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Exploration quantum steering, 
nonlocality and entanglement of 
two-qubit X-state in structured 
reservoirs
Wen-Yang Sun, Dong Wang, Jia-Dong Shi & Liu Ye

In this work, there are two parties, Alice on Earth and Bob on the satellite, which initially share 
an entangled state, and some open problems, which emerge during quantum steering that Alice 
remotely steers Bob, are investigated. Our analytical results indicate that all entangled pure states and 
maximally entangled evolution states (EESs) are steerable, and not every entangled evolution state is 
steerable and some steerable states are only locally correlated. Besides, quantum steering from Alice 
to Bob experiences a “sudden death” with increasing decoherence strength. However, shortly after 
that, quantum steering experiences a recovery with the increase of decoherence strength in bit flip (BF) 
and phase flip (PF) channels. Interestingly, while they initially share an entangled pure state, all EESs 
are steerable and obey Bell nonlocality in PF and phase damping channels. In BF channels, all steerable 
states can violate Bell-CHSH inequality, but some EESs are unable to be employed to realize steering. 
However, when they initially share an entangled mixed state, the outcome is different from that of the 
pure state. Furthermore, the steerability of entangled mixed states is weaker than that of entangled 
pure states. Thereby, decoherence can induce the degradation of quantum steering, and the steerability 
of state is associated with the interaction between quantum systems and reservoirs.

Quantum entanglement has been a topic of great interest ever since the pioneering work was presented by 
Einstein et al.1 in 1935. It is defined as the nonseparability of quantum states2–6, and is one of the most important 
resources in quantum information processing. Notably, correlations arising from local measurements performed 
on separated entangled systems can exhibit nonlocal correlations7,8. In particular, the observed statistics cannot 
be reproduced using a local hidden variable model, as witnessed by violation of a Bell inequality2,3.

Originally, the phenomenon of Einstein-Podolsky-Rosen (EPR) steering (or quantum steering) was intro-
duced by Schrödinger in 1935 to analyze the EPR-paradox9,10. Later, some theoretical and experimental works 
concerning quantum steering have been achieved11–21, and Wiseman et al.22,23 formulated steering in an opera-
tional way in conformity for a quantum information task. Recently, quantum steering was given an operational 
explanation as the distribution of entanglement by an untrusted party22, which depends on the question of 
whether Alice can convince Bob when they share an entangled state, although the fact that Bob distrust Alice. 
Then, Alice performs her measurements (which are unknown to Bob) and informs him of the results. If the 
correlations between Bob’s measurement results and those Alice reports cannot be explained by a local hidden 
states model (LHSM)23 for Bob, then Bob will believe that they share an entangled state. Quantum steering is an 
intermediate form of quantum correlation between Bell nonlocality2,8 and entanglement3 in modern quantum 
information theory. Furthermore, quantum steering can be detected via violating quantum steering inequal-
ity24. Derived for both continuous and discrete variable systems25–29, such steering inequalities can be obtained 
employing entropic uncertainty27,30. The significant steering criteria have been developed31–37 to detect steering 
from different aspects. These criterions can also be used to guarantee one-way steering15, namely, Alice can steer 
Bob, however Bob cannot steer Alice. And the one-way steering has been verified in some theoretical and exper-
imental works11–17.

Despite previous fruitful achievements, however, these investigations mentioned are limited to the explo-
ration of quantum steering in an isolated system. In a realistic regime, quantum systems unavoidably suffer 
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from decoherence or dissipation arising from the interaction between the systems and its external noises38,39. 
Consequently, it is important to investigate quantum steering, nonlocality and entanglement under the influence 
of reservoirs (noisy channels), and establish whether the steerable state depends on reservoirs. As a matter of fact, 
there are a few authors to pay attention to address this problem40–42. In this work, some problems of that Alice can 
distantly steer Bob are investigated, and then we consider two different types of bipartite states (entangled pure state 
and entangled mixed state) as the initial states. Herein, we explore the performance of quantum steering, nonlo-
cality and entanglement in the different reservoirs. Our analytical results indicate that: (i) All entangled pure states 
and maximally entangled evolution states are steerable. (ii) Not every entangled evolution state is steerable and 
some steerable states cannot violate Bell-CHSH inequality. (iii) Decoherence can rapidly induce the degradation 
of quantum steering, and the steerability of entangled pure states is stronger than that of entangled mixed states.

