDS development after trauma [110, 111]. In traumatic
injury, neutrophil activity in general is associated with ele-
vated levels of IL-6, IL-8, and TNFα, but also of IL-10, and,
simultaneously, a reduced antimicrobial defense [112–115].
The pulmonary inflammatory mediators further enhance
neutrophil activity and their deleterious effect on the endothe-
lium and epithelium. Thereby, they increase transcellular
permeability, contributing to lung edema and poor ARDS
prognosis [17, 92]. Whereas endothelial cell damage is ROS
dependent, epithelial cells might be more resistant towards
radicals, but like endothelial cells, they are also affected by
activated, adhering neutrophils [116].

Several studies used a neutrophil depletion approach to
define the role of neutrophils in trauma. Neutrophil deple-
tion in trauma-induced ARDS was associated with higher
chemokine levels in the bronchoalveolar lavage fluid, includ-
ing granulocyte colony-stimulating factor (G-CSF), and led
to an improved outcome [17, 117]. In addition, neutrophil
deficiency resulted in reduced IL-1β, MIP-2, and TNFα
levels in a mouse hemorrhagic shock model, which under-
lines the role of neutrophils contributing to pulmonary
inflammation [118]. In the absence of neutrophils, some
protective effects of the lung-blood barrier were described
[17, 119]. Further harmful effects of neutrophils include
proteolysis of endo- and epithelial cadherins and attacking
the endothelial barrier [120, 121]. In a murine influenza
aspiration-induced ARDS model, blockade of neutrophil
recruitment via inhibition of the CXCL10-CXCR3 axis
resulted in an improved outcome and survival [122]. Fur-
thermore, patients recovering from neutropenia are at risk
for ARDS because “reappearing” neutrophils provoke
inflammation [123].

However, there are several studies, mainly on infectious-
and less in trauma-induced shock, demonstrating that neu-
trophils are not the only “scapegoat”, as pulmonary trauma
activates other components of the innate immunity, for
example, alveolar macrophages, as well as the coagulation
system [124]. For example, neutrophil elastase inhibition
did not reduce mortality after ARDS [125]. Another study
comparing endotoxin- and bacteria-induced ARDS rat
models found that bacteria-triggered ARDS was associated
with a poorer outcome, although alveolar neutrophil influx
and activity (as determined by elastase or ROS production)
were similar. This indicates that there are further factors
in addition to neutrophil actions in ARDS development
[126]. Furthermore, there is evidence that blunt chest
trauma without a second hit induces a transient short-
term neutrophil activation with a significant reduction of
CXCR2 and C5aR and a mobilization of young (FcγRIII-
low) neutrophils [127, 128]. Lacking a strong second
inflammatory stimulus, for example, subsequent sepsis or
pneumonia, inflammation regresses without causing ARDS
or MOF, implying a vulnerable phase after trauma-induced
immune activation [127, 129, 130].

3.3. Role of Neutrophils in Bone Fracture Healing. Approxi-
mately 30% of severely injured patients (injury severity score
(ISS)> 16) have concomitant fractures of the extremities
[131]. These patients are at a high risk of delayed bone healing
or nonunion formation, because of systemic hyperinflamma-
tion associated with severe trauma [132–134]. Fractures heal
by three partially overlapping phases: the initial inflammatory
phase, the repair phase comprising soft callus formation and
intramembranous and endochondral ossification, and the
remodeling phase, where the initiallywoven bone is converted
to a lamellar bone until the original bone shape is restored
[135]. The initial local inflammation starts with rapid hema-
toma formation, which serves as a scaffold for immune and
progenitor cells, initiating regeneration [135]. Neutrophils
are the most abundant cells in the early fracture hematoma
[136]. Initially, they originate from the blood, leaking from
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the ruptured vessels. Then they actively migrate from the
bloodstream into the damaged bonewithinminutes after frac-
ture. Moreover, neutrophils or their progenitors can invade
the hematoma directly from the damaged bone marrow.
Indeed, Hoff et al. reported that, immediately after injury,
the fracture hematoma mainly contains bone marrow cells,
the majority being CD16+-immature granulocytes [136].
Within 72 h, either maturation of these granulocytes or inva-
sion of CD16+-mature granulocytes from the circulation
occurs [136]. Notably, the bone marrow at the fracture site
becomes actively involved, because CD16+ cells are
increasingly found there, indicating general bone-marrow
activation in response to injury. The neutrophil numbers
rapidly increase at the fracture site during the early inflam-
matory phase and then slowly subside until day 7–10, when
only a few cells are observed in the soft periosteal callus
[56, 137, 138].

