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ABSTRACT

RNA-Seq is gradually becoming the standard tool
for transcriptomic expression studies in biological
research. Although considerable progress has been
recorded in the development of statistical algorithms
for the detection of differentially expressed genes
using RNA-Seq data, the list of detected genes can
differ significantly between algorithms. We present
a new method (PANDORA) that combines multiple
algorithms toward a summarized result, more effi-
ciently reflecting true experimental outcomes. This
is achieved through the systematic combination of
several analysis algorithms, by weighting their out-
comes according to their performance with realisti-
cally simulated data sets generated from real data.
Results supported by the analysis of both simulated
and real data from different organisms as well as cor-
relation with PolII occupancy demonstrate that PAN-
DORA improves the detection of differential expres-
sion. It accomplishes this by optimizing the tradeoff
between standard performance measurements, such
as precision and sensitivity.

INTRODUCTION

One of the common applications of RNA-Seq (1) is
genome-wide transcript expression profiling and detection
of differentially expressed genes (DEGs) across distinct bi-
ological conditions. RNA-Seq experiments, like all high-
throughput techniques, are subject to several sources of
bias, systematic or experimental (2). To account for such
biases, several algorithms have been developed based on
different statistical models (3). Another important factor
contributing to the native complexity of RNA-Seq data is
the often ambiguous interpretation of the observed results.
For example, when two genes share functional elements (e.g.

overlapping exons), it is challenging to distinguish the real
source of expression. Such issues are more evident when
trying to explain expression differences between different
isoforms of the same gene. On the other hand, although
RNA-Seq has inflated the number of potential applications
of gene expression experiments, it is still often used as a
replacement of DNA microarrays, because of its greater
dynamic range, higher resolution and lower experimental
noise.

A lot of research effort has been devoted either in de-
veloping novel methods for the detection of DEGs using
RNA-Seq or in evaluating the performance of existing ones.
It was recently shown that different methods perform best
in different data sets or sources of error (4,5). This, how-
ever, results in significant variations in the quality of gene
expression data published by different investigators, in ad-
dition to the inherent biological variations between the an-
alyzed samples. Furthermore, different result reporting for-
mats often lead to difficulties in the presentation and com-
prehension of the findings. A potential way to overcome the
above caveats is to combine current algorithms toward the
derivation of more robust gene lists, characterized by both
higher statistical power and lower numbers of false positives
and false negatives (referred to hereafter as ‘false hits’). In
other words, instead of creating additional statistical algo-
rithms, prior knowledge on the advantages and disadvan-
tages of existing algorithms derived by extensive compari-
son studies (e.g. (5)) can be exploited. These algorithms can
be combined based on their strength, by using, for example,
a P-value weighting scheme (6), resulting in faster conver-
gence to an optimized list of DEGs where the ratio between
true positive genes and false hits is maximized.

In this article, we demonstrate that the systematic com-
bination of several current RNA-Seq statistical algorithms
based on performance weighting can improve the overall
detection of DEGs, by reducing false hits while maintain-
ing true positives. To this end, we developed PANDORA
(PerformANce Driven scOring of RNA-Seq stAtistics), a

*To whom correspondence should be addressed. Tel: +30 210 9656310; Fax: +30 210 9653934; Email: moulos@fleming.gr
Correspondence may also be addressed to Pantelis Hatzis. Tel: +30 210 9656310; Fax: +30 210 9653934; Email: hatzis@fleming.gr
Present addresses:
Panagiotis Moulos, Biomedical Sciences Research Center ‘Alexander Fleming’, 34 Fleming str, 16672, Vari, Greece.
Pantelis Hatzis, Biomedical Sciences Research Center ‘Alexander Fleming’, 34 Fleming str, 16672, Vari, Greece.

C© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.



e25 Nucleic Acids Research, 2015, Vol. 43, No. 4 PAGE 2 OF 12

new method for the analysis of RNA-Seq gene expression
data which deploys a combination of existing algorithms.
We show that PANDORA, as evaluated on simulated and
real data sets, achieves significant improvements in both
precision and sensitivity, and, in the worst case, similar per-
formance to existing algorithms that have been previously
evaluated as most robust (4,5). Finally, by correlating two
independent methods for the evaluation of gene expres-
sion (RNA-Seq and PolII occupancy data), we show that
PANDORA offers an intuitive methodology for the opti-
mization of statistical accuracy and agreement between al-
ternative transcriptional measurements. This method, to-
gether with additional statistical test combination methods,
is implemented in metaseqR, an R/Bioconductor package.
metaseqR provides a straightforward interface to several
current statistical tests and normalization algorithms for
RNA-Seq data. At the same time it provides greater insight
to the data through extensive and comprehensive reports of
the findings.

MATERIALS AND METHODS

P-value combination

metaseqR can combine the P-value scores returned by the
application of more than one statistical tests with six ap-
proaches. Throughout the rest of this section, we generalize
the term ‘P-value’ to include the score (1 – posterior proba-
bility of differential expression) returned by baySeq and the
score (1 – q statistic) returned by NOISeq. Specifically, let
pij be the resulting P-value for gene i after the application of
the statistical test j. Then, the combined P-value for gene i,
is derived using one of the following approaches:

Simes method

Let pi1, pi2, . . . , pim be the P-value scores returned for gene i
after the application of m statistical tests. Let also pi(1), pi(2),
. . . , pi(m) be the aforementioned P-values sorted in increas-
ing order. Then, according to Simes’ method, the probabil-
ity

p∗
i = min

k

{
pi (k)/k

}
, k ∈ (1, . . . , m)

can be used as the combined P-value for a set of m statistical
tests (7). In case of independent tests, this is the exact P-
value for the combination. In case of dependency, numerical
evidence (7) shows that this approximation can still be used.

Fisher’s method

According to the Fisher’s method, let f be the statistic de-
fined by the natural logarithm of the product of m individ-
ual P-values (from m statistical tests) multiplied by –2:

fi = −2
m∑

j=1

ln pi j

It can be proved (8) that f follows an X2 distribution with
2m degrees of freedom, which can be used to derive the
combined P-value from m statistical tests. However, Fisher’s

method was developed with the intention of combining P-
values produced by the same statistical test applied in dif-
ferent data sets, where the underlying null hypothesis is the
same (meta-analysis), rather than combining P-values pro-
duced by different statistical tests applied to the same data
set. In the context of different statistical tests, the null hy-
pothesis remains essentially the same (testing differential
against non-differential gene expression), although there
might be differences in its formulation, according to the
context of each statistical test.

