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Abstract: Dysautonomia is a common non-motor symptom in Parkinson’s disease (PD). Most dysau-
tonomic symptoms appear due to alterations in the peripheral nerves of the autonomic nervous
system, including both the sympathetic and parasympathetic nervous systems. The degeneration of
sympathetic nerve fibers and neurons leads to cardiovascular dysfunction, which is highly prevalent
in PD patients. Cardiac alterations such as orthostatic hypotension, heart rate variability, modi-
fications in cardiogram parameters and baroreflex dysfunction can appear in both the early and
late stages of PD, worsening as the disease progresses. In PD patients it is generally found that
parasympathetic activity is decreased, while sympathetic activity is increased. This situation gives
rise to an imbalance of both tonicities which might, in turn, promote a higher risk of cardiac damage
through tachycardia and vasoconstriction. Cardiovascular abnormalities can also appear as a side
effect of PD treatment: L-DOPA can decrease blood pressure and aggravate orthostatic hypotension
as a result of a negative inotropic effect on the heart. This unwanted side effect limits the therapeutic
use of L-DOPA in geriatric patients with PD and can contribute to the number of hospital admissions.
Therefore, it is essential to define the cardiac features related to PD for the monitorization of the
heart condition in parkinsonian individuals. This information can allow the application of interven-
tion strategies to improve the course of the disease and the proposition of new alternatives for its
treatment to eliminate or reverse the motor and non-motor symptoms, especially in geriatric patients.

Keywords: Parkinson’s disease; neurodegeneration; cardiac denervation; autonomic nervous system;
L-DOPA; dysautonomia; aging

1. Introduction

Parkinson’s disease (PD) is broadly known to be a movement disorder, originating
from the reduction of brain dopamine (DA) content as a consequence of the degeneration
of the nigrostriatal system, together with the presence of proteinaceous cytoplasmic inclu-
sions enriched in α-synuclein, named Lewy bodies [1]. Developed more than 50 years ago,
this definition based on the motor condition is no longer an accurate description for PD;
numerous works have evidenced that clinical manifestations of the disease go beyond the
motor system and set up a complex scenario in which non-motor symptoms appear even
years before the motor ones [2,3]. Nowadays, it is known that the complete spectrum of PD
symptoms not only derives from the degeneration of the nigrostriatal system, but because
other central nervous system (CNS) nuclei are also damaged, inducing the appearance of
dysautonomia (alterations in the autonomic nervous system) [4]. Non-motor symptoms
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derived from autonomic dysfunction include, among others, urinary problems, constipa-
tion, erectile failure in men, orthostatic intolerance or orthostatic hypotension (OH) [5,6].
Therefore, it seems clear that the study of CNS alterations together with systemic changes
would provide a better understanding of the disease, in terms of its progression, and the
development of diagnostic tools and therapeutical strategies [7].

Increasing evidence highlights that cardiovascular impairment is an important non-
motor sign in the prodromal phases of PD and it worsens as the disease progresses [8,9]. In
fact, PD and cardiovascular diseases have common risk factors: oxidative stress, maintained
inflammatory processes, diabetes, obesity and hypertension [10–12]. Importantly, both
conditions are comorbidities that appear during aging. Knowing that cardiovascular
diseases are one of the main causes of death in the world and that the incidence and
prevalence of neurodegenerative disorders is continuously increasing, it is important to
explore their relationship in order to understand how each condition affects the other, and
vice versa.

Different cardiac alterations (due to autonomic dysfunction) have been detected in
PD patients [13]. Thus, the specific concept of “the Parkinsonian Heart” has become more
popular during the last decades, since PD patients show unique cardiac features that
are different from age-matched control subjects and also from other forms of systemic
dysfunction [14]. These alterations of the cardiovascular system include sympathetic den-
ervation, functional and structural modifications, and changes at the molecular level [15].
In addition, parasympathetic dysfunction in PD patients has been associated with the
outcome of OH. Therefore, it is suggested that both cardiac sympathetic denervation and
parasympathetic dysfunction can occur concurrently [16]. Cardiovascular disorders have
been detected in approximately 80% of PD patients [17], with OH being the most common
cardiac-related autonomic dysfunction (30–40% of cases) [15]. Investigating the cardiac
condition in PD could provide a more accurate (and earlier) in vivo diagnosis. On the
other hand, establishing the features of the “Parkinsonian Heart” allows monitoring of the
patients to prevent undesirable consequences of heart failure, as well as the adaptation of
precise treatments.

This work reviews the relationship between cardiac alterations and PD, with a special
focus on clinical findings (including the effect of antiparkinsonian treatments) and the
evidence provided by experimental models used in PD research.

2. Cardiac Sympathetic Loss in PD

Numerous studies have provided evidence that PD not only features neurodegenera-
tion in the dopaminergic system, but other brain areas are also known to be affected, such
as the pedunculopontine nucleus, the locus coeruleus (LC), the rostro ventrolateral medulla
(RVLM), and the nucleus of the tractus solitarius (NTS) [18–21]. In particular, a marked
loss of noradrenaline (NA) has been demonstrated in the early stages, that advances within
the progression of the disease [22,23].

