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Abstract

Time delay due to maturation time, capturing time or other reasons widely exists in biologi-
cal systems. In this paper, a predator-prey system of Leslie type with diffusion and time
delay is studied based on mathematical analysis and numerical simulations. Conditions for
both delay induced and diffusion induced Turing instability are obtained by using bifurcation
theory. Furthermore, a series of numerical simulations are performed to illustrate the spatial
patterns, which reveal the information of density changes of both prey and predator popula-
tions. The obtained results show that the interaction between diffusion and time delay may
give rise to rich dynamics in ecosystems.

Introduction

Thanks to the classical work of Lotka (in 1925) and Volterra (in 1926), modeling predator-prey
interaction system has become one of the hot issues in mathematical ecology [1-6]. As is well
known, one of the principles that predator-prey models follow is that predators can grow as a
function of what they have eaten [7]. One of the famous functional response function is Gener-
alized Holling type III [8]. When b = 0, it is called Holling type III. Moreover, not only is the
predator growth term described by a function of the prey density, but also is described as a
function of the ratio of predator and their prey, y/x, where x and y stand for prey and predator
density respectively, see for example [9, 10]. The predator-prey system takes the following
form:

dx
E - xg(x, K) _yp(x)v

dy y

2 =10
where g(x, K) describes the specific rate of the prey if there is no predator. p(x) is the functional
response function which describes the change in the density of the prey when they are attacked

by per predator in per unit time. Information about the properties of function g(x, K), p(x) and
q(x) are available in [11, 12]. In this paper, we consider system (1) with the following functions,

(1)
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g(x,K) =r(x—%),p(x) = " and q(x) = »0(1 — %), namely, the predator-prey system of

ax?+1

Lesile type with Holling type III functional response. Then Eq (1) becomes:

dx (1_£)_ mx2y
ax> +1’

where the parameter 1, K, a, 0, m and h are all positive constants. r is the prey intrinsic growth
rate. K is the carrying capacity. m is capturing rate. a is half capturing rate. 6 is predator intrin-
sic growth rate. h is conversion rate of prey into predator biomass. For the sake of convenience,
system (2) should be rewritten into the nondimensional form. Assuming

k 0 h
uz%, V:Q’ t=rt, ’12;7 € = ak’, V:m—I:?’
then system (2) becomes:
du v
p— 1 . —
T ull =)~ ()

Pattern formation in reaction-diffusion system is one of the attractive problems in natural,
social, and technological sciences. Espatially in ecological system, various predator-prey models
with diffusion have been studied [13-18]. Pattern formation can well explain species survival
under the influence of individual mobility. Combing Eq (3) with diffusion, we have the spatio-
temporal predator-prey system of Lesile type with Holling type III functional response:

ou u’y

= 1 _ _ D 2

Ot u(l—u) e +1 DV,

5 (4)
v _ _w 2

8t—vn(l u)+D2V v,

where the positive constants D; and D, denote the diffusive coefficients of u and v, respectively.

V=24 % is the usual Laplacian operator in two-dimensional space, which describes the

ox
random motion.

On the other hand, time delay due to maturation time, capturing time, gestation or other
reasons widely exists and plays an important role in many biological dynamical systems [19,
20]. In order to reflect the current population dynamics, the rate of change of which depends
on the past population of the system, we should incorporate time delays into mathematical
models [21-24]. Although a lot of work has been done about the spatial predator-prey model
[25-28] and studies of delay feedback on pattern formation have achieved great progress [29-
33], study of delay driven pattern formation in a Leslie type system with Holling type III func-
tional response seems to be rare. As a result, in the present paper we aim to study the effects of
time delay on the spatiotemporal dynamics of a Leslie type model with Holling type III
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functional response. The model is as following form:

Ou uy

or _ . o kwv 2

5 u(l —u) ] + D, Vu,

5 (- (5)
@wv_ AA) 2

o vn[l u(t—r)} + D, V<,

where 7 > 0 is a constant due to the negative feedback. Let Q be a square flat domain. The ini-
tial conditions are

u(x,y;t) >0, v(x,y;6) >0, (x,9) €Q=(0,L) x (0,L) with te€][-1,0]. (6)

Generally speaking, to make sure that Turing pattern is determined by reaction-diffusion
mechanism, we usually choose zero-flux boundary conditions

ou ov

on|_ “om|., " @)

(x)

(xy)

which means that there is no flux of populations through the boundary, i.e., no external input
is imposed from outside.