Whitlock’s method

According to Whitlock’s weighted Z-method (9), the
weighted Z statistic for each gene i

Zw
j =

m∑
j=1

w j Zj

/√√√√ m∑
j=1

w2
j

follows the standard Normal distribution N(0,1), which can
be used to derive the P-value of the combined tests. Re-
garding the usage of the Whitlock method for combining
P-values from different statistical tests, the assumptions de-
scribed above (Fisher’s method) also apply.

Maximum P-value

In this case, the combined P-value is

p∗
i = max

j

{
pi j

}
, j ∈ (1, ...m)

In the case of a predefined level of significance α, this ap-
proach is equivalent to the ‘intersection’ of the genes for
which the null hypothesis of no differential expression is re-
jected (pij < α), as these are derived from each statistical
test. Thus, the final list will contain genes which have been
characterized as differentially expressed by all the statistical
tests applied. The maximum P-value ensures that the false
positives are minimized at a (usually high) cost on the true
positives (statistical power).

Minimum P-value

In this case, the combined P-value is

p∗
i = min

j

{
pi j

}
, j ∈ (1, ..., m)

In the case of a predefined level of significance α, this ap-
proach is equivalent to the ‘union’ of the genes for which the
null hypothesis of no differential expression is rejected (pij <
α), as these are derived from each statistical test. Thus, the
final list will contain genes which have been characterized
as differentially expressed by at least one of the statistical
tests applied. The minimum P-value ensures that the true
positives are maximized at a (usually high) cost on the false
positives (type I error).

PANDORA P-value

In this case, the combined P-value is

p∗
i =

m∏
j=1

pw j

i j , with
m∑

j=1

w j = 1
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where wj represent automatically assigned or user-specific
weights for the j statistical tests performed. The weights
can be automatically assigned according to the area under
the false discovery curve (AUFC) estimated from simulated
data based (possibly) on the data set under investigation,
or can be user-defined according to previous performance
experience (see ‘The choice of weights for PANDORA’ sec-
tion in Supplementary Material). In the case of automatic
estimation of weights using the AUFCs, the weights are es-
timated using the following formula:

w j =

m∑
j=1

AU FCj
/

AU FCj

m∑
j=1

(
m∑

j=1
AU FCj

/
AU FCj

)

where AUFCj is the area under the false discoveries curve
for the results of statistical test j. Apart from the automatic
weights assignment, metaseqR allows the user to specify
weights, based. for example. on previous own experience, on
previous studies or manual inspection of the performance
measurements offered by metaseqR. In all cases, the sup-
plied weights must have a unit sum.

Precision-sensitivity tradeoff metrics

In order to quantify the tradeoff between precision and sen-
sitivity when assessing methods, we use the F1-score (or F-
measure). It comprises a statistical measurement used to as-
sess the performance of statistical tests or binary classifiers
(10) by combining both the precision and sensitivity. The
F1-score is defined as the harmonic mean of precision and
sensitivity:

F1 = 2 · precision · recall
precision + recall

If precision and sensitivity are replaced by their own def-
initions

precision = T P
T P + F P

, recall = T P
T P + F N

,

respectively, it follows that:

F1 = 2 · T P
2 · T P + F P + F N

As an additional precision-sensitivity tradeoff measure-
ment, we use the ad hoc and more intuitive ratio of True
Positives to the sum of False Positives and False Negatives,
referred as False Discovery Tradeoff (FDT). The FDT is de-
fined as:

F DT = T P
F P + F N

Performance evaluation tools

In order to assess the performance of the combined statisti-
cal testing of metaseqR as compared to the usage of single
tests, we used several evaluation tools. Specifically:

• We used false discovery curves (FDCs) and false negative
curves (FNCs) to measure the progression of type I and
type II errors, respectively, while traversing lists ranked ac-
cording to statistical significance from top-to-bottom for
FDCs and from bottom-to-top for FNCs.

• We used receiver operating characteristic (ROC) analysis
(the area under the curve) and assessment of the true false
discoveries to demonstrate that weighting and combining
statistical tests according to their performance yields re-
sults as good as or better than the best performing algo-
rithms in the majority of test cases.

• We used the F1-score and the area under F1-score curves
to demonstrate its maximization in final gene lists, pro-
duced by weighted P-value combination, in most simu-
lated cases. The area under the F1-score curve is con-
structed by ranking the genes according to their combined
P-value in increasing order and calculating the respective
F1-score while traversing the ordered list.

• We applied ROC and F1-score analysis in real data from
the SEQC project and true false discovery rate (FDR)
analysis in a data subset from Brawand et al.

• We applied F1-score analysis in two RNA-Seq data sets
(11,12), based on coupled PolII occupancy across gene
bodies, the correlation of which with gene expression as
measured by RNA-Seq was used as an independent mea-
surement of transcription quantification.

All the aforementioned performance measurements re-
garding simulated data were calculated by averaging the re-
sults over 10 simulations.

Simulated data

The synthetic data sets referenced in the Results section
were generated with the make.sim.data.sd function included
in metaseqR. This function implements the simulator de-
scribed in (5), which creates synthetic RNA-Seq gene counts
based on the negative binomial distribution, where the
mean and dispersion parameters are estimated from real
data. Additionally, as the main normalization algorithm
that we use is EDASeq (13), which makes use of the GC
content of genes, we assign to each synthetic gene a GC con-
tent value sampled from the respective model organism. For
the purpose of this article, we used the following data sets
(the Human, Mouse and Fruitfly data sets were downloaded
from the ReCount database (14)):

(i) For the simulations based on human, we used com-
bined data from Montgomery et al. (15) and Pickrell
et al. (16) as also proposed in (5). The Montgomery
data set contains gene expression abundances from
60 individual from European descent while the Pick-
rell data set contains gene expression abundances from
69 Nigerian individuals. The original purpose of both
studies was to identify genetic variations.

(ii) For the simulations based on chimpanzee, we used a
subset of data generated by Brawand et al. (17) who
studied gene expression evolution in 6 organs across 10
representative mammalian species. For the needs of the
simulations we used a subset of four sequencing runs
with libraries constructed from polyadenylated RNA
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extracted from the same number of male chimpanzee
brain prefrontal cortexes.

(iii) For the simulations based on mouse, we used data from
Bottomly et al. (18). Among other work, the authors
studied gene expression differences between two com-
monly used mouse models, C57BL/6J and DBA/2J.
The data set contains RNA-Seq gene read counts from
21 samples, 10 C57BL/6J and 11 DBA/2J, respectively.

(iv) For the simulations based on fruitfly, we used a subset
of data generated by Graveley et al. (19) who studied
Drosophila melanogaster transcriptome at various de-
velopmental stages. For the needs of the simulations we
used a subset consisting of RNA-Seq read counts from
15 adult male fruitflies.