Results
Exploring the performance of quantum steering, entanglement and nonlocality of two-qubit 
X-state in the different reservoirs. We assumed that there are two parties, Alice on Earth and Bob on the 
satellite, sharing a pair of entangled photons. Then we will elaborate the steering, nonlocality and entanglement 
in a physical case illustrated in Fig. 1(a) as following: Alice prepares a pair of entangled photons and sends one to 
Bob. The photon B in the process of transmission inevitably suffers from the different noisy environments43 
(amplitude damping (AD), phase damping (PD), phase flip (PF) and bit flip (BF) channels). We will investigate 
the performance of quantum steering, nonlocality and entanglement for the evolution state described by a 
trace-preserving quantum operation ε(ρ), which is given by ε ρ ρ= ∑ ⊗ ⊗=

†I E I E( ) ( ) ( )i
A

i
B A

i
B

0,1 , where {Ei} is 
the set of Kraus operators associated to a decohering process of a single qubit, with the trace-preserving condition 
reading44 ∑ =†E E Ii i i . Then, we provide lists of Kraus operators for varieties of quantum channels considered in 
Table 1. Here, we define that the entangled evolution states (EESs) are damped states, which the subsystem B of 
the initial bipartite state suffers from the quantum noisy channels. We will consider two different types of initial 
states, entangled pure state and entangled mixed state:

Alice and Bob share an entangled pure state. Assume that they have |ϕ〉 AB =  cos α|00〉  +  sin α|11〉 , 
0 <  α <  π/2 and can also be expressed as

ρ α α α α α α= + + + .cos 00 00 sin 11 11 cos sin 00 11 cos sin 11 00 (1)2 2

Based on Eqs (10) and (19) in the section of Methods, we can obtain its entanglement C =  sin(2α) and 
Bell-CHSH inequality α= +B 2 1 sin (2 )2 , respectively. It is straightforward to insert Eq. (1) (via Eq. (17)) into 

Figure 1. (a) Schematic diagram of systems: there are two parties shared an entangled state. Alice on the Earth 
and Bob on the satellite. If Alice can prepare a pair of entangled photons, Then, Alice sends one subsystem 
(photon B) of entangled photon to Bob. The photon B in the process of transmission inevitably suffers from 
the different noises. The red E denote noisy environment. (b) Varieties of quantum-measure (EUR steering 
inequality, Bell-CHSH inequality and entanglement) as function of the state parameters α when they initially 
share an entangled pure state.

Channels Kraus operators

PF σ= = −E p I E p, 1 z0 1

BF σ= = −E p I E p, 1 x0 1

AD =


 −





=








E
d

E d1 0
0 1

, 0
0 00 1

PD =


 −





=








E
d

E
d

1 0
0 1

,
0 0
00 1

Table 1.  Kraus operators for the quantum channels:phase flip (PF), bit flip (BF), amplitude damping (AD) 
and phase damping (PD), where d and p are decoherence probabilities.
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Eq. (21) in the Methods, resulting in the analytical expression of entropic uncertainty relations (EUR) steering 
inequality for the density matrix ρ.

In order to better understand EUR steering inequality27,30 for a pair of arbitrary observables, we take advantage 
of the results of Walborn et al.26. The system is explained by a LHSM if and only if (iff) the joint measurement 
probability density can be expressed as29–31

∫ρ λρ λ ρ λ ρ λ=x x d x x( , ) ( ) ( ) ( ), (2)
A B A

q
B

where ρq(xB|λ) is the probability density (TPD) of measuring x̂B to be xB given the details of preparation in the 
hidden variable λ. The subscript q denotes that this is TPD arising from a single state. By applying the positivity 
of the continuous relative entropy45 between any couple of probability distributions, Walborn et al.26 argued that 
it is always the case for continuous observables (COs) in states allowing LHSM that ∫ λρ λ λ| ≥ |h x x d h x( ) ( ) ( )B A

q
B , 

where hq(xB|λ) is the continuous Shannon entropy caused by TPD. Then, it is straightforward to show (as Walborn 
et al. did) that any state allowing a LHSM in position and momentum must satisfy

