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Background: Computed tomography (CT) plays an essential role in classifying stroke,

quantifying penumbra size and supporting stroke-relevant radiomics studies. However,

it is difficult to acquire standard, accurate and repeatable images during follow-up.

Therefore, we invented an intelligent CT to evaluate stroke during the entire follow-up.

Methods: We deployed a region proposal network (RPN) and V-Net to endow traditional

CT with intelligence. Specifically, facial detection was accomplished by identifying

adjacent jaw positions through training and testing an RPN on 76,382 human faces using

a preinstalled 2-dimensional camera; two regions of interest (ROIs) were segmented by V-

Net on another training set with 295 subjects, and themoving distance of scanning couch

was calculated based on a pre-generated calibration table. Multiple cohorts including

1,124 patients were used for performance validation under three clinical scenarios.

Results: Cranial Automatic Planbox Imaging Towards AmeLiorating neuroscience

(CAPITAL)-CT was invented. RPN model had an error distance of 4.46 ± 0.02 pixels

with a success rate of 98.7% in the training set and 100% with 2.23 ± 0.10 pixels in

the testing set. V-Net-derived segmentation maintained a clinically tolerable distance

error, within 3mm on average, and all lines presented with a tolerable angle error,

within 3◦ on average in all boundaries. Real-time, accurate, and repeatable automatic

scanning was accomplished with and a lower radiation exposure dose (all P < 0.001).
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Conclusions: CAPITAL-CT generated standard and reproducible images that could

simplify the work of radiologists, which would be of great help in the follow-up of stroke

patients and in multifield research in neuroscience.

Keywords: stroke, deep learning, computed tomography, automatic cranial scanning, accurate and repeatable

images

INTRODUCTION

Stroke is a disabling disease, accounting for tens of million
deaths during the twenty-first century (1) and computed
tomography (CT) plays an indispensable role, as it helps
physicians determine the classification of stroke, assess stroke
size during follow-up, quantify the penumbra size of ischemic
stroke, and support stroke-relevant radiomics studies (2–6). In
particular, cranial CT has been heavily used in the examination
of children’s heads; pertinently, repeated CT examinations
during follow-up procedures lead to higher cumulative radiation
exposure (7).

Currently, the scope of cranial CT scans basically depends
on empirical judgment; such predicaments make it difficult
for clinicians to compare and analyze the progress of
intracranial lesions. Although emerging intracranial hematoma
measurement tools have been developed (8), these volume-
based software cannot widely be used in ischemic stroke (9).
If the standardization, accuracy and reproducibility of images
acquired during follow-up can be ensured, patients (especially
children) will be protected due to reduced radiation exposure,
and it might be beneficial for neurologists and radiologists
to evaluate the condition of stroke patients during follow-up
imaging examinations.

The desire to improve the efficacy and efficiency of clinical
care continues to drive multiple innovations in practice (10),
including artificial intelligence (AI) which has been harnessed in
cranial revascularization, aneurysm diagnosis and classification
of intracranial hemorrhage (11–14). However, these studies only
focused on the diagnosis and evaluation of hematomas, which
presented less substantial progress than computer-aided design
(CAD) technology. To the best of our knowledge, evidence
is scarce regarding the application of AI in assisting cranial
imaging; we therefore hypothesize that AI may provide CT
with intelligence and allow it to acquire standard, accurate, and
reproducible cranial CT images.

To this end, we invented an intelligent CT—Cranial
Automatic Planbox Imaging Towards AmeLiorating
neuroscience (CAPITAL). It is promising that CAPITAL-
CT can be used for follow-up of stroke patients
and reduce the additional radiation exposure during
imaging examinations.

Abbreviations: CT, computed tomography; AI, artificial intelligence; CAD,

computer-aided design; CAPITAL, Cranial Automatic Planbox Imaging Towards

AmeLiorating neuroscience; ROI, regions of interest; OML, orbitomeatal baseline;

SML, supraorbitomeatal line; RBL, Reid’s baseline; DLP, dose length product; SEM,

standard error of the mean; BA, Bland-Altman.