(v) For the simulations based on Arabidopsis thaliana, we
used data from Yanming et al. (20), who studied the de-
fense response of the plant against bacterial infection.
The data set was embedded in the R package NBPSeq
and the Bioconductor package TCC.

Based on the above data sets and the implemented simu-
lator, we used two main synthetic data configurations from
each organism:

(i) A simulated RNA-Seq data set with 10 000 genes,
consisting of two experimental conditions, each with
three replicates. The percentage of DEGs was set to
10% (1000 hypothetical genes), of which 50% are
up-regulated in the first condition and 50% are up-
regulated in the second.

(ii) A simulated RNA-Seq data set with 10 000 genes,
consisting of two experimental conditions, each with
seven replicates. The percentage of DEGs was set to
12% (1200 hypothetical genes), of which ∼42% are
up-regulated in the first condition and ∼58% are up-
regulated in the second, comprising a slightly unbal-
anced set of deregulated genes among the two condi-
tions.

Real RNA-Seq data

In addition to the usage of simulated data, we evaluated
the performance of metaseqR using data from the SEQC
project, the latest development under the MAQC study,
which historically has been used to assess performance, sim-
ilarities and reproducibility between microarray platforms.
The SEQC data set contains 92 spike-in RNA controls at
known concentrations, which allow the construction of an
a priori ground truth regarding the specific transcripts. Fur-
thermore, the SEQC project includes a set of ∼1000 genes
validated by TaqMan quantitative polymerase chain reac-
tion (qPCR); thus the fold change of these genes as calcu-
lated by qPCR can be used to estimate true levels of differ-
ential expression and provide measurements regarding the
performance of statistical algorithms and the combination
methods of metaseqR. Details regarding the SEQC data set
are discussed in detail elsewhere (4,21). For the purposes of
this study we used processed SEQC data by Rapaport et al.
(4), available at https://bitbucket.org/soccin/seqc/. In order
to apply EDASeq normalization to SEQC data including
the spike-in controls, we retrieved the nucleotide sequences

of the spike-ins available from Life TechnologiesTM and cal-
culated their GC content. GC content for the remaining
genes was retrieved from Ensembl (22).

Moreover, to assess the performance of metaseqR-
supported algorithms and P-value combination methods
regarding the control of false positive outcomes, we used the
two conditions of the SEQC data individually, as well the
data from Brawand et al. described in the previous section
to perform ‘same versus same’ mock comparisons under
settings where differential expression should not be detected
between the mock biological conditions. For the SEQC
data, we performed two comparisons using data from the
individual groups of the data set (A and B) by separating
each group to two subgroups (A1, A2 and B1, B2, respec-
tively) with two replicates each. As both the groups con-
tained five technical replicates, we excluded from each group
the replicate which was clustered further from the other two
in a sample-wise hierarchical clustering.

RNA-Seq and PolII occupancy data

The performance of PANDORA was additionally assessed
by correlating the fold change of DEGs derived from RNA-
Seq data with the corresponding fold change in PolII occu-
pancy across gene bodies. To this end we used the following
two coupled (RNA-Seq and PolII occupancy) data sets: (i)
RNA-Seq and PolII data from Mokry et al. (12), where a
doxycyclin-inducible shRNA targeting �-catenin allows for
complete and specific blocking of the constitutively active
Wnt pathway in colorectal cancer cells and (ii) RNA-Seq
and PolII data from Lin et al. (11) (GEO accession number
GSE38148), where the RNA PolII elongation factor Ell3 is
knocked-down in mouse ES cells. Genes were categorized as
up- or down-regulated according to PolII occupancy if the
logarithm (base 2) of fold change between average ChIP-
Seq reads per 1 kb across the gene body in treatment over
control was above the 90th or the 10th quantile of the fold
change distribution, respectively.

RESULTS

PANDORA’s approach and performance evaluation criteria

PANDORA is based on an intuitive approach for rank-
ing each statistical test according to its performance based
on real-time simulations. Synthetic data sets, with a priori
known DEGs, are constructed using parameters estimated
from well characterized real data sets for several organisms
or from the investigator’s own data. Consequently, the sta-
tistical analysis of these data sets can be used to assess the
performance of each algorithm. The latter is assessed using
FDCs, where the performance is measured by the number of
false positive findings encountered in a list, ordered accord-
ing to decreasing statistical significance. PANDORA uses
the AUFC to construct weights for each algorithm which
are applied to the P-values returned by each test.

We evaluated the performance of PANDORA using ex-
perimental settings based on simulated data or data ac-
quired from the SEQC study (21) and Brawand et al. (17).
The synthetic data sets were created using a previously de-
scribed methodology (5,23) based on real publicly avail-
able RNA-Seq count data for five organisms, namely, Homo

https://bitbucket.org/soccin/seqc/
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sapiens (Human), Pan troglodytes (Chimpanzee), Mus mus-
culus (Mouse), Drosophila melanogaster (Fruitfly) and Ara-
bidopsis thaliana (Arabidopsis). We used a limited set of
simulations and real data, which are sufficient to prove the
added value of PANDORA. Specifically, we restricted the
properties of synthetic data sets to two main configurations:
a data set with two conditions of three biological repli-
cates each and balanced differential expression between
conditions (‘3 replicates––balanced DEG’) and a data set
with two conditions of seven biological replicates each and
slightly unbalanced differential expression between condi-
tions (‘7 replicates––unbalanced DEG’).

As shown below, the combined usage of statistical tests
for RNA-Seq data does not necessarily perform better in
terms of statistical power than certain algorithms reported
to stand out in related evaluations. With certain evaluation
metrics, this is something to be expected because of the con-
vex P-value weighting scheme (Supplementary Material,
Section 2.1). However, as performance is not only measured
by power, but sensitivity as well, PANDORA offers an opti-
mal tradeoff between precision and sensitivity, when multi-
ple statistical tests are applied on the same data set and their
resulting statistical scores are properly weighted. To demon-
strate this, we used established measurements, such as ROC
analysis and FDCs, as well as the harmonic mean of pre-
cision and sensitivity (F1-score, Materials and Methods). To
avoid confusion, we will use the term ‘P-value’ to refer to all
the statistical scores (P-values, posterior probabilities, etc.),
even if not all statistical scores comprise nominal P-values.

PANDORA performs similar to the best algorithms in detect-
ing differential expression

We compared PANDORA with five additional combina-
tion methods, either intuitive (e.g. the intersection of all
genes marked as statistically deregulated by each examined
test) or mined from the related statistical literature and used
in the appropriate context (e.g. the Simes P-value combina-
tion method). Specifically, we applied the following meth-
ods:

(i) The P-value combination method proposed by Simes
(7), referred to henceforth as Simes.

(ii) The union of all genes marked as statistically signif-
icant deregulated by each examined test by consider-
ing the minimum statistical score among the exam-
ined tests as the final P-value, referred to henceforth
as Union.