π+ ≥ .h x x h k k e( ) ( ) log( ) (3)B A B A

Note that here and throughout the paper the base of all logarithms is assumed to be 2. Subsequently, one notes 
that the same arguments used to develop LHSM constraints for COs can be employed to formulate LHSM con-
straints for discrete observables (DOs) as well27. Because the positivity of the relative entropy is a fact45 for both 
continuous and discrete variables, one can derive the corresponding local hidden states constraint for DOs in the 
same way: λ λ| ≥ ∑ |λH R R P H R( ) ( ) ( )B A

q
B , where Hq(RB|λ) is the discrete Shannon entropy of Pq(RB|λ). Then, we 

immediately obtain a new entropic steering inequality for pairs of DOs27

+ ≥ ΩH R R H S S( ) ( ) log( ), (4)B A B A B

where ΩB is the value Ω ≡ |〈 | 〉|min R S(1/ )
i j

i j
,

2 , {|Ri〉 } and {|Si〉 } are the eigenbases of observables R̂
B
 and Ŝ

B
 in the 

same N-dimensional Hilbert space, respectively. We must realize that for any EUR, even some relating more than 
two observables, there is a corresponding steering inequality27. Sánchez-Ruiz46 developed EUR for complete sets 
of mutually unbiased observables R̂{ }i , where i =  {1, … , N}. The N is dimensionality of the system, it has been 
shown47 that there are complete sets of N +  1 mutually unbiased observables. We can obtain the EUR 
∑ ≥ + + ++ H R N N N N( ) ( /2)log( /2) (1 /2)log(1 /2)i

N
i

1  in even dimensional quantum systems. The EUR can 
be adapted into quantum steering inequality readily by substituting conditional entropies for marginal ones. In 
the same way as done to derive Eq. (4), we can obtain the EUR steering inequality27

∑ ≥ + + +
+

H R R N N N N( ) ( /2)log( /2) (1 /2)log(1 /2),
(5)k

N

k
B

k
A

1

where H(B|A) =  H(ρAB) −  H(ρA) is the conditional von Neumann entropy. In two dimensional quantum systems, 
in terms of Eq. (5), employing the Pauli X, Y, and Z measurements bases on each side, and then the EUR steering 
inequality can be read as27

σ σ σ σ σ σ+ | + | ≥ .H H H( ) ( ) ( ) 2 (6)x
B

x
A

y
B

y
A

z
B

z
A

As shown in Fig. 1(b), one can find that all entangled pure states are steerable and satisfy Bell nonlocality. 
Besides, the maximally entangled pure state (α =  π/4) is maximally steerable, say, Alice can perfectly remotely steer 
Bob. Next, let us investigate the performance of entanglement, nonlocality and quantum steering in the different 
quantum noisy channels. For simplicity, we will not write out detailed calculation process. The corresponding each 
parameter expression of two-qubit EESs in Bloch decomposition and the parameters μ1, μ2, μ3 are given in Table 2.

To better understand the relationship between quantum steering and nonlocality in different noisy channels, 
we plot some graphs in Fig. 2. In AD channel, we can find that quantum steering decreases with the increase of 
decoherence strength, and until the state is unsteerable (i.e., the Bob does not trust Alice that they shared states 
are entangled) iff decoherence strength is very large (i.e., d >  0.95). And the Bell nonlocality disappear iff d >  0.5, 
that is, this correlation is only locality. Intuitively, the quantum steering and Bell nonlocality are very stronger iff 
their state is in a maximally entangled evolution one, meanwhile, decoherence strength should be small enough. 
Besides, in BF channel, we can obtain that quantum steering and Bell nonlocality are symmetrical about p =  0.5, 
and all steerable states can violate the Bell-CHSH inequality (see Fig. 2(c) and (d)).

Subsequently, the relationships among three quantum measures: entanglement, quantum steering and nonlo-
cality in the different quantum channels are shown in Fig. 3. From the figure, one can obtain that every maximally 
entangled evolution state is maximally steerable state. Some EESs are unsteerable and some steerable states will 
not obey Bell nonlocality. However, in PD and PF channels, all EESs are steerable and satisfy Bell nonlocality. In 
addition, all steerable states can violate the Bell-CHSH inequality, but some EESs cannot give rise to steering in 
BF channel. Apart from that the steerability of the initial entangled state is destroyed by decoherence, quantum 
steering experiences a recovery with the increase of decoherence strength in BF and PF channels. Moreover, all 
EESs can violate EUR steering inequality and satisfy Bell nonlocality in PD and PF channels (shown as Fig. 3(ii), 
(iii) and (vi)). In AD channel, we can find that the symmetry of quantum steering (or nonlocality) of the initial 
state is destroyed, but that does not for quantum entanglement (see Fig. 3(vi)).
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AD PD PF BF

c1 α− d1 sin(2 ) α− d1 sin(2 ) (2p −  1)sin(2α) sin(2α)

c2 α− − d1 sin(2 ) α− − d1 sin(2 ) (1 −  2p)sin(2α) (1 −  2p)sin(2α)

c3 1 −  d +  d · cos(2α) 1 1 (2p −  1)

r cos(2α) cos(2α) cos(2α) cos(2α)

s d −  (d −  1)cos(2α) cos(2α) cos(2α) (2p −  1)cos(2α)