METHODS AND MATERIALS

Study Design and Data
Prospective validation was applied to 515 newly admitted
patients, including 306 admitted by Nanjing Drum Tower
Hospital and 209 admitted by other hospitals (Gaochun Dongba
Central Hospital [n = 96], Kunshan People’s Hospital [n =

113]). Another 609 retrospective cases were used for independent
validation, which means a total of 1,124 cases were enrolled
in this study for validation. To be specific, the validation
procedure (n = 1,124) was divided into three parts: (a) the
United Imaging group which was fully evaluated by CAPITAL-
CT and included patients from Nanjing Drum Tower Hospital
(n = 166); (b) the manual but CAPITAL-CT-adjusted group
from three hospitals—Nanjing Drum Tower Hospital (n = 140),
Gaochun Dongba Central Hospital (n = 96) and Kunshan
People’s Hospital (n = 113); and (c) the skull CT scanning
group in which the scans of the patients from four hospitals—
Nanjing Drum Tower Hospital (n = 352), Jing Ling Hospital (n
= 125), The Eighth Affiliated Hospital of Sun Yat-sen University
(n = 22), and Zhanjiang Hospital Affiliated to Guangdong
Medical University (n = 110)—were entirely manual. All the CT
images collected for this study were generated from scanners
produced by multiple manufactories, including GE, Philips,
Siemens, Toshiba and United Imaging, with a specific radiation
protocol (Supplementary Tables 1, 2). Two radiologists (MPY, 4
years of experience, and YW, 12 years of experience) who were
blinded to the information from the automatic measurements
performed by CAPITAL-CT were involved in reviewing all the
images. To assess CAPITAL-CT performance, an evaluation
framework was designed in which both apex and base boundaries
were evaluated separately by calculating the distance between
the boundary and the gold standard, all patients were clinical
patients suspected of having a stroke and were routinely admitted
to the hospital and needed to undergo CT scans between
February 2018 and December 2020. This study was approved by
the Ethics Commissions of the six hospitals, with a waiver of
informed consent.

The experiment/validation process was divided into three
steps (Figure 1 and Supplementary Figure 1): first, the face
was detected; second, the two regions of interest (ROIs)
were segmented; and third, the scanning planboxes were
adjusted according to clinical requirements. To move the
subjects to the isocenter automatically, we needed to detect
the subjects’ face and then calculated a calibration table.
More critically, based on the segmentation of two ROIs,
the orbitomeatal baseline (OML) was used as the starting
point to scan the whole intracranial area to ensure the best
scanning quality.
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FIGURE 1 | The technical framework of CAPITAL-CT implementation and the entire workflow with respective numbers for each dataset. Following the daily operation

logic and habits of imaging to perform the overall process of enriching traditional CT with AI. In the automatic segmentation part, a human skull with dotted lines

facilitates readers’ understanding of how we chose the segmentation area and the baseline.

Image Labeling and Measuring
Four radiologists (CQ, 17 years of experience; XW, 11 years of
experience; MPY, 4 years of experience; and YW, 12 years of
experience) labeled andmeasured all images before training. Two
ROIs were labeled where ROI1 was the triangular area mainly
surrounded by the orbital bone structure and auditory canal;
ROI2 was the neurocranium, which is the nearly semicircular
area surrounded by the skull (Figure 1). Two radiologists
measured key information, including the angle between the
scanning baseline and OML, the distance between the left
and right anterior horn of the bilateral ventricle, the distance
between the left and right anterior horn of the bilateral ventricle
along the vertical direction of the brain midline, the number
of invalid scanning slices at the top and base (a slice without
brain tissue was regarded as invalid) and radiation dose (section
Data Availability Statement). These radiologists that reviewed
the images were blinded to the information from the automatic
measurements performed by CAPITAL-CT.

Models Development
The region proposal network (RPN) (15) was used for facial
detection and to specify the jaw’s outer edge as the initial
point, colored red, for cranial topogram scans (Figure 2A and
Supplementary Data Sharing). V-Net was harnessed to segment
the two ROIs on topograms because we reasoned that, compared
with U-NET, V-NET has 3-dimensional and multioutput
functions (16, 17) where two ROIs in the topograms were labeled

by two radiologists as the gold standard. The source code of
V-Net was modified to achieve multilabel segmentation on 2-
dimensional data according to our previous study (Figure 2A)
(18). See technical details experimental software and hardware in
Supplementary Methods.

Camera Installation and Its Calibration
Between CT Scanning Couch
According to the camera parameters and the on-site test results,
a camera installation range relative to the fixed position of
the scanning couch was determined (Supplementary Figures 2,
3). We generated a calibration table as a linkage between the
camera and the couch to ensure that the subjects could be
automatically moved to the isocenter under the navigation
of the camera (Figure 3A). Pattern recognition of the white
bar, sparse sampling and fitting were performed to obtain the
concise relationship between the couch and the camera pixel
(Supplementary Methods).