NA is a catecholaminergic neurotransmitter in the sympathetic nervous system, which
stimulates adrenergic receptors (PubChem CID: 439260). NA is the main neurotransmitter
of the majority of postganglionic sympathetic fibers and of the brain projection system com-
ing from the LC. In the heart, activation of β-1 adrenergic receptors produces an increase
in myocardial contractility, heart rate, and atrioventricular conduction; on the contrary, the
stimulation of β-2 adrenergic receptors induces vascular smooth muscle dilation.

After years of research, we currently know that noradrenergic degeneration in the
CNS is as important as dopaminergic degeneration [24]. This knowledge, together with the
appearance of autonomic dysfunction, inspired the thought that noradrenergic innervation
could also be altered outside the CNS. This relationship is supported by the fact that
most of the CNS regions affected in PD are in charge of regulating the activity of the
autonomic nervous system, and their degeneration is coupled with the specific reduction
of sympathetic terminals in the heart (Figure 1A) [14]. In addition, DA and NA share their
biosynthetic pathway, which is damaged in PD (Figure 1B).
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Figure 1. Brain–heart relationship in Parkinson’s disease. (A) Changes in cardiac sympathetic
pathways. The decrease in tyrosine hydroxylase (TH) either at the brain or cardiac level, induces
alterations in noradrenaline (NA) metabolism. In PD patients, alpha-synuclein aggregates can be
found in the myocardial tissue and in cardiac-related brain regions, such as the locus coeruleus (LC),
nucleus of the tractus solitarius (NTS), and the rostro ventrolateral medulla (RVLM). Altogether,
these abnormalities in the autonomic system are related to the development of cardiac dysfunction.
(B) Schematic representation of the catecholamines’ biosynthetic pathway. Tyrosine hydroxylase (TH),
aromatic amino acid decarboxylase (AAAD), dopamine-β-hydroxylase (DBH), phenylethanolamine-
N-methyltransferase (PNMT), catechol-O-methyltransferase (COMT), monoamine oxidase (MAO).
Chemical structures were obtained from the DrugBank database.

The origin of sympathetic failure in PD is a controversial topic: is it the result of the
degeneration of CNS neurons, or is it due to the loss of peripheral sympathetic fibers?
The available studies point towards a complex and variable scenario. On the one hand,
α-synuclein accumulation in the lower brain stem and spinal cord has been found in the
very early stages of the disease, including in the autonomic pontine nuclei (such as the
LC) and the sympathetic autonomic nuclei (such as the RVLM and NTS) [18,25]. Alto-
gether, these findings suggest that degeneration of both parasympathetic and sympathetic
preganglionic neurons in the CNS occurs in PD. Studies evaluating the parasympathetic
impairment support this idea: PD patients presenting with autonomic failure show a lack
of peripheral α-synuclein pathology and there is no evidence of peripheral sympathetic
nerve degeneration, thus indicating that sympathetic denervation must originate in the
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CNS [8,26]. On the contrary, numerous authors suggest that peripheral sympathetic degen-
eration starts even before brain pathology is advanced, and this is supported by the fact
that α-synuclein deposits have been found in peripheral tissues [27,28]. Nowadays, most
studies suggest that the autonomic dysfunction might appear in an independent way of
the dopaminergic cell loss, which is mainly responsible for rigidity and bradykinesia of
motor symptoms in PD [15].

The sympathetic system controls increases in heart rate, while the parasympathetic
one is in charge of its decrease [29]. Different evidence points out that in the early phases of
PD, there might be a decrease in parasympathetic activity and an increment in sympathetic
activity, resulting in the dysregulation of the autonomous system [30]. On the other hand,
different works have shown that there is a specific sympathetic loss in the cardiac tissue of
PD patients, which precedes clinical motor symptoms of PD [13,31].

In summary, it is nowadays accepted that the pathological picture of PD, such as cate-
cholaminergic dysfunction, is not confined to the brain, but also includes peripheral structures.

2.1. Neuroimaging Findings

The current methodology to clinically evaluate the loss of noradrenergic innervation
in the heart is mainly based on the use of peripheral tracers that bind to catecholaminer-
gic structures [14]: (i) positron emission tomography (PET) with 6-[18F]fluorodopamine
(6-[18F]DA, PubChem CID: 450112) [32,33]; and (ii) scintigraphy, single photon emis-
sion computed tomography (SPECT) and PET with the NA analog 123I-metaiodobenzyl-
guanidine (MIBG, PubChem CID: 450504) [34–38]. The determination of NA plasma levels
and cardiac turnover of its metabolites are also used [13,32,34]. In addition, tyrosine hydrox-
ylase (TH, UniProtKB ID: P07101) immunodetection performed on postmortem myocardial
tissue is accepted to study cardiac sympathetic denervation [39,40].