μ1 α− d( 1 sin(2 ))2 α− d( 1 sin(2 ))2 [(2p −  1)sin(2α)]2 [sin(2α)]2

μ2 α− d( 1 sin(2 ))2 α− d( 1 sin(2 ))2 α−p[(2 1)sin(2 )]2 α−p[(2 1)sin(2 )]2

μ3 [1 −  d +  d · cos(2α)]2 1 1 (2p −  1)2

Table 2.  The corresponding expression of each parameter of two-qubit EESs in Bloch decomposition 
and the parameters μ1, μ2, μ3 are given in the different channels when Alice and Bob initially share an 
entangled pure state.

Figure 2. AD channel, contour plot of EUR steering inequality and Bell-CHSH inequality versus decoherence 
strength d and states parameters α in (a) and (b), respectively. The left side of red dotted line denotes the 
steering (shown in (a)) and Bell nonlocality (shown in (b)). For BF channel, contour plot of EUR steering 
inequality and Bell-CHSH inequality versus decoherence strength p and states parameters α in (c) and (d), 
respectively. The left and right sides of the X-form denote the steerable (shown in (c)) and Bell nonlocality 
(shown in (d)).
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Alice and Bob share an entangled mixed state. Considering the mixed state35

ρ ψ ψ ϕ ϕ= + −v v v( ) (1 ) , (7)

where ψ = +00 11
2

 and ϕ = +01 10
2

. It is entangled when ∪∈v [0, 1/2) (1/2, 1]. Then, we still consider 
previous physical case as shown in Fig. 1(a). For convenience, we display the corresponding each parameter 
expression of two-qubit EESs in Bloch decomposition in Table 3.

In order to better comprehend the relationship among entanglement, quantum steering and nonlocality in the 
different types of noises, we draw the counterpart contour plots in Fig. 4. From the figure, we can obtain that all 
EESs’ entanglement; steering and nonlocality will experience a “sudden death”. Some EESs are unsteerable and 
some steerable states do not obey Bell nonlocality in AD channel. In addition, some results are not the same as the 
above case (the initial state is an entangled pure state). We find that all EESs can be employed to realize steering 
and satisfy Bell nonlocality in BF channel. However, in PD channel, all steerable states can violate the Bell-CHSH 
inequality, but some EESs cannot violate EUR steering inequality. Furthermore, in AD channel, decoherence can 
destroy the steerability of the initial state, and until the EESs cannot steer (d >  0.7), and the Bell nonlocality is 
absent iff d >  0.5. Moreover, quantum steering experiences a recovery with increasing state parameters v when 
decoherence strength is a fixed value in any noisy channel.

Via the analysis, one can conclude that the steerability of entangled mixed states is weaker than the steerability 
of entangled pure states, and the steerability of state is associated with the interaction between quantum systems 
and quantum channels. Furthermore, the steering behaves sometimes like the nonlocality and sometimes like the 
entanglement. That is, quantum steering is an intermediate form of quantum correlation between entanglement 
and nonlocality.

Figure 3. A variety of quantum-measure (EUR steering inequality, Bell-CHSH inequality and entanglement) 
as function of decoherence strength d, p for the maximally entangled state α =  π/4(shown in (i), (ii) and (iii)). 
Quantum-measure as function of decoherence strength p for α =  π/8 (shown in (iv) and (v)). (vi) The quantum-
measure as function of state parameters α for d =  0.3.

AD PD BF

c1 − d1 − d1 1

c2 − −v d(1 2 ) 1 − −v d(1 2 ) 1 (2v −  1)(1 −  2p)

c3 (2v −  1)(1 −  d) 2v −  1 (2v −  1)(2p −  1)

r 0 0 0

s d 0 0

Table 3.  The corresponding expressions of each parameter of two-qubit EESs in Bloch decomposition are 
given in the different noisy channels when Alice and Bob initially share an entangled mixed state.



www.nature.com/scientificreports/

6Scientific RepoRts | 7:39651 | DOI: 10.1038/srep39651

Conclusions
To conclude, we analytically derive the performance of quantum steering, nonlocality and entanglement, and dis-
cuss the relationship among them in structured reservoirs for two different types of initial states: entangled pure 
state and entangled mixed state. Our results indicate that the steerability of entangled pure states is stronger than 
that of entangled mixed states, and entangled pure states and the maximally EESs are steerable. Not every entan-
gled evolution state is steerable and some steerable states cannot violate Bell-CHSH inequality. In other words, if 
an entangled state shared by Alice and Bob is steerable, when the state suffers from the reservoirs, the state may 
be unsteerable, meanwhile, the Bell nonlocality may be absent.