This paper is organized as follows. In section 2, we study the dynamics of model without
delay. In section 3, we obtain the condition of Turing instability (diffusion and delay induced
instabilities)via linear stability analysis. In section 4, we present various spatial patterns by per-
forming numerical simulations. Finally, we give some conclusions and discussions in section 5.

Materials and Methods
Existence of positive equilibria

We need to analyze the stability criteria of model (5) without delay and diffusion. The corre-
sponding model is system (3). Obviously, system (3) has equilibrium E, = (1, 0), which corre-
sponds to extinction of the predator. From the biological point of view, we are interested in the
interior equilibria points, which are the positive solutions of the following cubic polynomial
equations of the system (3):

Substituting the second equality for the first equality in Eq (8), we have that:
F(u) = Wtou+outo,=0, 9)
where w, = i — 1,0, =tand w;, = — 1 < 0. The number of equilibria in Eq (3) is determined

by the number of real roots of F in the interval I, = (0, 1). In addition, F'(u) = 3u + 20,1 + Wy
has two zeros

ve — 1+ /A
g, =1~V (10)
3ey

when

A, = (ye — 1)2 —3ey” > 0. (11)
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The discriminant of the cubic polynomial F is given by

Rl

where P = w, — w3/3 and Q = (20} — 9w, w, + 27w,)/27. Similar to Lemma 1 in [34], we
have the following results.

System (3) has at least one equilibrium and at most three equilibria in the interval I, = (0,
1). Moreover, consider the following condition:

0<é. <1, (13)
F(¢.)>0 and F(&) <0 (14)
A, = 0; (15)

0<2{/£Q/2—7*/3 < 1; (16)
F(E)F(&,) > 0; (17)

&, <. (18)

1. Ifand only if Eqs (13) and (14) hold, then system (3) has three equilibria in the interval I, =
(0, 1).

2. Ifand only if Eqs (15) and (16) hold, system (3) two equilibria in the interval I, = (0, 1).
3. Ifand only if Eqs (18), or(13) and (17) hold, system (3) has a unique equilibrium in the

interval I = (0, 1) Moreover, if system (3) has a unique equilibrium E; (u7, v{) where
Vi = uj/y, then uj is either a simple zero of F or a zero of multiplicity 3 of F.

We describe qualitative properties and stability of the interior equilibria of system (3) (see
S1 File). By the proof of Theorem 1 (see S1 File), we have the following conclusion.
If

tr(J) =f, +8& <0, (19)

all of the positive equilibria of system (3) are stable, except the saddle (corresponds to the zero
A of Fin Fig 1) and degenerate equilibria (corresponds to the zeros B, C and D of F in Figs 2
and 3 respectively).

Turing instability analysis of model (4)

In this subsection, we will give a brief analysis of Turing instability of model (4). For the sake of
convenience, let E*(u*, v*) be anyone of the interior steady equilibrium in Theorem 1 (see S1
File). The characteristic polynomial at E*(u*, v*) is

|AE —J,| =0, (20)
where J = ] — diag(Dy, D,)k?, K is a wavenumber and J is the Jacobian matrix of system (3) at
E*(u*, v).

Further, Eq (20) yields

22 —tr(J,)A + det(J,) = 0, (21)

PLOS ONE | DOI:10.1371/journal.pone.0150503 March 1,2016 4/15



A Predator-Prey System with Time Delay

@’PLOS | ONE

A

F

g
i

¥

JEE Ty

Fig 1. F has three zero solutions in /.

doi:10.1371/journal.pone.0150503.g001
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F :
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> >
O 1 u O i1 u
(a) (b)
Fig 2. F has two zero solutions in /.
doi:10.1371/journal.pone.0150503.g002
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(a) (b)

A A
F F
> -
0] 1 u (0] u
& ) /' (d)
Fig 3. F has a unique zero solution in /,.
doi:10.1371/journal.pone.0150503.9003
where
tr(J,) = tr(J) — (D, + D)k, (22)
and
det(J,) = det(J) + D,D,k* — (D,f, + D,g,)k*. (23)

We can get the roots of Eq (20):

' tr(]k) + \/tr(]k)Z — 4det(]k) (24)

5 .
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The condition for the onset of Hopf instability holds when a pair of imaginary eigenvalues
cross the real axis from the negative value to the positive one and there is no diffusion [35, 36].
That is to say, the Hopf bifurcation occurs when

Im(4,)#0, Re(4)=0 at k=0.