An increasing number of PET scan studies using MIBG and 6-[18F]DA have shown
that most PD patients have low radioactivity concentrations when the cardiac retention
of these agents is explored, which translates into a loss of sympathetic innervation in the
heart [13,14,16]. For this reason, in 2015 the Movement Disorder Society approved the pres-
ence of sympathetic denervation in the heart (by means of cardiac MIBG scintigraphy) as a
valid criterion for the clinical diagnosis of PD [41]. This clinical evidence has been subse-
quently correlated with postmortem findings: there is a reduction of the TH-immunoreactive
(TH-ir) fibers in the cardiac tissue of PD patients with autonomic failure [40,42]. Moreover,
the loss of sympathetic innervation seems to follow a pattern: its decrease is more pro-
nounced in the myocardium of the left ventricle and, while it is relatively preserved in the
septum or in the anterior wall, most patients have the denervation located in the inferior or
lateral walls [33,43].

Histological analyses with hematoxylin-eosin staining have revealed that there are no ab-
normalities in the cardiac nerve bundles of PD patients presenting with autonomic failure [40].
These findings are supported by the study conducted by Krämer and collaborators, who
concluded that sympathetic impairment observed in PD is derived from CNS degeneration
more than from peripheral nerve fiber destruction [8]. Therefore, the autonomic impairment
is the result of the loss of sympathetic innervation but not actual nerve degeneration [44].
Importantly, α-synuclein accumulation has been detected in myocardial tissue and in coronary
arteries in some PD cases with cardiac sympathetic alterations [45,46].

Putting all the evidence together, the sympathetic loss in the heart of PD patients has
been described to affect the ventricles, atria, and electrical conduction system [13,33,42,46].
The selective sympathetic cardiac denervation can be found both in the early and in the
late stages of the disease [47]. Interestingly, some studies have reported that PD subjects
that showed little or no decrease in the MIBG or 6-[18F]DA signal, advanced likewise to
a marked reduction of these sympathoneural tracers in the following years as the disease
progressed, especially in the lateral ventricular wall [33]. These findings demonstrate that
both the CNS and the autonomic nervous system are involved in PD pathology. In particular,
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what characterizes PD in this sense is a postglanglionic lesion, in which the loss might be
found in axonal terminals despite the neuronal cell bodies being unaffected [4,36,48].

Chronic autonomic failure is not only a feature of PD. Some clinicians face the problem
in making a clear diagnosis for PD, multiple system atrophy (MSA) and pure autonomic
failure (PAF). However, recent studies have elucidated some characteristics that might
be helpful to distinguish them. MSA is caused by a preganglionic degeneration (evident
central neurodegeneration), the opposite to PD [49,50]. Several authors have demonstrated
that scintigraphy with MIBG and PET scans using 6-[18F]DA can distinguish PD from MSA:
whereas radioactivity is decreased in the heart of PD (and it progresses over time), in MSA
it appears comparable to control subjects [9,51,52]. This means that in MSA, even in the
cases that present OH, cardiac sympathetic innervation is intact [53]. Moreover, while PD
patients show improved movement symptoms in response to L-DOPA treatment, people
suffering from MSA do not respond to this therapy [4]. On the other hand, although the
lesion found in PAF is usually postganglionic, such as in PD, NA plasma levels in PAF are
lower than in PD [40,54,55].

Finally, although it has received less attention, cardiac parasympathetic dysfunction is
also found in PD [16].

2.2. Circulating Catecholamine Levels

Dysfunction of the autonomic system is well stablished in PD. However, the etiology
of PD-associated OH is complicated. Changing from the supine to the standing position is
associated with a redistribution of blood (approximately 1 L) from the capacitance vessels
of the inferior members and the splanchnic or pelvic circulation. As a result, venous return
and cardiac output are reduced. In physiological conditions, the baroreflex counteracts this
response and elevates the sympathetic outflow and promotes vagal inhibition. Then, heart
rate, cardiac contractility as well as peripheral vascular resistance are elevated in order to
maintain blood pressure [56]. An increase in NA plasma levels is needed to change from a
supine to a standing position. OH is defined by the inability to compensate for a sudden
systemic blood pressure decrease due to the loss of NA innervation [14,29].

NA release from the postganglionic sympathetic nerves has been shown to be decreased
in patients with autonomic impairment, therefore making this the origin of the insufficient
peripheral vasoconstriction in the arteries and OH [57]. This process may be associated
with compensatory mechanisms governed by different neuroendocrine systems, such as
vasopressin and adrenaline [56]. PD patients with OH (PD + OH) are not able to produce this
increase in blood NA concentrations, which seem to be lower compared with PD patients
without OH [58–62]. It is noteworthy, that NA circulating concentrations in PD + OH patients
are lower, but no significant differences are found when they are compared with age-matched
control subjects, just during the change from a supine to standing position [63]. This situation
might be explained by two facts: the first one is that cardiac sympathetic denervation is
partial, so the NA release might experience compensatory mechanisms in the remaining fibers;
the second one is that measuring NA blood levels can fail to detect the real decrease in its
liberation, since denervation also affects its reuptake [4].