(iii) The intersection of all genes marked as statistically
deregulated by each examined test by considering the
maximum P-value among the examined tests as the fi-
nal P-value, referred to henceforth as Intersection.

(iv) The P-value combination method proposed by Fisher
for the meta-analysis of multiple independent observa-
tions testing the same hypothesis (8), referred to hence-
forth as Fisher. Although the classical interpretation of
meta-analysis refers to the application of the same sta-
tistical test in similar data sets to test against a total null
hypothesis, we use it to combine the P-values of dif-
ferent statistical tests applied to the same data set un-
der a generalized hypothesis test for each gene, which

in our case is ‘differential’ against ‘non-differential’ ex-
pression.

(v) The meta-analysis procedure proposed by Whitlock
(9), referred to henceforth as Whitlock. Its main ad-
vantage over the Fisher method is the possibility to use
weights for each set of observations; we thus apply it
as a counterpart to the PANDORA weighting scheme,
using the same weights. We use it under the same as-
sumptions as the Fisher method.

Moreover, we paralleled the performance of the combina-
tion methods to the performance of the six statistical tests
(DESeq, edgeR’s exact test, limma with the voom method,
NBPSeq, NOISeq and baySeq (20,24–28)) when applied
alone. In total, we compared 12 possible statistical analy-
ses.

Figure 1 depicts the FDCs for the six statistical tests alone
and the six P-value combinations, applied on the synthetic
data sets generated based on real data from five organ-
isms. To avoid possible biases introduced by major (DE-
Seq) or minor (edgeR, limma voom, NBPSeq, NOISeq and
baySeq) differences in the normalization approaches fol-
lowed by each algorithm, we used EDASeq (13) as a com-
mon normalization framework. An exploration of the ‘3
replicates––balanced DEG’ simulation (left panel), which
resembles typical real-life experimental settings, reveals that
the overall best performing individual test is limma voom,
followed by baySeq and edgeR’s exact test (edgeR’s Gen-
eral Linear Models test was not examined here). DESeq
and NBPSeq always share the last positions in terms of
numbers of false positives located among the top ranked
genes, whereas NOISeq is in the middle. Regarding the P-
value combinations, classical meta-analysis (Fisher, Whit-
lock) and the Simes method, all perform quite poorly, pre-
senting a large number of false positives among the top
genes, very similar to the Union method which is the most
liberal, and thus expected to return a large number of false
discoveries. PANDORA performs quite well but not bet-
ter than limma voom because of the convex nature of the
weights. Notably, the Intersection, which is supposed to be
the strictest selection strategy, appears inferior to limma
voom and sometimes baySeq, apart from the Fruitfly sim-
ulations. This observation suggests that the often intuitive
use of the common DEGs, returned by a variety of tests, as
a robust signature to distinguish among biological condi-
tions and sometimes as a ‘ground truth’ for evaluation (4),
is not always an optimal solution, especially with a small
number of replicates. The performance trends of individ-
ual as well as combined tests as assessed by FDCs do not
change significantly when using normalization algorithms
suggested in the distinct analysis packages (Supplementary
Figure S4). They also do not change when combining ad-
justed for multiple testing instead of raw P-values for the
four tests (DESeq, edgeR, limma and NBPSeq) returning
nominal P-values (Supplementary Figures S13 and S15).
Finally, we examined the progression of Type II errors us-
ing FNCs for each algorithm and simulation configuration.
In this case, the above performance evaluation is almost re-
versed and many of the best performing algorithms exhibit
a large number of false negatives, with certain combination
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3 replicates − balanced DEG 7 replicates − unbalanced DEG

DESeq = 60.4
edgeR = 24.4
voom = 10.3
NBPSeq = 57.3
NOISeq = 30.7
baySeq = 12.7
Simes = 45.1
Union = 44.8
Intersection = 12.7
PANDORA = 17.5
Fisher = 32.5
Whitlock = 29.4

DESeq = 44.6
edgeR = 18
voom = 8
NBPSeq = 46.2
NOISeq = 23.7
baySeq = 9.5
Simes = 33.9
Union = 33.4
Intersection = 9.4
PANDORA = 12.6
Fisher = 23.3
Whitlock = 20.9

DESeq = 10
edgeR = 2
voom = 2
NBPSeq = 10
NOISeq = 7
baySeq = 2
Simes = 8
Union = 8
Intersection = 2
PANDORA = 2
Fisher = 5
Whitlock = 4

DESeq = 31.1
edgeR = 3.4
voom = 1.2
NBPSeq = 35.2
NOISeq = 6.3
baySeq = 1.1
Simes = 24.2
Union = 22.9
Intersection = 1.1
PANDORA = 1.6
Fisher = 18.8
Whitlock = 12.2

DESeq = 90.6
edgeR = 45.2
voom = 11.3
NBPSeq = 96.2
NOISeq = 50.9
baySeq = 15
Simes = 62.1
Union = 60.2
Intersection = 15.2
PANDORA = 18.8
Fisher = 48.9
Whitlock = 44.4

DESeq = 14.6
edgeR = 1.1
voom = 1
NBPSeq = 13
NOISeq = 3.2
baySeq = 1
Simes = 6.2
Union = 6.2
Intersection = 1.1
PANDORA = 1.1
Fisher = 4.6
Whitlock = 2

DESeq = 7.9
edgeR = 1
voom = 1
NBPSeq = 9
NOISeq = 2.1
baySeq = 1
Simes = 4.1
Union = 4.1
Intersection = 1
PANDORA = 1
Fisher = 3.4
Whitlock = 1.5

DESeq = 1.6
edgeR = 1
voom = 1
NBPSeq = 1.8
NOISeq = 1.1
baySeq = 1
Simes = 1.3
Union = 1.4
Intersection = 1
PANDORA = 1
Fisher = 1.3
Whitlock = 1

DESeq = 8.5
edgeR = 1
voom = 1
NBPSeq = 9.4
NOISeq = 1
baySeq = 1
Simes = 4
Union = 3.3
Intersection = 1
PANDORA = 1
Fisher = 4
Whitlock = 1.3

DESeq = 21.3
edgeR = 1.2
voom = 1
NBPSeq = 23.7
NOISeq = 4.3
baySeq = 1
Simes = 6
Union = 6
Intersection = 1.2
PANDORA = 1
Fisher = 4.3
Whitlock = 2.4
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Figure 1. FDCs using EDASeq normalization. FDCs generated with sim-
ulated data for each statistical test and each P-value combination method
for five organisms and two simulation configurations. The results for each
organism and simulation configuration can be distinguished by the right
and top side titles of each panel, referring to the organism from which sim-
ulation parameters are estimated and the simulation configuration, respec-
tively. The performance value for each algorithm is displayed in each panel
next to the curves and lower values depict best performing algorithms
(Supplementary Methods). The lowest possible value is 1, indicating ex-
tremely few or no false discoveries among the first 500 top ranked genes
according to statistical significance. Dashed lines represent individual tests,
whereas solid lines represent P-value combinations and the thicker solid
line highlights the FDC produced by PANDORA. As expected, the higher
number of replicates has a definite impact in the accuracy and performance
of all algorithms (right panels). The curves as well as the performance
values are constructed and calculated, respectively, across 10 simulations
for each organism and simulation configuration. The quantification of the
AUFC for the PANDORA method is shown in bold.

methods (PANDORA among them) showing quite stable
results (Supplementary Results).