Importantly, we find that all EESs can violate EUR steering inequality and Bell-CHSH inequality in PD and 
PF channels when they initially share an entangled pure state. In BF channel, all steerable states can satisfy Bell 
nonlocality, but some EESs are unsteerable. However, when they initially share an entangled mixed state, all EESs 
can be employed to realize steering and can lead to Bell nonlocality in BF channel. Moreover, decoherence can 
effectively induce the degradation of quantum steering, nonlocality and entanglement. However, these quantum 
correlations experience a recovery with the increase of decoherence strength in BF and PF channels. Therefore, 
we could say, the steerability of state is associated with the interaction between quantum systems and external 
noises.

Figure 4. Contour plot of entanglement (concurrence), EUR steering inequality and Bell-CHSH inequality 
versus decoherence strength d and states parameters v, AD channel shown in (a1), (b1) and (c1); PD channel 
shown in (a2), (b2) and (c2), respectively. The bottom of the red dotted line denotes the steering (see (b1) and 
(b2)) and Bell nonlocality (see (c1) and (c2)). For BF channel, contour plot of entanglement (concurrence), 
EUR steering inequality versus decoherence strength p and states parameters v in (a3), (b3) and (c3), 
respectively, when initial state is an entangled mixed state.
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Methods
Quantum entanglement, nonlocality and steering of two-qubit X-state. We first introduce the 
form of two-qubit X-state. The X-shaped states, which are represented in the orthonormal basis 
{ 00 , 01 , 10 , 11 } as

ρ

ρ ρ
ρ ρ
ρ ρ

ρ ρ

=













0 0
0 0
0 0

0 0

,

(8)

X

11 14

22 23

23 33

14 44

where ρij(i, j =  1, 2, 3, 4) are all real parameters. As is well known, the degree of entanglement for bipartite states 
can be quantified conveniently by concurrence. Hence, we chose concurrence as entanglement measurement. The 
concurrence is defined as48,49

λ λ λ λ λ λ λ λ= − − − ≥ ≥ ≥ ≥C max{0, }, 0, (9)1 2 3 4 1 2 3 4

where λi(i =  1, 2, 3, 4) are the eigenvalues of the matrix ρ σ σ ρ σ σ= ⊗ ⊗⁎R ( ) ( )y y y y . The density matrix is 
X-structure, there is a reduced form for concurrence shown as ref. 50

ρ ρ ρ ρ ρ ρ= − −{ }C 2 max 0, , , (10)14 22 33 23 11 44

where ρij are the elements of the matrix ρX. Thus, employing Eq. (10), we can obtain the expressions of concur-
rence in the different quantum channels α= = −C C d1 sin(2 )AD PD , α= = −C C p2 1 sin(2 )PF BF , respec-
tively, when the initial state is an entangled pure state (1).

While initial state is an entangled mixed state (7), the concurrence in the different quantum channels can be 
expression as

= − − − − + −

− − − − − +

C max d v v d v d v

v d d v v vd

{0, 1 (1 ) (1 )( (1 )) ,

1 (1 )(1 )((1 ) ) }, (11)

AD
M

= − − − − − −C d v v v d vmax{0, 1 (1 ) , 1 (1 )}, (12)PD
M

= − + − − Θ

+ − − + − − − − +

C v p v

p v pv pv p v p v pv

max{0, 2(1 (2 1)) 2 /2 2 ,

( 2 ) ( ( 1)( 1))(( 1)( 1) ) }, (13)

BF
M

with

Θ = + − + + − + −p p pv p p v p v2(3 4 ) (1 8( 1) ) ( ) , (14)2 2 2

respectively. Then, by employing appropriate local unitary transformations, one can rewrite the state ρX of Eq. (8) 
in Bloch decomposition

∑ρ σ σ σ σ=




⊗ + ⋅ ⊗ + ⊗ ⋅ + ⊗




=

 I I r I I s c1
4 (15)

X A B A B A B

i
i i

A
i
B

1

3

where r  and s  are Bloch vectors, and σ ={ }i i 1
3  are standard Pauli matrices. If = =