In addition, it was found that NA levels were lowered in parkinsonian patients treated
with L-DOPA or another dopaminergic agonist for more than one year. These individuals
showed a maintained response to the therapy, while untreated PD patients did not show
any changes when they were compared with control subjects. This fact could be explained
knowing that TH decreases within the course of the disease [64].

3. Clinical Manifestations

Cardiovascular alterations can affect approximately 80% of PD patients and can
worsen the progression of the disease, increasing the risk of death [17,29,65]. The most
frequent clinical manifestation of cardiac autonomic failure in PD is OH [66].

All PD patients with OH have cardiac denervation [32]. However, even if OH can
result from the specific loss of noradrenergic innervation in the heart, more factors must be
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involved since OH also appears in MSA, where no cardiac denervation is detected [32,49,67].
Altered baroreflex function has been described in PD patients and it has been related to
OH [4]. Baroreflex failure in PD is characterized by a decreased sensitivity and involves
both cardio-vagal and sympatho-neural circuits [62,68,69] (Figure 2), although more studies
are needed to determine which pathological mechanisms are responsible for it.

1 

 

 

Figure 2. Features of the Parkinsonian Heart. Most PD patients can show cardiac alterations which reflect in clinical
manifestations, functional and molecular modifications. Red arrows represent increase (up arrows) or decrease (down
arrows). HR = heart rate; NA = noradrenaline.

Other cardiac alterations have also been found in PD patients with a loss of sympa-
thetic innervation in the heart. For example, postprandial hypotension, supine hyperten-
sion, increased blood pressure variability and decreased heart rate variability, as well as
chronotropic incompetence [63,70–73]. In fact, some authors support the idea that they
could be used as early diagnostic tools, since some of them appear in the prodromal stages
of the disease [29,70]. In particular, postprandial hypotension can appear in early stages of
the disease and it is related to a worse outcome of the motor condition. Blood pressure falls
and postprandial hypotension are more prevalent in PD patients presenting OH [74,75].

Heart failure is one of the leading causes of death among PD patients, with double the
prevalence compared with the overall population [76,77]. For this reason, it is considered
as a strong tool to predict mortality in PD patients [78].

On the other hand, PD is also associated with structural and functional modifications
in the heart, which are found to be more severe in advanced stages [79]. Some works
have found that PD patients have larger QT and PR segments compared to controls [80],
although others have not [79].

Findings derived from echocardiographic studies have shown that PD is significantly
associated with an increase in concentric left ventricular hypertrophy and diastolic (but
not systolic) dysfunction. In particular, it has been shown that PD patients had a higher left
atrial volume compared with the control group and a higher risk of atrial fibrillation [79–82].
Additionally, the evaluation of myocardial function has revealed that, in general, it worsens
in PD subjects and specially as the disease progresses [82]. Altogether, these results may
be related to the increased prevalence of heart failure in PD [29,79,83] (Figure 2). An open
debate exists regarding the origin of abnormalities in the electrocardiographs of PD subjects:
some studies point out that they might be caused as a consequence of some parkinsonian
treatments, while others have found no relationship [79,80,83].
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Heart failure is a comorbidity of natural aging, and aging is a risk factor to develop
PD [30]. Therefore, the simultaneous presence of these conditions can worsen the progres-
sion of both of them. On the other hand, some authors have not found a positive correlation
between the development of cardiac diseases and PD [84].

In PD patients, sudden death (SUDPAR) has been reported and it has been occasionally
related to cardiac failure [85,86]. However, there is no consistent evidence that provides a
unified definition for SUDPAR. Hence, cardiac function must be surveilled in PD patients,
independently if it is a direct consequence of the disease or an age-associated comorbidity.

4. Molecular Alterations in the Parkinsonian Heart

Few studies in PD patients have focused on finding molecular keys to understand
cardiac dysfunction. Beyond the pure nervous brain–heart connection, PD-related genes
are also expressed in the heart, such as Parkin (PARK2), PINK1 (PARK6), DJ-1 (PARK7),
LRRK2 (PARK8), and also α-synuclein (PARK1) [87–89]. Although it has not been pos-
sible to demonstrate a relationship between cardiac damage and Parkin deficiency in
PD patients [90], several recent animal studies have suggested that Parkin protects from
cardiac damage [91–93] (Figure 2).

PINK1 (UniProtKB ID: Q9BXM7) is a serine/threonine protein kinase and it has a
key role in normal heart function, regulating mitochondrial dysfunction during stress
responses [94–96]. In fact, KO mice for PINK1 develop cardiac hypertrophy associated with
aging, resulting from mitochondrial dysfunction, impaired ATP production and enhanced
oxidative stress [97]. When acute ischemic reperfusion injury is induced in this strain,
it appears to be more susceptible to severe damage, and this has been associated with
mitophagy defects [98]; however, there are no studies on its role as a cardioprotective agent
in PD patients at the moment.