ROC analysis and assessment of FDRs place PANDORA
among the top performing algorithms

Next, we evaluated the performance of PANDORA as com-
pared to the other methods using ROC analysis and assess-
ment of the true FDR, inspired by previous comparison
work (5). ROC analysis using simulated data and the six in-
dividual statistical tests is in accordance with previous stud-
ies (5,26). Specifically, when using three replicates with bal-
anced differential expression between two conditions (Fig-
ure 2, left panels), limma voom was constantly the best per-
former, followed by edgeR. The remaining four positions

Figure 2. ROC analysis using EDASeq normalization. The boxplots de-
pict the summarized areas under the ROC curve across 10 simulations for
each organism and for each simulation configuration. The results for each
organism and simulation configuration can be distinguished by the right
and top side titles of each panel, referring to the organism from which
simulation parameters are estimated and the simulation configuration, re-
spectively. The dashed rectangle highlights the PANDORA method results.
Each statistical test’s and each P-value combination method’s performance
trends are similar, apart from the Mouse case, where the performance is
increased in both simulation configurations. The impact of incorporating
more replicates to the simulation is evident, as most methods achieve area
under the curve values closer to 1 in all cases. PANDORA performs very
similar to the highest scoring algorithms according to the area under the
ROC curves.

are shared among DESeq, NBPSeq, NOISeq and baySeq,
with DESeq usually presenting lower performance and bay-
Seq the most variant performance. The performance rank
of the tests does not notably change when using a higher
number of replicates and slightly unbalanced differential
expression between conditions (Figure 2, right panels). In-
stead, the ROC area under the curve is significantly in-
creased, as expected due to the larger number of replicates.
The test that does not seem to benefit from more replicates
is NOISeq. In addition, the performance variability of bay-
Seq is reduced. Regarding the performance of the combi-
nation methods, Intersection is constantly the lowest scor-
ing and most variable method when using a small num-
ber of replicates, followed by Simes. These observations do
not particularly change in the presence of more replicates,
apart from Intersection, which becomes more accurate, but
equally variable. Finally, PANDORA performs well and
very close to the highest performing individual tests in both
simulation sets for all organisms, but not better, again due
to the convex weighting scheme.

We also assessed the accuracy of individual as well as
combined tests by measuring their true FDR using sim-
ulated data (Figure 3). From this, we excluded NOISeq
for the reasons explained in (5). Regarding the individual
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Figure 3. Analysis of true FDRs using EDASeq normalization. The box-
plots summarize the true FDRs across 10 simulations for each organism
and for each simulation configuration. The true FDRs for each organism
and simulation configuration can be distinguished by the right and top side
titles of each panel, referring to the organism from which simulation pa-
rameters are estimated and the simulation configuration, respectively. The
true FDRs are estimated as the ratio of false positive hits determined by the
a priori knowledge of DEGs for each simulation, to the respective number
of genes passing a Benjamini–Hochberg FDR of 5%. The dashed rectangle
highlights the PANDORA method results. From the individual statistical
tests, NBPSeq constantly shows the highest true FDR, indicating poor per-
formance regarding false discovery control and baySeq the lowest. From
the P-value combination methods, Fisher and Whitlock show the highest
true FDRs. PANDORA is the next best combination method to the Inter-
section (which is expected to have a good FDR because of stringency) in
terms of FDR control.

tests in the ‘3 replicates––balanced DEG’ simulations, only
limma voom and baySeq show true FDR levels below 5%.
DESeq and NBPSeq show the poorest performance, while
edgeR is in the middle. These performance trends do not
change for the ‘7 replicates––unbalanced DEG’ case, where
the true FDR is closer to 5% for all individual tests. From
the P-value combination methods, Intersection performs
best, as expected due to stringency of selection, while the
Simes method performance is between the performances of
individual tests. Remarkably, the Union method, which is
the most liberal and expected to exhibit the highest number
of true false discoveries, performs better than the Fisher and
Whitlock methods. Finally, and most importantly, PAN-
DORA exhibits true FDR values below 5%, which is better
than limma voom, the best individual algorithm so far ac-
cording to our study. All the aforementioned observations
do not change when using each package’s specific normal-
ization algorithm instead of EDASeq (Supplementary Fig-
ure S10).

Figure 4. Analysis of the F1-score using EDASeq normalization. The box-
plots summarize the F1-scores across 10 simulations for each organism and
for each simulation configuration. The F1-scores for each organism and
simulation configuration can be distinguished by the right and top side
titles of each panel, referring to the organism from which simulation pa-
rameters are estimated and the simulation configuration, respectively. The
dashed rectangle highlights the PANDORA method results. The preva-
lence of PANDORA is evident in all cases. Intersection and baySeq con-
sistently show the lowest F1-score. F1-scores are calculated using the final
gene lists returned by each method at a P-value cutoff of 0.05.