Quantification of Accuracy and
Repeatability
To quantify the extent of the slices and dose reduction, slices were
evaluated by two radiologists and the effective dose per patient
was calculated based on the formula mSv = DLP×Cf , where the
dose length product (DLP) is a measure of CT tube radiation
output/exposure, and Cf was set as 0.0021 as the conversion
factor for cranial CT (19). The absolute mSv value per patient
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FIGURE 2 | Schematic representation of the applied network architecture, the training process of the RPN and model evaluation via the testing set, and the

pulmonary segmentation Dice coefficient measurement in both the training and testing procedures. (A) The networks include both the RPN used for locating the

starting position for the scan and the V-Net used for cranial segmentation. (B) The loss curve of the training process converges and trends to zero after 340 epoch

blocks (340 × 500 = 170,000 epochs). The errors derived from the training and testing procedures are shown in (C,D), respectively, in which (E) the vast majority of

errors were located in the tolerance interval of ± 20mm for the training procedure and all errors were tolerable in the verifying procedure. The Dice coefficient

measurement for cranial segmentation in both the training and testing procedures is shown in (F,G). (F) With the increase in epoch blocks (1 iteration block equals 231

iterations, a total of 422,499 iterations in the training set including 295 topograms), the Dice coefficient increases rapidly and approaches the peak value of 1. The Dice

coefficients of ROI1 (triangular area) and ROI2 (skull) converge and approach 1 in the tail 1,200–1,800 epoch blocks of the training procedure. The exact Dice

coefficient curves obtained by deploying the model on the testing set for the triangular area and skull are shown in (G). (H) Barplot showing the boundary distance and

angle error by deploying the model using the testing set. SML, supraorbitomeatal line; OML, orbitomeatal line; RBL, Reid’s baseline.

was further scaled as mSv% to eliminate the effect of different
scanning protocols selected by different hospitals. Regarding
repeatability, the coincidence of the OML at the beginning of the
scan, the consistency of the angles, and the symmetry between
images within the same level obtained from the first examination
and reexamination were measured and compared.

Statistical Analyses
All statistical analyses were conducted by R4.0.2 using two-
sample Student’s t-test (paired sample t-test if appropriate)
for continuous data and one-way ANOVA for multiple group
comparisons. Continuous variables are summarized as the mean
± standard error of the mean (SEM). A Bland-Altman (BA)
plot was used to measure the degree of consistency between two
appraisers using the R package “BlandAltmanLeh”; differences
were compared versus the average of two appraisers using the

R package “smatr”. A locally estimated scatter plot smoothing
(loess) approach was used to generate smooth curves. For
all statistical analyses, a two-tailed P-value less than 0.05 was
considered statistically significant.

RESULTS

Facial Detection Performance
The technical skeleton of CAPITAL-CT is delineated in
Figure 2A. After 170,000 epochs (500 epochs for each epoch
block) of the RPN, the loss curve converged to approximately
zero (Figure 2B). We reasoned that an error distance of less than
20 pixels (approximately 5.3mm) from the gold standard was
clinically tolerable and was regarded as a success. The model
was first tested on the training set and the error distance ranged
from −99 to 96 pixels (4.461 ± 0.018) with a success rate of
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FIGURE 3 | Schematic representation of the principle of calibration used in the study and the corresponding relationship between pixel position and couch height as

well as between pixel position and the couch code with the white bar as the correction object. (A) The basic principle of automatic positioning of the CAPITAL-CT

scanning couch. This diagram included key factors associated with both the CT scanner and the 2-dimensional camera. An important point related to the camera was

the pixel position point imaged inside the camera where the key starting position point in the camera detection process was located. This point, which was also a

critical part of the scanner, corresponded to the jaw position (the red dot on the solid green line) where the subject was located on the CT scan couch. Since the

protocol was already selected, the CT scan couch automatically obtained a fixed couch height and altitude compensation (black dotted lines superimposed with

purple dashed lines). Since the position of the isocenter (gray dotted cross with a cyan point) was given, the pixel points of the starting position and the height of the

scanning couch were known, the displacement distance of the scanning couch (red dotted line) could be obtained by looking up the calibration table. (B) Linear

relationship between the horizontal pixel position of the white bar and the couch height under the same couch code. (C) Non-linear relationship between the

horizontal pixel position of the white bar and the couch code at the same couch height.