The physiological function of DJ-1 (UniProtKB ID: Q99497) is not clear, but it is
described to be important during the oxidative stress response [99,100]. Its depletion
on experimental models has been related to a higher susceptibility to cardiac damage
in ischemia-reperfusion injury [97,101,102], ischemic preconditioning [103], and aortic
constriction [104]. Thus, DJ-1 is also involved in the response to pathological stress in
the heart [88].

The serine/threonine protein kinase LRRK2 (UniProtKB ID: Q5S007) participates in a
broad range of pathways, but studies that focus on the analysis of cardiac performance in
PD patients carrying mutations in this protein are scarce. Carricarte-Naranjo and collabora-
tors (2019) performed an analysis to determine the possible role of LRRK2 mutations in
cardiac manifestations in PD. They found that the LRRK2-G2019S mutation was signifi-
cantly associated with an increase in global heart rate variability and beat-to-beat measures
when the PD patients carrying the mutation were compared with both control subjects and
PD patients with idiopathic origin [105].

Interestingly, the presence of aberrant α-synuclein (UniProtKB ID: P37840) aggregates
has been detected in the epicardial tissue in non-diagnosed PD patients, leading the
authors to theorize that this can be associated with a prodromal stage of the disease [106].
Importantly, Lewy bodies have been found in the myocardium of PD patients, particularly
in the nerve fibers of the arteries and in the atrial ganglia [45,46].

Since PD patients show a higher risk of death from ischemic heart disease, mutations
in PD-associated genes, specifically in Parkin (UniProtKB ID: O60260) and PINK1, should
be considered for evaluation to clarify which mutations or genetic polymorphisms may
also be related to cardiovascular disease [107]. Thus, future research might focus on
the potential function of these proteins in the heart and use their mechanisms as means
of cardioprotection.

During the last decades, the importance of noncoding RNAs (ncRNA) has increased
due to their diverse biological implications. Several ncRNAs have been identified to have a
possible role in the brain–heart axis, such as the miR-124 (OMIM ID: 609327), the miR-133b
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(OMIM ID: 610946), the lncRNA MALAT1 (OMIM ID: 607924), and the HOTAIR (OMIM
ID: 611400) [108–112] (Figure 2). For an extended review, see reference [113].

5. Effects of Antiparkinsonian Treatments on the Heart

The effect of antiparkinsonian treatments is a source of controversy regarding their
side effects: different authors have evaluated cardiac function in PD patients undergoing
therapy and they have reached different conclusions, while some of them have found a
negative relationship, others have not [114,115].

The main available drugs for the classic treatment of PD include: L-DOPA, dopamine
agonists, monoaminooxidase (MAO) B inhibitors, catechol ortho-methyltransferase (COMT)
inhibitors, anticholinergic agents and amantadine. Unfortunately, most of these drugs
can produce cardiac adverse effects, mainly in elderly patients and/or with previous
pathologies (Figure 3).
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nism of action. Chemical structures were obtained from the DrugBank database.

Levodopa or L-DOPA, is a DA precursor and it is the gold standard for PD treatment
(DrugBank ID: DB01235). L-DOPA can be converted to DA by DOPA decarboxylase on
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both sides of the blood brain barrier. Therefore, in the brain it compensates for the depleted
DA levels of PD patients.

The possible detrimental effects of L-DOPA treatment on the cardiovascular system
have been studied for years [116]. It has been proposed that L-DOPA intake is related to
aortic stiffness, diastolic function, arterial pressure and cardiac contractility [114,117]. On
the contrary, other authors have found that these alterations are independent of L-DOPA
treatment [79]. In addition, it was shown that parkinsonian monkeys treated with L-DOPA
had an increased NA turnover in the heart [118].

Since L-DOPA can induce unwanted side effects, reverse engineered drugs have
been designed using L-DOPA as the starting molecule. In this line, the agonists for DA
receptors in the brain have also been used as a strategy for PD treatment, mainly drugs
with ergot-based structures. Among them: the D2 receptor agonists bromocriptine (Drug-
Bank ID: DB01200) and cabergoline (DrugBank ID: DB00248), and the long-acting DA
agonist pergolide (DrugBank ID: DB01186). Unfortunately, these drugs have been related
to higher cardiovascular impairment in PD, such as fibrotic reactions in the heart and
valvulopathies [119–123]. Subsequent studies have demonstrated that the toxicity of these
drugs is not directly driven by the ergot group per se, but because they induce the activation
of 5HT2 receptors [14,124]. Although in the parkinsonian heart, noradrenergic denervation
is well stablished, it is known to have an overexpression of adrenergic 5HT2 type receptors.