PANDORA exhibits the best tradeoff between precision and
sensitivity

We evaluated the ability of individual as well as proposed
combined tests to maximize the number of true positives,
while at the same time keeping the number of false hits
at a low level thus to maximize the F1-score. Figure 4
shows that in all simulated cases, PANDORA success-
fully combines several statistical tests toward a more ro-
bust gene list. Specifically, for the ‘3 replicates––balanced
DEG’ configuration, PANDORA achieves F1-score levels
slightly higher than the best performing individual tests for
Human, Chimpanzee and Arabidopsis. The F1-score lev-
els are much higher in Mouse and Fruitfly simulations. In
the ‘7 replicates––unbalanced DEG’ study, the PANDORA
method markedly stands out for all five organisms. More-
over, the good performance of PANDORA is supported
by the area under the F1-score curve (Supplementary Fig-
ure S7), which depicts the evolution of the F1-score while
traversing ranked gene lists from higher to lower statistical
significance. Regarding the other combination methods, in
the majority of cases they demonstrate lower F1-scores than
PANDORA, but higher F1-scores than certain rather con-
servative individual tests (NOISeq, baySeq). Specifically,
among the other methods, Simes presents the highest F1-
score, followed by Whitlock, Fisher, Union and Intersec-
tion. Although Whitlock performs quite well, if we break
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down the F1-score value to its components (true and false
hits, Supplementary Table S1 and Figure S12), we see that,
although it takes into account the performance of each al-
gorithm, the Whitlock method is poor because of the high
number of false positives as compared to the gain in true
positives. This suggest that the use of weighted Z-scores is
not appropriate for combining statistical tests for RNA-Seq
data and that PANDORA manages to accomplish this task
in simulated data. Overall, our observations strengthen the
main rationale behind PANDORA: as each statistical test
presents certain advantages (whether these are low numbers
of false positives at the cost of true positives or high num-
bers of true positives but also an excessive number of false
positives too), a more robust gene list can be derived by ap-
plying an objective methodology to combine them. PAN-
DORA achieves that by AUFC weighting, which ranks the
statistical tests according to their ability to provide a rea-
sonably low number of false positives in the top genes (500
in simulation studies). Finally, as expected, the Intersec-
tion method presents the lowest F1-score in all simulations
across all organisms, being overly conservative and ignor-
ing a lot of true hits returned by each statistical test (Sup-
plementary Table S1 and Figure S12).

From the individual tests, limma voom and edgeR
demonstrate the highest F1-score values, while baySeq and
NOISeq show consistently lower values in most cases. This
suggests that although the latter two are both successful
in a satisfactory top-to-bottom statistical ranking of genes,
their final outcome is excessively strict, resulting in signifi-
cant loss of true positives (and a respective disproportional
increase in false negatives, Supplementary Table S1 and Fig-
ure S12). Notably, baySeq presents an F1-score as low as the
conservative strategy of constructing final gene lists by in-
tersecting lists derived by individual tests. This is also sup-
ported by FNCs (Supplementary Figures S3, S5, S14 and
S16), where in the majority of the cases baySeq presents a
higher area under the FNC as compared to the other algo-
rithms, either combined or individual. The tradeoff between
precision and sensitivity is also assessed using corrected P-
values (Supplementary Results) and by measuring the ratio
of true positives to false hits (Supplementary Figures S25
and S26). Overall, the F1-score analysis reveals what more
classical statistical algorithm performance evaluation mea-
sures, such as FDCs and ROC, do not: PANDORA suc-
cessfully provides optimized gene lists, with respect to the
tradeoff between true positives and false hits.

Robust performance of PANDORA on real RNA-Seq data

Our evaluation results are based mostly on the simulated
data sets, where we could control the outcome of the exper-
iment. However, as data sets from real biological sources
often exhibit unexpected biases and other sources of bio-
logical noise, we also evaluated PANDORA regarding (i)
its ability to identify true or false differential expression
with RNA-Seq data generated in the latest versions of the
MAQC study, namely, the SEQC project for the evaluation
of sequencing platforms regarding gene expression and (ii)
its ability to control false discoveries with mock compar-
isons using data from SEQC and four male chimpanzee pre-
frontal cortex samples from Brawand et al. (17) which have

also been used in the evaluation of the DEXSeq package
(29). The SEQC study includes spike-in RNA controls at
known concentrations (ERCC spike-in data), as well as a set
of ∼1000 genes validated by TaqMan qPCR analysis (Taq-
Man data) which aid in testing the performance of DEG
discovery.

ROC analysis using the SEQC data classified PAN-
DORA somewhere in the middle of the performances of
the individual tests (Figure 5A). This was again to be ex-
pected because of the convexity of weights and because
limma voom (which is weighted more than the rest) seems to
underperform both in TaqMan and ERCC spike-in data. It
should be noted that for the analysis of the SEQC data, we
used weights estimated for Human from the combined data
set of Montgomery et al. (15) and Pickrell et al. (16). We did
not estimate weights based on the actual SEQC data, as the
technical replication in the experimental design would bias
the dispersion estimation in our simulator.

From the individual algorithms, DESeq and NBPSeq
show the highest area under the curve, followed by edgeR,
limma voom, baySeq and NOISeq when using the TaqMan
data. When using ERCC spike-ins, DESeq is again top, fol-
lowed by NOISeq, edgeR, limma voom and NBPSeq. Re-
garding the P-value combination methods, they all present
similar values, apart from Fisher in TaqMan data and
Simes in ERCC spike-in data. Union and Intersection score
among the highest in both cases. The performance classifi-
cation obtained by inspecting the F1-score values for each
data set and for each algorithm (individual or combined,
Figure 5B) is quite different. Thus, DESeq shows one of the
lowest F1-scores, very close to the Intersection, which is ex-
pected to have a low F1-score for reasons explained in previ-
ous sections. All the other methods perform similarly when
using TaqMan data, with NBPSeq and NOISeq slightly
above the others. With ERCC spike-ins, edgeR, NBPSeq
and NOISeq stand out, followed by limma voom. baySeq
performs poorly and Fisher and Whitlock are the best P-
value combination methods in this case. Again, the per-
formance of PANDORA is in the middle, for the reasons
explained above. The aforementioned observations do not
change when using adjusted P-values (Supplementary Fig-
ure S23A and B), apart from the performance of DESeq
regarding the F1-score, which drops even more for ERCC
spike-in data.

Finally, we evaluated the approximation of the true FDR
of individual algorithms and P-value combination meth-
ods using three ‘same versus same’ comparisons, two by
separating the SEQC data groups into two subgroups each
and one more using data from Brawand et al. (Table 1), ex-
cluding again NOISeq (5). All the tested methods achieve
a ‘same versus same’ comparison FDR below 5% for all
three comparisons. From the individual tests DESeq and
NBPSeq score worst, presenting a higher FDR in two out of
three comparisons. The best individual test is limma voom
with FDR < 0.01% in all comparisons, followed by bay-
Seq and edgeR. From the P-value combination methods,
Intersection is the best, as expected (but with several pitfalls
explained in previous sections), followed by PANDORA.
The worst combination method is Fisher, followed by Whit-
lock, Union and Simes. Notably, PANDORA achieves one
of the best rankings, presenting also several advantages, as
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TaqMan data ERCC spike−in data

DESeq = 0.894
edgeR = 0.883
voom = 0.846
NBPSeq = 0.894
NOISeq = 0.818
baySeq = 0.86
Simes = 0.866
Union = 0.888
Intersection = 0.887
PANDORA = 0.873
Fisher = 0.769
Whitlock = 0.889

