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Corrigendum

The structure of the TsaB/TsaD/TsaE complex
reveals an unexpected mechanism for the bacterial
t°A tRNA-modification
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Subsequent to publication of this study, we obtained crystals that yielded slightly better diffraction data for the TmTsaBDE
complex (Table 1). These data resulted in improved electron density maps and allowed us to identify and correct a few errors
in the previously deposited structure (originally deposited as PDB 6FPE). The latter (which is still available for download
and comparison, at https://www.rcsb.org/structure/removed/6FPE) has been superceded by a new set of revised coordinates
(PDB 6S84).

The most significant differences between the two coordinate sets consist of:

1. The C-terminus of one of the TsaB copies in the asymmetric unit: amino acids 194-205 that were missing in the 6FPE
structure could be constructed into the density.

2. Modeling of a nucleotide bound at the active site of TsaD. We initially cautiously interpreted the residual electron density
by glycerol and PEG moieties present in the crystal freezing liquor. The new maps clearly showed that a nucleotide was
bound at this location (Figure 1). We could easily fit the density by AMPCPP, present as a ligand in the crystallization
solution.

The new structure does not alter the primary conclusions of our manuscript:

e The C-terminal part of the active site of TmTsaD remains well-structured and is still capable of binding a nucleotide in
the context of the ternary TmTsaBDE complex.

e The AMPCPP occupies exactly the same position as the carboxy-AMP compound present in the recent structure of
TmTsaBDE, reported by Swairjo et al. (1). We further confirm that in our structure the N-terminal part of the TmTsaD
active site remains partially disordered and that neither Zn nor Fe ions are bound. This contrasts with the structure
reported by Swairjo et al., which has an ordered metal binding site occupied by Zn. This latter structure was obtained
in presence of ATP, and we suspect that the nature of the bound nucleotide (AMPCPP versus ATP) might play a role in
the metal binding. The two structures of the TsaBDE complex (6N9A and 6S84) represent probably different snapshots
along the catalytic pathway.
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Figure 1. 2F,-F, difference map (blue) of the AMPCPP surrounding at the active site of 7mTsaD. F,-F. map : positive and negative densities are rep-
resented as green and red grids respectively. The metal coordinating histidines 109 and 113 are also shown. They are partially disordered and not in a

configuration compatible with metal binding.

Table 1. New (vs. original) data collection and refinement statistics

PDB 6S84 PDB 6FPE
Wavelength (A) . 0.978570 0.9801
Resolution range (A) 46.14-2.90 (3.00-2.90) 48.44-3.14 (3.33-3.14)
Space group P22 2 P2, 212
Unit cell a,b,c (A) a=285.16,b=108.21,c = 176.65 a=284.31,b=113.94,c=177.62
Total reflections 324005 138146
Unique reflections 36849 30297
Completeness (%) 99.1 (94.8) 99.1(95.2)
Mean I/sigma(I) 9.1(0.87) 7.1(1.03)
R-meas 0.23 0.19
CC1/2 99.7 (42.1) 99.2 (43.9)
R-work 0.209 0.23
R-free 0.282 0.29
Number of non-hydrogen atoms 10678 10418
RMSD bonds (A) 0.003 0.011
RMSD angles (°) 1.011 1.258
Ramachandran favored (%) 94.77 95.3
Average B-factor (A2) 89.66 80.67

Statistics for the highest-resolution shell are shown in parentheses.
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