In uneventful bone healing after isolated fracture, there is
a continuing debate over the role of neutrophils [56, 132].
Some authors postulated a negative influence of neutrophils
on bone regeneration, because their depletion from the
bloodstream improved fracture healing, as confirmed by
radiological examination and improved mechanical proper-
ties of the healed femur [139]. It was proposed that neutro-
phils would induce tissue damage by secreting collagenase,
elastase, free radicals, and arachidonic acid and that the
neutrophil-induced inflammatory response would aggravate
the already existing ischemia, leading to edema and a local
circulatory shutdown [139]. Others found that neutrophil
depletion promoted osteogenic but suppressed chondrogenic
differentiation of progenitor cells in a model of growth plate
injury; however, the mechanisms were not elucidated [138].
This might be beneficial for intramembranous bone forma-
tion, but implies that diaphyseal fracture healing might be
delayed, because in this case, cartilaginous callus formation
is essential. Interestingly, the authors did not observe any
significant influence of neutrophil depletion on the early
immune response after fracture, because monocyte and lym-
phocyte infiltration and IL-1β and TNFα expression at the
injury site were unaffected [138]. Fracture healing was also
impaired after zymosan-stimulated ROS production in a rat
fracture model [140].

By contrast, stimulation of neutrophil recruitment by
G-CSF supported fracture healing. The biomechanical prop-
erties of the healed bones were improved [141, 142], bone
formation was increased [143], and the expression of angio-
genic (angiopoietin, VEGF) and osteogenic (bone morphoge-
netic proteins- (BMP-) 2 and BMP-4) factors in the fracture
callus was enhanced by G-CSF treatment [142]. However,
G-CSF does not only promote neutrophil egress into the
bloodstream but also facilitate bone marrow stem cell and
preosteoblast recruitment to the injury site. Furthermore, it
enhances VEGF release and the recruitment of CD34+ cells,
which contribute to angio- and vasculogenesis [143]. This
may improve neovascularization and bone formation inde-
pendently of enhanced neutrophil recruitment [142, 143].

More recent studies demonstrated that a balanced neu-
trophil activation may be important for undisturbed fracture
healing. After neutrophil depletion with Ly-6G antibody, the

recruitment of monocytes and macrophages to the fracture
site was disturbed and the concentration of inflammatory
mediators, including IL-6, IL-10, CXCL1, and MCP-1, in the
fracture hematoma was altered [56, 144]. Subsequent bone
regeneration was considerably disturbed in neutrophil-
depletedmice. These findings imply that neutrophils crucially
regulate the immune response at the fracture site, resolve
inflammation, and induce downstream responses, which are
essential for successful bone repair. Supporting this, Bastian
et al. proposed that neutrophils may form “emergency extra-
cellular matrix” consisting of fibronectin in the initial fracture
hematoma, which could serve as a scaffold for stromal cell
recruitment, thereby promoting healing [137]. The authors
reported that early neutrophil recruitment to the fracture
hematoma was associated with fibronectin synthesis. More-
over, neutrophils could be positively costained for fibronectin.
Interestingly, the overall cell number in the fracture hema-
toma was unchanged from days 3 to 10, whereas subpopula-
tion analysis showed that neutrophil numbers diminished,
implying that other cell populations, presumably macro-
phages and stromal cells, invade the fibronectin matrix. At
the same time, the fibronectin content was unchanged,
whereas the collagen type-1 content increased, indicating that
collagen is produced by these newly recruited cells [137].
Therefore, these recent findings support the hypothesis that
neutrophils are essential for undisturbed bone regeneration,
at least in uneventful bone fracture.