DESeq = 0.882
edgeR = 0.76
voom = 0.752
NBPSeq = 0.75
NOISeq = 0.792
baySeq = 0.71
Simes = 0.739
Union = 0.756
Intersection = 0.86
PANDORA = 0.77
Fisher = 0.777
Whitlock = 0.7740.00
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Figure 5. ROC and F1-score analysis for SEQC data using EDASeq normalization. (A) ROC curves calculated using TaqMan data (left panel) and ERCC
spike-in data (right panel). Area under the curve values are shown on the right of each panel. Dashed lines represent individual tests, whereas solid lines
represent P-value combinations and the thicker solid line highlights the ROC produced by PANDORA. In both cases DESeq performs slightly better than
all the rest. In the case of TaqMan data, NBPSeq demonstrates the same performance as DESeq. The performance of PANDORA lies in the middle of
area under the curve values in both cases, indicating adequate performance. See the main text for an explanation. (B) F1-scores using TaqMan data (red
bars) and ERCC spike-in data (green bars). All methods apart from DESeq and Intersection achieve similar F1-scores when looking only at the TaqMan
gene list (not the total putative DEG list of the SEQC data). The dashed rectangle highlights the PANDORA method results. When using ERCC spike-in
data, baySeq and Simes also perform poorly. PANDORA is in the middle in both cases.

described in previous sections. The aforementioned perfor-
mance trend does not change when using each package’s
normalization algorithm instead of EDASeq (Supplemen-
tary Table S2).

Optimal performance of PANDORA in correlating RNA-
Seq with PolII occupancy

Next, we sought to evaluate PANDORA’s performance on
real RNA-Seq data by utilizing coupled PolII occupancy
across gene bodies as an alternative approach for transcrip-
tion quantification. The data sets we utilized included cou-
pled RNA-Seq and PolII ChIP-Seq data generated, in one
instance, in a colorectal cancer cell line engineered to carry
a doxycyclin-inducible shRNA targeting �-catenin, which
allows for complete and specific blocking of the––in these
cells constitutively active––Wnt pathway (12); in the other
instance in mouse ES cells after shRNA-mediated knock-
down of the RNA PolII elongation factor Ell3 (11). Both
coupled data sets utilized consider knock-down studies of

factors that are expected, among others, to change PolII
occupancy over gene bodies as well. Expression changes
were calculated by RNA-Seq and PolII occupancy knock-
down over wild type. F1-scores for each statistical algorithm
and P-value combination method were calculated by using
PolII occupancy as a ‘ground truth’ representation. To eval-
uate the tradeoff between the correlations of transcription
changes, the above were deployed as a graphical evaluation
method of each algorithm (Figure 6). As expected, stricter
algorithms which yield fewer DEGs (Intersection, baySeq,
DESeq) show better correlation with PolII occupancy but
much lower F1-scores, because of the exclusion of many true
hits, as those are defined by a cutoff in PolII occupancy
across gene bodies. On the other hand, more liberal algo-
rithms (Union, NBPSeq, Fisher, edgeR) show a larger F1-
score but a much lower correlation with PolII occupancy.
It is evident that PANDORA achieves an optimal tradeoff
between precision-sensitivity (F1-score) as defined by PolII
occupancy and correlation of gene expression as measured
by two independent techniques. The optimization is clearer
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Table 1. False discovery rates (Benjamini–Hochberg adjusted P-values) from three ‘same versus same’ comparisons (EDASeq normalization)

DESeq edgeR voom NBPSeq baySeq Simes Union Intersection PANDORA Fisher Whitlock

SEQC group A 0.0238 0.0007 <0.0001 0.0177 0.0001 0.0201 0.0270 <0.0001 0.0007 0.0420 0.0266
SEQC group B 0.0003 0.0012 <0.0001 0.0019 <0.0001 0.0014 0.0033 <0.0001 <0.0001 0.0343 0.0101
Brawand data 0.0046 0.0009 <0.0001 0.0048 0.0001 0.0045 0.0065 <0.0001 <0.0001 0.0184 0.0133

Figure 6. Tradeoff between accuracy (F1-scores) and correlation with PolII
occupancy for all methods. When using two coupled RNA-Seq and PolII
ChIP-Seq data sets, stricter algorithms (Intersection, baySeq) yield higher
correlation with differences in transcription as measured by PolII occu-
pancy at the cost of false hits (low F1-scores). The opposite is observed
for more liberal methods (Union, edgeR). PANDORA achieves an opti-
mal tradeoff between accuracy and correlation of transcription differences
between treatment and control, as measured by RNA-Seq and PolII occu-
pancy. The arrows point at the PANDORA method.

for the Lin et al. data set (Figure 6, left panel). This obser-
vation highlights the added value of PANDORA regarding
both the optimization of the tradeoff between true and false
hits, as well as the fact that it yields biologically significant
results: i.e. good correlation between two gene expression
abundance methods using real data, when the number of
DEGs is not known a priori.

DISCUSSION

In this article, we present PANDORA, a method which
combines existing statistical tests for RNA-Seq data. PAN-
DORA is implemented in metaseqR, a Bioconductor pack-
age, which offers an interface for several RNA-Seq data nor-
malization methods and statistical tests coupled with exten-
sive and comprehensive reports of the results. The strong
points of PANDORA and metaseqR not fully addressed by
existing packages are:

• The optimization of the tradeoff between precision and
sensitivity in the vast majority of test cases.

• The robustness in detecting differential expression with-
out loss of statistical power.

• The provision of a straightforward interface to eight nor-
malization methods and nine statistical tests for RNA-
Seq gene expression data through the use of seven
R/Bioconductor packages developed for this purpose, al-
lowing any combination among the above.

• The detailed, comprehensive and interactive report pro-
duced at the end of each analysis, which to our knowledge
is unique among related open-source tools.

• The intuitive combination of multiple statistical tests ap-
plied on the same data with six possible methods.

RNA-Seq is gradually becoming the standard tool in
gene expression research, with a wealth of statistical algo-
rithms for the detection of DEGs emerging recently. Al-
though there is a recent shift in software tool development
aimed at understanding more complex genomic events that
can be detected and studied by RNA-Seq (e.g. alternative
splicing), it is most frequently applied to investigate changes
in a ‘summarized gene’ expression across several experi-
mental conditions. In addition, looking into more com-
plex events, such as alternative isoform representation, of-
ten benefits from having established robust calls for dereg-
ulated genes. This is partly justified by a recent publica-
tion (30) where the authors analyzed transcript expression
across several human tissues and cell lines and concluded
that there is one dominant transcript per gene.