A homogeneously steady state is said to be Turing instability if it is stable for model (3)
without diffusion but becomes unstable because of homogeneous perturbation caused by diffu-
sion. A general linear analysis [37-39] show that the necessary conditions for onset of Turing
instability for model (4) are given by condition Eq (19) and the following conditions

det(J) = f.8, — .8, > 0, (25)
D.f,+Dg, >0, (26)
(szu + Dlgv)2 > 4D1D2(f;gv _fvgu)~ (27)

The condition Eqs (19) and (25) make sure that the equilibrium E* = (1™, v*) is stable for
model (3) without diffusion, and becomes unstable for model (4) if Re(4;) transits the real axis
from a negative side to a positive one (corresponding to condition Eq (26) and (27)). Namely,
the Turing bifurcation occurs when

Im(2,) =0, Re(4)=0 at k=k. #0,

and wavenumber k satisfies

det(])

k2 = .
! D1D2

Results
Linear stability analysis

In this subsection, we will consider the stability of model (5). Obviously, model (5) has the
same equilibria as model (4). Similar to [30, 31], assume that 7 is small enough, then we replace
u(x,y,t —1) = u(x,y,t) — T%
obtain the following equations:

and v(x, y,t — 1) = v(x, y,t) — 12220 in system (5) and

ot

ou

at :f(uv V) + D1V2u7

(28)

o Ou(x, y, 1) Ov(x,y,1) 2
5 v {1 q(u()@y, t)—1 % V(X y,t) — 1 9 + D, V.

Expanding Eq (28) in Taylor Series and neglecting the higher order non-linearities, then Eq
(28) becomes:

Ou

5 =fwv) + D,V

) dulryt) | et >
av _ B u(x, y,t v(x,y,t 9

Bt - W7 1 q(M,V) + Tqu at + ‘qu 6t +D2v v,

PLOS ONE | DOI:10.1371/journal.pone.0150503 March 1,2016 7/15



@’PLOS ‘ ONE

A Predator-Prey System with Time Delay

where g, = % and g, = 2 By Eq (29), we obtain the following equations:
qu ou qV v Y q g q

Ou ‘

5 :f(u7 V) + Dlvzua

ov 1 vnTq vntq 1 (30)
- = _ 2w 714D 2 - D 2 .

o 1-— quvg(% i 1- w1‘cqvf(u7 v+ 1—vng, Vit 1 — g, 2V

If we take small spatiotemporal perturbations du(x, y, t) and 6v(x, y, t) on the steady state E*
= (u*, v*) of system (5), then we have:

u(‘x’y7t) = u*+5u(‘x7y7t)7 V('x7y’ t) :V*+5V(x7ya t)' (31)

Expanding the reaction terms around the steady state E* = (u*, v*) in Taylor Series up to
first order and rearranging the terms, we obtain:

( ) = £.,(6u) + £,(6v) + D,V?*(éu),
V*mquf 8 v,
= U 5 5
(1 - V*mq = V*nrqv)( 0 (1 “vieg, 1o V*mqv)( g 2)
vintq, D, V2(6u)  D,V?(év)
+ + ,
1 —vipg, L —ving,
Wheref f)u (u* v*)f v |(u ¥ 7gu - r)u (u*,v*) ’gv - ?}3 (u*v*) 7qu gz (u*v*)? qv = 81/ (u*v*) Wlth
Tlnm (@) = Tom ,7 2. Since 7 is small, we only consider T < % (i.e. y > 0) in this paper.
Model (32) becomes:
a(o
((9tu) = f.(6u) + £,(6v) + D,V*(ou),

(33)

8?? =7 (gu - n;ﬁ) (0u) + (gv - "7) (ov) — XZT (0u) + xD,V*(dv).