Whether neutrophils play a role in compromised fracture
healing associated with severe trauma remains unclear. Sev-
eral studies found enhanced neutrophil and diminished mac-
rophage recruitment to the fracture hematoma in a rodent
model of severe injury, implying that neutrophils might be
involved in the pathogenesis of impaired bone healing after
trauma [56, 145, 146]. By contrast, bone healing was not
improved in a mouse model of combined fracture and tho-
racic trauma when neutrophils were depleted, suggesting that
they may play only a minor role or were dysfunctional in this
scenario [56]. The latter suggestion could be confirmed by a
recent clinical study of Bastian et al., who reported altered
leukocyte kinetics in severely injured patients with subse-
quent fracture-healing complications [22]. These patients
exhibited impaired systemic neutrophil and monocyte mobi-
lization, indicating immune exhaustion.

Even if the current literature is very limited and in part
greatly debated, it is clear that neutrophils play a major role
in the initial immune response after fracture and initiate
downstream responses leading to bone repair. However,
further research is necessary to elucidate their role in bone
regeneration and the pathogenesis of fracture-healing com-
plications associated with severe trauma.

4. Neutrophils as a Therapeutic
Target in Trauma

To utilize the potent defensive mechanisms and clearance
capacity for MAMPs and DAMPs by neutrophils in the
initial posttraumatic response, enhanced recruitment of
neutrophils via G-CSF-based therapeutics, including filgras-
tim, has been postulated as a rational therapy [147]. Indeed,
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in the clinical setting of tissue damage after major surgery, G-
CSF-treatment provoked reinforcement of the systemic
innate immune response and reduced septic complications
[148]. After acute traumatic brain injury, G-CSF application
reduced bacteremia, although overall survival was not
improved [149]. However, contradictory effects were
reported concerning local healing: In a rodent model of
full-thickness supraspinatus tendon defects, G-CSF treat-
ment locally increased cellularity after rotator cuff repair,
but failed to improve structural healing [150]. By contrast,
accelerated wound healing was found after topical G-CSF
application [151]. In a mouse model, the transcriptional cor-
egulator B cell leukemia/lymphoma 3 (Bcl3) was identified to
downregulate emergency granulopoiesis as consequence of a
transplant-mediated ischemia/reperfusion lung injury, limit-
ing pulmonary damage [152]. In another approach to miti-
gate neutrophil recruitment, a porcine burn wound model
proposed reduced neutrophil activity by the application of
atorvastatin [153]. Likewise, attenuation of neutrophil
recruitment by neutralization of IL-8 alleviated neutrophil
invasion and damage to the lung [154]. Certainly, more
research is necessary to define the exact indications after
tissue trauma and the dosing, timing, and application route
of such approaches.

By contrast, inhibition of extensive neutrophil activation
has also been proposed to prevent the collateral damage by
neutrophils. For example, in a murine blunt chest injury
model with lung contusion, neutrophils and their oxidative
response have been identified as a major contributor to acute
lung injury and neutrophil depletion was protective [155].
Another experimental study demonstrated the beneficial
effect of valproic acid, which reduced neutrophil influx and
reduced tissue damage via decreased MPO activity, however
with partial immunosuppression [156]. In a mouse model
of LPS-induced ARDS, systemic application of mesenchymal
stem cells reduced neutrophil recruitment and activity (e.g.,
NETosis), improving overall survival [157]. Whether the
MSCs as cells or parts of their secretome induced these effects
remains to be investigated. Leukocyte filtration strategies
were also examined in numerous clinical studies, particularly
in the context of major cardiac surgery. There is evidence
that pulmonary, cerebral, and renal function may improve
by neutralization of activated neutrophils using filtration
[158, 159]. However, global neutrophil inhibition after
severe tissue trauma is certainly irrational and unsafe,
because these cells are major contributors of the “first line
of defense” to clear the MAMP and DAMP load. Further
research needs to determine which specific markers may
indicate host-damaging-activated neutrophils. It is also of
interest as to which removal strategies should be followed to
beneficially modulate the neutrophil immune response
after trauma and to induce an effective regenerative process.
Future strategies should also account for the different micro-
environmental changes after trauma and the compartmental-
ization of the neutrophil immune response [59]. Therefore, it
might be of importance to either enhance or suppress the
local neutrophil response, for example, in the fracture hema-
toma during fracture healing or in the alveolar space after
lung contusion. Therefore, organ compartment-targeted

neutrophil therapy may represent a promising future scien-
tific and clinical field.
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