The significant cardiac effects produced by ergot agonists motivated the use of non-
ergot DA agonists (e.g., pramipexole (DrugBank ID: DB00413), rotigotine (DrugBank
ID: DB05271) or ropinirole (DrugBank ID: DB00268)). The most open to debate drug is
pramipexole, since diverse evidence has pointed out a higher occurrence of heart failure in
PD patients taking this drug [123,125]. The reason for this relationship is unknown, but it
is thought to be due to agonism on α-2-adrenergic receptors [126].

Regarding MAO inhibitors, minimal cardiovascular effects have been described after
rasagiline (DrugBank ID: DB01367) administration in conscious rats, treated with high
doses of L-DOPA without an amino-acid decarboxylase inhibitor. Moreover, rasagiline
has no sympathetic effects, whereas selegiline does (DrugBank ID: DB01037) [127]. Thus,
selegiline increased NA plasma levels after L-DOPA administration [128]. However, the
extrapolation of these finding to parkinsonian patients is limited, considering that in this
disease there is a sympathetic denervation [13].

COMT has a direct relationship with L-DOPA metabolism and, in this line, selective
inhibitors of this enzyme, such as tolcapone (DrugBank ID: DB00323) and entacapone
(DrugBank ID: DB00494), have great potential to be used as an adjuvant treatment to L-
DOPA administration [129]. Although further studies are needed to confirm it, it has been
suggested that the combined therapy of tolcapone and L-DOPA does not have autonomic
effects on the cardiovascular function of PD patients [130], but further studies are necessary
to confirm this result.

Anticholinergic medications are used in the management and treatment of a wide
range of diseases, among others, PD. Several lines of evidence have demonstrated that
cholinesterase inhibitors can improve the computer-based cognitive performance in in-
dividuals diagnosed with dementia with Lewy bodies (for review see [131]). In general,
cholinesterase inhibitors (rivastigmine (DrugBank ID: DB00989), donepezil (DrugBank
ID: DB00843), and galantamine (DrugBank ID: DB00674)) are known to be associated
with bradycardia. However, the cholinesterase inhibitor rivastigmine, has been shown to
inhibit both acetylcholinesterase and butyrylcholinesterase, causing an overall increase
in acetylcholine [132]. Importantly, donepezil was included in the “known-risk” cate-
gory of the CredibleMeds list in March 2015, which means that it has a demonstrated
risk of acquired enlargement of the QT segment and ventricular arrythmia different
to bradycardia [133].

Finally, amantadine (DrugBank ID: DB00915) is an antiviral agent used mostly for PD
treatment. This drug is a noncompetitive antagonist of the NMDA receptor, which has the
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effect of enhancing DA release and reducing DA reuptake [134]. Amantadine is known to
have a low side effect profile, but its main side effects can be OH and syncope [134].

Since there are studies demonstrating the detrimental effects of antiparkinsonian
drugs and others that fail to find them, it is clear that more studies are needed to assess
their possible cardiac adverse effects. This dual situation gives light to the thought that
the drugs themselves might not be the direct cause of cardiovascular dysfunction in PD.
Knowing that the cardiac system is already compromised in the prodromal stages of PD,
the use of different treatments might lead to worsen this situation since there is already an
impairment. Therefore, the effect of treatments must be considered to occur in the context
of a parkinsonian heart and personalized therapy must be supported, together with a
cautious monitorization of cardiac function in PD patients.

Interestingly, during the last years it has been demonstrated that heat shock protein 27
(Hsp27, UniProtKB ID: P04792) has a key role in preventing the fibrillary formation of
α-synuclein and also exerts cardioprotection. Thus, Hsp27 could be a promising target to
design new therapies focused on both motor and non-motor symptoms without cardiac
side effects [65].

6. Cardiac Alterations in Neurotoxin-Based Models for PD Research

Neurotoxin-based models have provided significant knowledge about the neuropathol-
ogy of PD, also offering the possibility to test therapeutic agents [135]. Among them,
the most common used neurotoxins are 6-hydroxydopamine (6-OHDA) and 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), mainly used in nonhuman primates and rodents
(rats and mice) [136–138]. These neurotoxins are structural analogs of dopamine and they
have been demonstrated to induce dopaminergic cell degeneration, the harmful-related
processes (e.g., oxidative stress, neuroinflammation), as well as motor and non-motor
alterations [139]. Due to their specificity to bind monoamine transporters, they seem to
be ideal candidates to study cardiac sympathetic loss in PD. In the following sections,
the main findings derived from the experimental parkinsonism induced by 6-OHDA and
MPTP are collected.

6.1. Hearts in the 6-OHDA Model

The compound 6-OHDA is a benzenotriol in which the hydrogens in positions 2, 4
and 5 of the phenyl ring are replaced by hydroxy groups (PubChem CID: 4624). This
compound is able to be selectively taken up by adrenergic terminals, leading to NA and
DA. At a physiological pH it is rapidly oxidized, inducing the formation of reactive radical
species and neural cytotoxicity (PubChem CID: 4624).