  0r s , ρX is the a two-qubit 
Bell-diagonal state. Assume that Bloch vectors are in the z direction, that is, = =

 r r s s(0, 0, ), (0, 0, ), the den-
sity matrix of ρX in Eq. (15) has the following form

ρ =







+ + + −
− + − +
+ − − +

− + − −







c s r c c
c r s c c
c c c r s

c c c r s

1
4

1 0 0
0 1 0
0 1 0

0 0 1

,

(16)

X

3 1 2

3 1 2

1 2 3

1 2 3

with

ρ ρ

ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρ

= +

= −
= − − +
= + − −
= − + − .

c
c
c
r
s

2( ),
2( ),

,
,

(17)

1 23 14

2 23 14

3 11 22 33 44

11 22 33 44

11 22 33 44

According to the Horodecki criterion2,3, µ µ= +<B 2 max ( )i j i j
 with i, j =  1, 2, 3. The three eigenvalues μi of 

U =  TTT for X-state are
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µ ρ ρ µ ρ ρ µ ρ ρ ρ ρ= + = − = − − + .4( ) , 4( ) , ( ) (18)1 14 23
2

2 14 23
2

3 11 22 33 44
2

It is easy to see that μ1 is always larger than μ2, and thus the Bell Clauser-Horne-Shimony-Holt (Bell-CHSH) 
inequality maximum violation of X-state is refs 51–53

µ µ µ µ= = + = + .B B B B B2 max{ , }, , (19)1 2 1 1 2 2 1 3

When Alice and Bob initially share an entangled mixed state (7), we can obtain the expressions of Bell-CHSH 
inequality in the different quantum channels

= − + −B d v2 (1 )(1 (1 2 ) )AD
M 2 , = − + −B d v2 1 (1 2 )PD

M 2 , = + − −B v p2 1 (1 2 ) (1 2 )BF
M 2 2 , (20)

respectively. Subsequently, depending upon EUR steering inequality’s definition in Eq. (6), employing the X-state 
ρX in Eq. (16), we can obtain the expression of EUR steering inequality for the general bipartite X-state by using 
Pauli X, Y, and Z measurements on each side

∑ + + + − − − + + − − −

+ + + + + + + + + − − + − −

+ − − + − − + + − + − − + − ≤ .

=

(21)

c c c c r r r r

c r s c r s c r s c r s

c r s c r s c r s c r s

[(1 )log(1 ) (1 )log(1 )] (1 )log(1 ) (1 )log(1 )

1
2

[(1 )log(1 ) (1 )log(1 )

(1 )log(1 ) (1 )log(1 )] 2

i
i i i i

1,2

3 3 3 3

3 3 3 3

If r =  s =  0, the bipartite X-state will become the Bell-diagonal states. The Eq. (21) is simplified into30 
∑ + + + − − ≤= c c c c(1 )log(1 ) (1 )log(1 ) 2i i i i i1,2,3 . As an explanation, employing measurement in  
the  Paul i  X  bases  on each s ide,  the  four  e igenva lues  of  the  bipar t ite  X-state  ρAB

x  are  
λ λ λ λ= = − = = +c c{ (1 )/4, (1 )/4}x x x x1 2 1 3 4 1 , and the two eigenvalues of the reduced state ρ ρ= Tr [ ]A

x
B AB

x  
are λ λ= ={ 1/2}x

A
x
A

1 2 . In the same way, we can obtain that the eigenvalues of the other two bipartite X-state are 
{λy1 =  λy2 =  (1 −  c2)/4, λy3 =  λy4 =  (1 +  c2)/4} and {λz1 =  (1 −  c3 +  r −  s)/4, λz2 =  (1 −  c3 −  r +  s)/4, 
λz3 =  (1 +  c3 +  r +  s)/4, λz4 =  (1 +  c3 −  r −  s)/4} by using Pauli Y and Z measurements on each side, respectively. 
The corresponding the eigenvalues of  the reduced states  ρA

y ,  ρA
z  are λ λ= ={ 1/2}y

A
y
A

1 2  and 
λ λ= − = +r r{ (1 )/2, (1 )/2}z

A
z
A

1 2 , respectively. Then, it is straightforward to insert all above eigenvalues into 
Eq. (6), we can obtain the expression of EUR steering inequality. Finally, it is straightforward to insert each param-
eter of Tables 2 and 3 into Eqs (19) and (21), resulting in the analytical expressions of Bell-CHSH inequality and 
EUR steering inequality.
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