Our results were described based on raw, rather than
corrected for multiple testing, P-values where appropri-
ate. The issue of multiple testing correction and its ap-
plication has been exhaustively treated in the literature.
Its effect can be quite misleading with certain algorithms
(e.g. DESeq, NBPSeq). Specifically, using simulated data
sets for five organisms and two experimental configura-
tions, the performance of DESeq, edgeR, NBPSeq and
limma voom is not improved when using adjusted P-values,
as measured by FDCs (Supplementary Figures S13 and
S15). On the other hand, when using adjusted P-values for
these four statistical tests, the performance as measured by
FNCs dramatically drops, with limma voom exhibiting the
most moderate accuracy loss. We thus believe that such
results/phenomena are usually not noted, as most efforts
in statistical algorithms are directed toward the minimiza-
tion of false positives––without regard to the false negatives.
This leads to overly strict outcomes and restricted down-
stream analyses (e.g. pathway analysis).

One possible solution to this problem would be to use ei-
ther Bayesian approaches (e.g. baySeq or EBSeq) or more
empirical ones (e.g. NOISeq), where ‘traditional’ multiple
testing correction is not applied. We demonstrate that al-
though these methods perform quite well as assessed by
FDCs, FNCs and ROC analysis, when looking at actual
numbers of true and false hits at specific statistical thresh-
olds, NOISeq and baySeq perform badly: they generate an
excessively high number of false hits, particularly false neg-
atives. For the researcher who wants to look at a strict list of
top DEGs, this is welcome. It, however, can also be achieved
by imposing stricter statistical thresholds with other al-
gorithms. In addition, not all methods return nominal P-
values which can be subjected to multiple testing correction
(NOISeq, baySeq) and, for these reasons, raw P-values have
been used before for evaluation purposes (5). Using P-value
combination applied on many statistical tests with unad-
justed P-values seems to provide a solution to the problem
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described above. Specifically, PANDORA achieves the goal
of a good tradeoff between true and false hits, by combining
statistical tests using weights based on FDCs. Most impor-
tantly, it performs well when assessing accuracies based on
real data. Thus, we propose that PANDORA can be used as
an empirical alternative to the often strict multiple testing
correction procedures.

As shown by F1-score analysis, PANDORA is not the
best performer when combining P-values adjusted for mul-
tiple testing correction. This, in our opinion is not a bottle-
neck, because, first, in a realistic experimental setting, the
inclusion of more than three biological replicates is rare.
Our analysis indicates that in the presence of a low num-
ber of replicates per experimental condition, and when us-
ing adjusted P-values for DESeq, edgeR, limma voom and
NBPSeq: (i) the restriction of false positives is rather low as
demonstrated by FDCs, (ii) the loss in numbers of false neg-
atives is high as demonstrated by FNCs, (iii) ROC analysis
does not show notable differences in performance and (iv)
F1-scores slightly drop in most cases for the four tests, es-
pecially in the human and mouse cases, two organisms that
dominate current biological studies. Second, in some cases
a PANDORA type of combining tests may not be desirable.
This would occur either because it does not perform well for
a specific data set (metaseqR provides evaluation facilities
to test this) or a specific statistical test known to work well
for a biological system under investigation. In such cases,
metaseqR still provides an easy interface to several normal-
ization algorithms, statistical tests and quality control mea-
sures, combined with very rich and detailed reporting capa-
bilities.

In simulation studies, where the synthetic data sets are
produced by strictly controlled computational means, PAN-
DORA works considerably well. This may not always be the
case with real data. The analysis of real RNA-Seq data from
the SEQC project demonstrated a more moderate perfor-
mance of the PANDORA method. At this point, it should
be stressed that (i) we used Human weights estimated from
the Montgomery–Pickrell combined data sets, which give
greater weights to limma voom, edgeR and baySeq algo-
rithms and (ii) the assessment is based on the TaqMan data
and the ERCC spike-in controls, which both constitute a
fixed set of ‘ground truth’ transcripts and the performance
is based on these fixed numbers. In a real-life situation,
there is no fixed number of DEGs that are expected from
an experiment. This number is rather defined by statistical
and/or empirical thresholds chosen by the analyst, without
any guarantee that the false positives and false negatives are
minimized. In this sense, methodology assessment with sim-
ulated data sets, where the number of differential synthetic
genes is known but each test is free to return any number of
genes, may well prove more crucial in the determination of
which methods perform best.

Furthermore, technical replication in the SEQC data set
is suitable for assessing technology reproducibility. How-
ever, it fails to capture biological noise present in more re-
alistic experimental settings, which can be partially caught
by simulated data created with parameters estimated from
real data. We thus advocate the use of PANDORA, which
excels in the majority of test cases, as its usage can offer a
very good starting point for downstream analyses. The gene

lists with minimized false hits it generates should be appre-
ciated especially in low replication data sets, such as clinical
applications.

The robustness of PANDORA is further supported when
using PolII occupancy as a measurement of transcription.
When the correlation of differential gene expression, as de-
tected by RNA-seq, with differential average PolII occu-
pancy across gene bodies was used as an independent accu-
racy measurement, we observed that PANDORA offers a
good tradeoff between precision and sensitivity (F1-score).
At the same time it achieves a good correlation with PolII
occupancy. On the other hand, very liberal methods (e.g.
Union, NBPSeq) fail to correlate well with PolII, even if
they generate higher F1-scores. This is the expected outcome
of the inclusion of more false positives. Stricter methods
correlate better with PolII (again to be expected because of
stringency), but fail to offer a good tradeoff between preci-
sion and sensitivity.

Finally, at the end of each analysis, metaseqR creates a
very detailed and partially interactive report, not offered by
similar open-source packages. This report includes, among
others, an automatically generated text which can be di-
rectly used in the ‘Methods’ section of a scientific arti-
cle and aids the bench biologist in understanding the pre-
processing, normalization, data filtering and statistical test-
ing that has been performed. Detailed information regard-
ing the numbers of DEGs and the reproducibility of the
analysis is also provided. In addition, a lot of diagnostic
plots with short explanatory texts are available, coupled
with tables depicting the top DEGs and all the intermedi-
ately generated read count tables can be retrieved through
the report for further analysis. In this way, the experimen-
talist has a quick overview of the results without traversing
multiple and separated gene lists and figures.

To conclude, PANDORA is a new method for weighting
the results of statistical tests for RNA-Seq data based on
their performance. Using simulated data generated based
on parameter estimation from real data sets we have demon-
strated that PANDORA achieves optimal tradeoff between
precision and sensitivity. Finally, we have shown that PAN-
DORA performs as well as individual tests using classical
evaluation measurements and that it achieves an optimal
tradeoff between performance and correlation of differen-
tial expression as measured by PolII occupancy.

AVAILABILITY

PANDORA is implemented in metaseqR, a Bioconductor
(http://www.bioconductor.org) package for the analysis of
RNA-Seq gene expression data providing an interface for
several normalization methods and statistical tests, meth-
ods for combining statistical tests as well as detailed and
comprehensive reporting facilities.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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