Assume that spatiotemporal perturbations du(x, y, f) and v(x, y, t) take the following form:

du(x,y,t) = ou'e" coskxcosk,y ov(x,y,t) = ov'e’ coskxcosk,y, (34)

where 1 is the growth rate of the perturbation in time ¢, Su™ and 6v* stand for the amplitudes,
and k, and k, are the wavenumbers of the solutions. Inserting Eqs (34) into (33), we obtain the
characteristic equation at E* = (u™*, v*) of model (5):

det(AE —J,) = 2* —tr(J,)/ + det(J,) = 0, (35)
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where
f.— Dk 1
Jo = , (36)
‘ x(gu—@)Jr@ x(gv—%)—ngk2
() =, + 7(g, — ) = (D, + D), (37)
det(J,) = xD,D,k* — 2(Dg, + Dof, )k + 1(f.8, — £.8.)- (38)

Now we are interested in investigating the effects of time delay and diffusion on the dynam-
ical system (5), and we want to know under what conditions for time delay to destabilize the
steady state and let the spatiotemporal instability occur. The onset of Turing instability requires
at least one of tr(J,x) < 0 and det(J %) > 0 is violated. So we consider the emergence of the
Turing instability in the following two cases:

1. det(J;+) > 0 is violated.

2. tr(J) < 0is violated.

Diffusion induced instability

In this part, we will consider the first case, i.e. det(Jy) > 0 is violated, namely, det(Jx) < 0. It
can be seen from Eq (38) that det(J,) = x det(Jy) and y > 0 (r < %) , so the sign of det(J ) is
the same as det(Ji). From Eq (23), det(Jx) < 0 is equivalent to:

D.f,+ D,g, > 0, (39)

(Dof, + Dlgv)2 > 4D, D,(f.8, — £.8.); (40)

.. D D
at the critical value of wavenumber k? = 'Qf“D;ngv > 0.
12

In addition, tr(J,x) < 0 equalsto f, + % (gv — m) < 0. Because that

- % — f.n = det(J) > 0, simple algebraic computation leads to:

0<1< f%érc. (41)
— =1
Hence, in this case, T must satisfy
1
7 < min (‘cc, —). (42)
U]

Finally, we can get the condition of diffusion induced instability:

1. When system (3) has three equilibria, if condition Eqs (11), (13), (14), (19), (39), (40), and
(42) hold, then instability of model (5) induced by diffusion occurs.

2. When system (3) has two equilibria, if condition Egs (11), (15), (16), (19), (39), (40) and
(42) hold, then instability of model (5) induced by diffusion occurs.

3. When system (3) has a unique equilibrium, if condition Eqs (11), (18) (or (13) and (17)),
(19), (39), (40) and (42) hold, then instability of model (5) induced by diffusion occurs.
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Delay induced instability
In this part, we will consider the seconde case, i.e. tr(J,;) < 0 is violated. In order to find suitable

values of parameters for our simulation, we assume y < 0 (r > %) in this part. Following the

same analysis in subsection B, tr(J,x) < 0 is violated when f, + x (gv - %) > 0, which yields

fut8 .
T<_7ﬁ7f11:‘[c. (43)
Hence, in this case, T must satisfy:
1
-<t<1,. (44)
h

We mainly consider the delay induced instability, therefore we keep det(J,x) > 0, which is
equivalent to the same condition as Eqs (39) and (40).
At last, we can get the condition of delay induced instability:

1. When system (3) has three equilibria, if condition Eqs (11), (13), (14), (19), (39), (40) and
(44) hold, then instability of model (5) induced by delay occurs.

2. When system (3) has two equilibria, if condition Egs (11), (15), (16), (19), (39), (40) and
(44) hold, then instability of model (5) induced by delay occurs.

3. When system (3) has a unique equilibrium, if condition Eqs (11), (18) (or (13) and (17)),
(19), (39), (40) and (44) hold, then instability of model (5) induced by delay occurs.

In this section, we will perform numerical simulations for model (5) on the 100 x 100 square
lattices with Neumann boundary conditions. The simulations are initiated with small ampli-
tude random perturbations around the positive equilibrium point E(u*, v*). The reaction-diffu-
sion equations in our models are analyzed numerically employing Forward Difference implicit
difference scheme. We set the time step At = 0.005, spatial mesh size h = 1.

We run the simulations until they reach a stationary state which indicates that the behavior
does not seem to change its characteristic anymore. As a result, we only make analysis of pat-
tern formation to one distribution(in this paper, we show the distribution of the predator).

Numerical results

A. Pattern formation induced by diffusion. In this subsection, we will focus on the pat-
tern formation induced by diffusion, we obtain nine different types of patterns in Fig 4, where
prey and predator can coexist.