98.7% (75,374/76,382; Figure 2C). Furthermore, we verified that
the error distance of the testing set that contained 500 human
faces ranged from −11 to 14 pixels (2.232 ± 0.101), and the
success rate was 100% (Figure 2D). The distance (pixel) from
the jaw was also recorded in both training (12,862 images) and
testing sets (500 images). The majority of distance errors were
located within 10 pixels (approximately 2.7mm), and the median
distance errors were 4 and 2 pixels (approximately 1 and 0.5mm)
for the training and testing sets, respectively, which indicated
good facial detection performance (Figure 2E).

Segmentation Performance
Within 422,499 iterations, the Dice coefficient rapidly increased
and tended to be stable and convergent to the peak value of
one, regardless of whether evaluating ROI1 or ROI2 (Figure 2F).
The Dice coefficient for training ranged from 0.121 to 0.999 for

ROI1 and from 1.26×e−10 to 0.999 for ROI2. In the tail 1,200–
1,800 iteration blocks, the average Dice coefficient reached a
mean value of 0.999 for both ROI1 and ROI2. The final model
derived from the training procedure was further deployed on an
independent testing set including 45 topograms; we found that
the Dice coefficient ranged from 0.948 to 0.992 (0.977 ± 0.001)
for ROI1 and 0.823 to 0.986 (0.941± 0.005) for ROI2, indicating
skull segmentation was accurate due to the average coefficients
that were greater than 0.9 (Figure 2G). We further measured
the position of the planbox in the testing set (Figure 2H); we
found that in all boundaries, the V-Net-derived segmentation
kept a clinically tolerable distance error within 3mm on average.
Moreover, we found that a relatively higher error existed in the
measurement of the base compared to those of other boundaries
(apex: 0.73 ± 0.10; base: 2.45 ± 0.24; left: 2.27 ± 0.28; right: 1.83
± 0.19), which may be due to the complex anatomy of the cranial
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base. Additionally, we measured the angle error of three lines,
and all lines presented with a tolerable angle error within 3◦ on
average (supraorbitomeatal line [SML]: 1.68 ± 0.34; OML: 2.18
± 0.31; Reid’s baseline [RBL]: 2.75± 0.35).

Calibration Between the Camera and CT
Scanning Couch
We decomposed the scanning couch into two parts (Figure 3A),
one of which was the relationship between the pixel position and
different couch heights under the same couch code. We found
that this relationship had almost a perfectly linear fit (Pixel =

k × Couch Height + b; Figure 3B and Supplementary Tables 3–
6). Additionally, we reasoned that under the same couch
height, the non-linear relationship between the horizontal pixel
position of the white bars and the couch code could be covered
by spline interpolation (Figure 3C). When partial data were
collected, we used sparse sampling to calculate the corresponding
pixel position within the effective operating space range of
the entire CT scanning couch (all couch heights and sizes)
to obtain a final calibration table with 2,017,920 matches
(Supplementary Data Sharing).

Independent Multicohort Testing
Three scenarios were adopted for independent multicohort
testing: full navigation by CAPITAL-CT, semi-navigation by
CAPITAL-CT and complete manual operation. To further
explore the clinical practicability of CAPITAL-CT, we enrolled
a total of 1,124 patients. Six features were measured, including
offset angle, apex edge, cranial base edge, the distance from
both lateral ventricles to the intracranial plate, and the distance
between bilateral ventricles. Using BA analyses, we reasoned
that the scanning results between the two radiologists were
highly consistent regarding these features (all slope tests P >

0.05, Figure 4), except for the distance from the left ventricle
to the intracranial plate under the semi-navigation scenario that
presented significant differences (slope test P = 0.014) between
the two radiologists (Supplementary Figure 5). Although the
scanning offset angle under specific manual scenarios varied
greatly among hospitals (all P < 0.001; Supplementary Table 7),
when we pooled the results of specific scenarios, we found that
the full navigation scenario had a significantly lower scanning
offset angle than others (both P < 0.001) for both radiologists.
Likewise, all semi-navigation scenarios outperformed manual
scenarios regarding offset angle (both P < 0.001). Additionally,
the scanning length of the cranial base when fully navigated
or assisted by CAPITAL-CT was significantly lower than that
achieved in the manual scenario (both P < 0.001), whereas
full navigation and semi-navigation scenarios were comparable
(both P > 0.2). However, considering the scan of the skull roof,
manual scenario performance was comparable to full scenario
performance (both P > 0.2), whereas the semiautomatic mode
of man-machine coupling tended to have extra scanning length,
which was most susceptible to radiographers’ distrust of AI. We
further calculated the absolute effective dose mSv per patient
and computed an additional dose proportion, namely, additional
mSv%, to eliminate the baseline effect of different scanning
protocols. Similar to the offset angle, additional mSv% varied
significantly among hospitals under specific semi-navigation and

manual scenarios (both P< 0.001); as expected, manual scanning
had the highest effective dose compared to that of the other
scenarios (both P < 0.05). Since different scanning protocols
were used in different manufactories, mSv was compared within
three scenarios considering United Imaging Healthcare scanners
only. In this context, themeasurement ofmSv gradually increased
in the full navigation, seminavigation and manual scenarios, in
which the full scenario showed the lowest mSv and the manual
scenario showed the highest (all P < 0.001).