As 6-OHDA cannot cross the blood brain barrier, damage in the dopaminergic system
using 6-OHDA is caused by intracranial injection, with limited peripheral effects regarding
sympathetic innervation [14]. Hence, catecholaminergic toxicity of 6-OHDA outside the
central nervous system must be obtained by systemic administration [14]. It is noteworthy
that when the 6-OHDA is administered systemically, the immediate cardiac effects are
sympathomimetic: increased blood pressure, bradycardia, fractional shortening or eleva-
tion of hematocrit levels [140,141]. For this reason, the preferred intoxication regimen is
the application of several doses, time-spaced (usually hours) up to a desired total dose, in
order to stabilize the sympathomimetic response [14].

Cardiac sympathetic loss after systemic administration of 6-OHDA has been shown
in cats [142], dogs [140,143], rabbits [144,145], mice [146], rats [147] and nonhuman pri-
mates [44,148] (Figure 4A).
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Figure 4. Brain and cardiac changes observed in the toxin-based models for PD research, using
6-OHDA (A) and MPTP (B).

Intracranial 6-OHDA infusion in the Substantia Nigra pars compacta (SNpc) of Wistar
rats, both uni- and bilaterally, causes cardiac alterations, mainly in the heart rate (espe-
cially in the night pattern) and arterial pressure [69,149]. However, signs of sympathetic
denervation have not been demonstrated [150] (Figure 4A).

Interestingly, ovarian hormones seem to have a cardiac protective role against intracra-
nial 6-OHDA intoxication in rats [151]. Males bilaterally infused in the SNpc with 6-OHDA
showed a decreased mean arterial pressure and heart rate, and increased nitric oxide (NO)
levels in the heart and aorta compared to sham animals [69,152]. On the contrary, females
did not show changes in those parameters, but when they were subjected to ovariectomy,
arterial pressure values, heart rate and NO levels were similar to the males [151].

Recent works on 6-OHDA models have focused on the evaluation of the effect of
current human PD therapies, such as L-DOPA and domperidone, showing that both agents
promoted alterations in cardiac parameters (e.g., heart beat) [153,154]. In this sense, the
use of experimental models are valuable tools to explore the peripheral response to PD
treatments and, therefore, to investigate protective alternatives.

Studies of the effects of 6-OHDA on the heart of nonhuman primates are also scarce.
Joers and collaborators monitored in vivo cardiac function in rhesus monkeys intoxicated
with 6-OHDA (cumulative dose of 50 mg/kg), up to 3 months after the last injection [141].
Circulating levels of catecholamines were significantly reduced after 6-OHDA admin-
istration during the whole study and MHED-PET revealed a significant reduction in
catecholaminergic innervation, especially in the inferior myocardium of the left ventricle.
These in vivo results were subsequently coupled with postmortem measurements [148]. Car-
diac sympathetic denervation was confirmed by a significant reduction of TH expression
in the left ventricle (both in fibers and nerve bundles), which correlated with a reduction in
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PGP9.5 (a neuronal marker). This loss was greater in the inferior left ventricle wall than in
the lateral wall, similarly to the cardiac denervation patterns observed in humans [33].

In summary, the available works in the 6-OHDA model have shown that its systemic
administration is able to cause sympathetic postganglionic degeneration and a reduction of
catecholaminergic fibers in the heart, similar to that which is observed in PD patients [44,69]
(Figure 4A). However, even if systemic 6-OHDA administration induces cardiac dysau-
tonomia in nonhuman primates, it must be considered that to obtain a complete PD-like
state, this model must be complemented with other tools that would cause dopaminergic
cell loss in the nigrostriatal system.

6.2. Hearts in the MPTP Model

MPTP is a tetrahydropyridine (a member of the family of methylpyridines), in which
the base chemical structure is a 1,2,3,6-tetrahydropyridine substituted by a methyl group at
position 1 and a phenyl group at position 4 (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)
(PubChem CID: 1388). MPTP is a dopaminergic proneurotoxin, which can cross the blood
brain barrier and be transformed to its active toxic form MPP+ by the astrocytic MAO-
B enzyme. This compound is then taken up by dopaminergic transporters, inducing
irreversible chemical, pathological and clinical changes similar to those found in PD.

Since it is a liposoluble proneurotoxin, MPTP can be administered systemically and
exert both peripheral and central nervous system effects by crossing the blood brain
barrier [155]. However, like 6-OHDA, the cardiac effects of MPTP are highly dependent on
the dose, administration regimen and species.

Under MPTP intoxication, alterations in the cardiac sympathetic system have been
demonstrated in mice [156,157], rats [158] and nonhuman primates [159]. Some authors
have shown that, even if cardiac sympathetic loss was persistent (i.e., cardiac NA and
dopamine loss), a partial recovery was detected [158,160–162]. Together with sympathetic
autonomic dysfunction, impaired autonomic function has been detected in the hearts of
MPTP-treated mice, including increased heart rate variability, lower baroreflex sensitivity,
increased sympathetic and decreased parasympathetic tonicities [163] (Figure 4B).