In Fig 4(a) we take the parameters as

n=06, t=04, D, =02, D,=S38,

45
w'=0.14, v =22.39685714, €=135, 7 = 0.006250877036. (45)

Fig 4(a) is the typical spot pattern, which shows that the distribution of the predator v is the
isolated regions with high density.
In Fig 4(b) we take the parameters as

n=06, 1=04, D, =02, D,=S8,

46
u =0.35, v"=24.60714285, €=100, 7y =0.01422351234. 46)
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Fig 4. Nine types of patterns induced by diffusion.
doi:10.1371/journal.pone.0150503.9004

Fig 4(b) is the typical hole pattern, which shows that the distribution of the predator v is the
isolated regions with low density.
In Fig 4(c) we take the parameters as

n=06, t1=04, D, =02, D,=S8,
u* =011, v =36.48190910, €=290, 7 =0.003015193084.

Fig 4(c) is the mixture of red stripes and red spots named as mixed pattern 1.

PLOS ONE | DOI:10.1371/journal.pone.0150503 March 1,2016 11/15
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In Fig 4(d) we take the parameters as

n=06, 1=04, D, =02, D,=S8,

48
u*=0.3, v°=2753333333, €=120, 7y =0.01089588378. 48)
Fig 4(d) is the mixture of blue stripes and blue spots named as mixed pattern 2.
In Fig 4(e) we take the parameters as
n=06, t=04, D, =02 D,=S8, )
u* =0.25, v*=27.37500000, €= 130, 7y = 0.009132420091.
Fig 4(e) is the stripe pattern.
In Fig 4(f) we take the parameters as
n=06, t=04, D =0.01, D,=0.3, (50)
u* =0.2, v*=100.00000000, €= 600, 7 = 0.00200000.
Fig 4(f) is somewhat like labyrinth pattern.
In Fig 4(g) we take the parameters as
n=06, t=04, D =004, D,=0.16, 1)
u =03, v =19.13333333, €¢=280, 7y =0.01567944251.
Fig 4(g) is somewhat like grid pattern.
In Fig 4(h) we take the parameters as
n=06, t=04, D =0.01, D,=0.33, (52)
u* =03, v =19.13333333, €=280, 7y =0.01567944251.
Fig 4(h) is the composed parallel lines.
In Fig 4(i) we take the parameters as
n=06, t=04, D =0.02, D,=0.54,
(53)

u =0.11, v*=27.67090909, =200, 7y = 0.003975294040.

Fig 4(i) is somewhat butterfly-like patten.

B. Pattern formation induced by delay. In this subsection, we will focus on the pattern
formation induced by delay, we obtain three different types of patterns in Fig 5.

In Fig 5(a) we take the parameters as

n=1, t=12, D, =0.002, D,=01,

54
u* =03, v =19.13333333, €¢=280, 7y =0.01567944251. &)
Fig 5(a) is spirals 1.
In Fig 5(b) we take the parameters as
n=20.8, t=15 D =0.002, D,=0.08,
(55)

u =03, v'=>52.73333334, =240, y = 0.005689001264.

Fig 5(b) is spirals 2.

PLOS ONE | DOI:10.1371/journal.pone.0150503 March 1,2016 12/15
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Fig 5. Three types of spirals induced by delay.

doi:10.1371/journal.pone.0150503.g005

In Fig 5(c) we take the parameters as
n=0.85 t=1.5, D =0.01, D,=0.38,

56
u =03, v'=19.13333333, €=280, y=0.01567944251. 56)

Fig 5(c) is spirals 3.

Discussion

In this paper, a spatial Lesile type predator-prey system with Holling type III functional response
and time delay has been investigated. To well understand the impact of delay and diffusion on
the instability, we have made theoretical analysis and numerical simulations. Since the equilib-
rium cannot be expressed in a useful closed form, we cannot discuss its qualitative properties in
normal routine. Firstly, we discuss the number and qualitative properties of positive equilibrium
via the original parameters. Secondly, we obtain conditions of two types of instability: diffusion
induced instability and delay induced instability. Finally, numerical simulations are performed to
illustrate the theoretical findings. Both the theoretical and numerical results reveal that the inter-
action between time delay and diffusion can give rise to stationary patterns.

However, it should be noted that the method in this paper is only suitable for short time
delay 7. When the delay is large, one should use other methods to find the condition for Turing
instability. Moreover, we may investigate travelling wave of model (5) in the future study. It
should be also worth pointing that other types of instability may be found in system (5). For
example, we can use normal formal theory and the center manifold theorem of partial func-
tional differential equations to analyze the Hopf bifurcation of system (5) [3].

Supporting Information

S$1 File. Qualitative properties and stability of the interior equilibria of system (3).
(PDF)
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