Reproducibility During Reexamination
For patients who required subsequent examinations (n = 77),
images from both the first and second examinations were
obtained and reviewed. There was no significant difference
between the first and reexaminations regarding offset angle,
apex edge, cranial base edge, the distance from both lateral
ventricles to the intracranial plate, or the distance between
bilateral ventricles (all paired t-test P > 0.05; Figure 5A). To
visually display the difference in image acquisition and quality
under two extreme scenarios (i.e., full navigation and manual
operation), we selected three cases diagnosed with stroke (two
of ischemic stroke and one of hemorrhagic stroke) that required
long-term CT follow-up. Specifically, the positioning box of
cranial base scanning was more accurate on topograms under
the full navigation scenario; such topograms/slices could be
compared with first-examination images during re-examination
(Figures 5B–E) whereas the images varied greatly under the
manual operation scenario, which was also reflected in the quality
of transverse images. In two cases of ischemic stroke, slices were
reproducible and comparable intuitively whether using non-
enhanced or enhanced CT/CTP (Figures 5C–G). In the case of
hemorrhagic stroke, the relationship between the hemorrhagic
lesion and surrounding edema could be perfectly compared in
parallel during the first and second examinations (Figures 5H,I),
which might be impossible for images obtained manually in
traditional methods (Figures 5J–M).

DISCUSSION

It is delightful to witness that AI has permeated many clinical
scenarios, mainly focusing on pulmonary nodules, rib fractures
and some special forms of pneumonia (20–24). However, some
researchers highlighted the sizeable gap that still exists in the
most upstream of medical image acquisition (25). We herein
targeted stroke, combined AI with medical images and developed
a clinically applicable scanning approach, which filled this gap to
some extent.

The imaging process of CAPITAL-CT basically simulated
and followed the clinical technician’s decisions and operations
(Supplementary Video 1). In terms of specific network details,
we adopted relatively stable networks. First, the RPN was
chosen as the core network for facial boundary detection,
which successfully recognized human faces and further effectively
located the scope of the human skull with remarkedly high
accuracy. As shown in Supplementary Video 1, whether male
or female patients wore masks or even moved their bodies
significantly, our network could achieve real-time detection,
which signifies its capability of accurately locating the skull of
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FIGURE 4 | Performance of CAPITAL-CT under three clinical scenarios regarding multiple aspects, including (A,B) offset angle, (C,D) apex, and (E,F) cranial base

edge, (G) additional mSv%, and (H) absolute mSv%. Bars here present the mean ± standard error of the mean (SEM), and bars with transparent colors were

generated by pooling data from multiple hospitals under specific scenarios. Statistical P-values were calculated by a two-sample Student’s t-test or one-way ANOVA

for multiple group comparisons.

the patient. In addition, we applied V-NET, which has more
advanced 3-dimensional andmultioutput functions than U-NET,
to identify the segmentation process based on the topograms (16,
17), which determined the location of the OML by segmenting
the approximate triangle of the orbit and the external auditory
meatus. Additionally, we detected and segmented the area of
the brain so that we could determine the range of axial or
helical scanning. Since the subjects observed by the camera
would follow the law of the “perspective effect”, we continued
an efficient calibration strategy according to our previous study
(18). In clinical setting, we found that it takes about 4–5min
for a skull scan with traditional CT, while the scanning process
completely guided by CAPITAL-CT only takes about 1/3 to half
the time consumed by the traditional method because automated
scanning without human interference greatly simplifies the
scanning process (Supplementary Video 1). We summarized

some aspects of CAPITAL-CT and compared them to other
technologies in Supplementary Table 8.