A longitudinal study in MPTP-intoxicated monkeys showed that the cardiac effect
varies over the time [161]. Immediately after intoxication (acute phase), catecholamine
content in the blood is reduced due to preganglionic damage. After months of repeated
MPTP administration (subacute phase), levels of catecholamines are reduced both in
the plasma and in the heart. Finally, in a long-term phase after intoxication, a recovery
is experienced, where catecholaminergic levels return to normal levels and there is no
evidence of cardiac nerve loss. A recent characterization of the subacute phase, confirmed
the lack of axonal loss in the heart of parkinsonian monkeys, but significantly reduced TH
immunoreactivity in the cardiac nerve fascicles compared with the control animals was
found, together with the presence of α-synuclein deposits in the left ventricle [159]. These
results agree with a previous study in mice, where despite cardiac sympathetic dysfunction,
cardiac fibers were preserved [162]. Interestingly, a significant increase in the expression
of vesicular monoamine transporter 2 (VMAT2) and NA transporter (NET) were detected
in the nerve fascicles of the heart of MPTP-intoxicated monkeys, suggesting the existence
of compensatory mechanisms [159]. Altogether, these findings point out that in the early
stages of PD, the degeneration of the TH+ fibers in the heart might precede the axonal
loss that has been confirmed in patients. In addition to these changes, intoxication with
MPTP also induces a reduced NA content and cardiac uptake of MIBG, together with a
decreased NET density in the postganglionic nerves [158,164]. Recent studies from our
group have shown that in the hearts of MPTP-intoxicated monkeys there was a decrease in
NA turnover together with an increase of normetanephrine (NMN), a peripheral metabolite
of NA [118].

Recently, it has been described that, together with the loss of dopaminergic neurons
in the SNpc, MPTP intoxication can induce an important decrease of TH+ cells in the
LC, RVLM, and NTS [163]. These findings are associated with a significant reduction in



Int. J. Mol. Sci. 2021, 22, 13488 13 of 20

dopamine, NA, and adrenaline levels in the abovementioned nuclei, thus confirming the
degeneration of sympathetic pathways [163]. The loss of dopaminergic neurons in the
brainstem produced by MPTP induces alterations in autonomic cardiovascular function.
Additionally, recent results from our laboratory have demonstrated monkeys intoxicated
with MPTP showed a reduction in total TH expression in both cardiac ventricles, but
especially in the left one, together with a significant increase in phosphorylated TH. In
addition, our data demonstrated a significant correlation between total TH levels in the
heart tissues and the number of TH + neurons in SNpc [165]. These results support the
key interrelationship between brain and heart and the need to design new therapeutical
strategies in order to reduce or eliminate the brain and cardiac alterations found in PD.

Given the contribution of α-synuclein to PD pathology, Cano-Jaimez and collaborators
explored the role of this protein in the cardiac NA content [166]. In contrast to dopaminergic
neurons, elimination of α-synuclein did not affect the detrimental effect of MPTP in the
heart. Therefore, these results suggest differential brain and cardiac susceptibility to MPTP.
Importantly, cholinergic innervation in the heart of MPTP models is not altered, resembling
the condition observed in PD patients [52,159].

It seems that the use of MPTP creates some controversies regarding the study of cardiac
alterations. Firstly, there is the evidence of recovery mechanisms, which might be avoided
by considering different end-point times. Secondly, even though cardiac sympathetic
loss is detected, there is no evidence of cardiac denervation. Some authors consider that
this aspect can contribute to understanding the autonomic changes in the early phases
of PD [159], while others argue that the neurodegenerative process seen in human PD
has a slower progression compared to the one induced by MPTP intoxication (Figure 4B).
Therefore, chronic MPTP administration regimens should be analyzed in terms of cardiac
dysautonomia. In addition, apart from the SNpc, MPTP also damages TH+ sympathetic
nuclei (such as the locus coeruleus, RVLM and NTS), reducing the number of noradrenergic
cells and the blood levels of catecholamines [163]. Thus, cardiac sympathetic loss might be
a consequence of the preganglionic lesion, the opposite to what has been described in PD
patients, in which sympathetic denervation seems to be specific to the heart and plasma
catecholamines levels are not altered [13,31].

7. Conclusions

PD is a neurodegenerative disorder that goes beyond dopaminergic neuronal death
and the occurrence of Lewy bodies, since numerous studies have shown that multiple
systems are affected. Among them, cardiovascular alterations are one of the most relevant
comorbidities in PD. In particular, it has been shown that PD patients show a loss of post-
ganglionic sympathetic innervation in the heart, together with functional and molecular
changes. However, many questions are still unsolved. Future lines of research might focus
on the mechanisms involved in cardiac dysfunction in PD, in which PD-related genes could
play a key role. In addition, noncoding RNAs could also provide some clues to understand
(and ideally modulate) the brain–heart axis. The use of experimental models is key to
understanding the pathological mechanisms involved, as well as designing therapies to
treat the neurodegenerative process and the associated clinical manifestations, such as
cardiovascular alterations.
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