Compared to the traditional scanning approach, CAPITAL-
assisted scanning performed exceptionally well when using fewer
imaging angles, providing repeatable images on the same level,
created fewer invalid images, and revealed more symmetrical
ventricles. The imaging angle is essential during scanning
since it directly affects the reproducibility of patient images
at the same level, which further affects the direct observation
and judgment of intracranial lesions by radiologists and other
clinicians. Reproducible slice images within the same level are
directly favorable for the following four medical aspects: (i)
avoiding variation in the Alberta stroke program early CT score
(ASPECTS), which favors early assessment of ischemic changes
(26); (ii) acquiring CTP and non-contrast CT images to assess
the ischemic penumbra of stroke patients (27, 28); (iii) extracting
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FIGURE 5 | Repeatability of CAPITAL-CT compared with the repeatability of traditional CT. (A) Pairwise comparison revealed no significant difference between the first

examination session and the reexamination session regarding offset angle, apex edge, cranial base edge, distance from both lateral ventricles to the intracranial plate,

and the distance between bilateral ventricles (all paired t-test P > 0.05 and labels as ns for non-significance) for images collected from a total of 77 patients who

required reexamination. (B–E) The patient diagnosed with ischemic cerebral infarction in the right basal ganglia (white arrow) has an ASPECTS score of 7 points. The

score was reassessed as 7 points upon reexamination because the images obtained from the first examination and reexamination almost completely overlapped.

(F,G) In the patient with cerebral infarction in the area dominated by the right middle cerebral artery (white arrow), the comparison of the mean transit time (MTT)

images before and after thrombus recanalization showed that the levels were consistent, and the MTT before and after the thrombus had obvious improvement in

blood flow. (H,I) For the patient with hemorrhagic stroke in the left basal ganglia area, the white hematoma (white arrow) was found to be significantly reduced, but the

surrounding edema (white triangles) did not change after a few days of reexamination, and the images of the two sequences completely overlapped. (J–M) Compared

with other traditional CT imaging results, CAPITAL-CT-derived images are highly reproducible.
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radiomics information from ROIs in cranial images (29, 30);
and (iv) affecting the influence of quality control in radiologic
images (31, 32). In addition, it is of interest that lower-ranking
hospitals seemed to have better performance in cranial symmetry
than higher-ranking hospitals, which might be related to the
lower reception load in lower-ranking hospitals, leading to lower
working intensity and more delicate operations by radiologists.

Clinically, simple, accurate and systematic non-contrast CT
(non-contrast CT, NCCT) imaging is widely harnessed to convey
the condition of patients with acute ischemic stroke; such
imaging plays an important role in the treatment decision-
making by neurologists (33). However, neurologists observe a
small area of early ischemic change (EIC) based on the NCCT
images of the skull, which has two characteristics: (i) a strong
time dependence and (ii) a low consistency between pre- and
post-NCCT examination (34), Notably, for important neural
pathways, nuclei (e.g., small ischemic changes in caudate nucleus,
lentiform nucleus, or inner capsule) require rapid and stable
evaluation from clinicians to propose appropriate treatment.
For patients with hemorrhagic stroke, neurosurgeons pay more
attention to changes in the lesions of functional and non-
functional brain tissues over time, as well as changes in the size
and shape of the lesions. If there is inconsistency caused by
human subjective factors in the morphology of bleeding during
the pre- and post-NCCT examination, a serious impact will
pose on clinical decision-making. Therefore, such standardized
and repeatable CT examinations provide by CAPITAL-CT will
benefit both neurologist and neurosurgeon in clinical setting.

Limitations should be acknowledged, however. First, all
participants were Chinese, and no other races were enrolled.
Second, patients who could only be in the lateral, prone and
other special conditions were not included due to their extreme
rarity in clinical practice. Third, pediatric patients as well as
unconscious patients were not enrolled because they could hardly
control their behavior. Fourth, CAPITAL-CT currently supports
scanners that are produced by United Imaging; however, the
cost to install our device on other manufacturers’ machines is
very low. Another important concern is potential privacy issues
during facial detection, and we do protect the patients’ privacy
and we would like to declare here. First, facial detection is a real-
time capture performed by CAPTICAL-CT and will not be stored
in either local machine or cloud. Second, the facial detection
model of RPN was trained on public database (i.e., WIDER
FACE) with 12,862 images, including 76,382 human faces with
the provided position as the gold standard. Since the training data
is publicly available and the training data is used for academic
purpose, no invasion of privacy existed in this study.

In summary, the development of CAPITAL-CT could
simplify the work of radiologists; individual images obtained by
CAPITAL-CT are standard and reproducible, which is of great
help in the follow-up of clinical stroke conditions and multifield
research in neuroscience.
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