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Abstract: An emerging class of superhard materials for extreme environment applications are
compounds formed by heavy transition metals with light elements. In this work, ultrahigh pressure
experiments on transition metal rhenium diboride (ReB2) were carried out in a diamond anvil cell
under isothermal and non-hydrostatic compression. Two independent high-pressure experiments
were carried out on ReB2 for the first time up to a pressure of 241 GPa (volume compression
V/V0 = 0.731 ± 0.004), with platinum as an internal pressure standard in X-ray diffraction studies.
The hexagonal phase of ReB2 was stable under highest pressure, and the anisotropy between the
a-axis and c-axis compression increases with pressure to 241 GPa. The measured equation of state
(EOS) above the yield stress of ReB2 is well represented by the bulk modulus K0 = 364 GPa and its
first pressure derivative K0´ = 3.53. Corresponding density-functional-theory (DFT) simulations of
the EOS and elastic constants agreed well with the experimental data. DFT results indicated that
ReB2 becomes more ductile with enhanced tendency towards metallic bonding under compression.
The DFT results also showed strong crystal anisotropy up to the maximum pressure under study.
The pressure-enhanced electron density distribution along the Re and B bond direction renders the
material highly incompressible along the c-axis. Our study helps to establish the fundamental basis
for anisotropic compression of ReB2 under ultrahigh pressures.

Keywords: transition metal borides; superhard materials; high pressure studies; diamond anvil cell;
ab initio calculations; elastic constants; crystal anisotropy

1. Introduction

Transition metal borides have shown intriguing mechanical and structural properties combining
the attractive features of metallic bonding with rigid covalent boron-boron bonding [1–3]. In moving
across the periodic table from a group IV transition metal boride like TiB2 to a group VI transition
metal boride like ReB2, the boron layer transitions from a planar hexagonal net to a more puckered
structure. In particular, rhenium diboride (ReB2) has shown desirable mechanical properties with
a high average hardness of 30–60 GPa [4–7] and bulk modulus of 334–360 GPa [4,5], comparable to that
of diamonds (442 GPa) [8]. Such materials are useful for their applicability under extreme conditions
requiring a combination of high-temperature chemical stability and resistance to plastic deformation.
Many superhard materials (hardness above 40 GPa) such as diamonds are prone to oxidation in
high-temperature environments and have a propensity for chemical reactivity with transition metals.
ReB2 shows promise as an alternative to diamonds for mechanical uses due to strong covalent bonding
between B-B and Re-B atoms and high electron density [4], the compound’s stability up to 2000 K,
and the ease of machining by electric discharge [9]. In this study, we investigate hexagonal ReB2
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compressed under non-hydrostatic conditions at ultrahigh pressure. Axial compression of the lattice
parameters is investigated for the first time up to 241 GPa, and the equation of state is determined from
the measured volume compression. ReB2 shows strong crystal anisotropy and high incompressibility
along the c-axis up to the maximum pressure. The experimental data are directly compared with
first-principles simulations, showing good theory-experiment agreements. The scientific novelty of
our work lies in combining ultrahigh-pressure X-ray diffraction experiments with density functional
theory to gain fundamental understanding of anisotropic behavior.

2. Materials and Methods

Ultrahigh pressure was achieved by utilizing a diamond anvil cell (DAC) consisting of two
diamonds facing each other in an opposed configuration (Figure 1a). The strong structural integrity
of the diamond anvils allows for sample compressions to reach environments similar to those of
deep planetary interiors and study material properties not seen at ambient conditions. In this study,
two separate DACs were employed in an opposed anvil configuration with a 30-micron – 8-degree –
350-micron bevel for pressures to 241 GPa, and 100-micron – 7-degree – 300-micron anvils for pressures
to 105 GPa. To minimize lateral flow of the sample material during compression, a steel gasket
was indented to 25-micron thickness and a hole was laser drilled for sample placement on the culet.
The sample hole sizes were made 8 microns for the 30-micron culet and 25 microns for the 100-micron
culet. The ReB2 sample from American Elements had a purity of 99.9% (metals basis) with major
impurities of elemental Fe, Al, and Si in the 10 parts per million (ppm) range. The ReB2 sample was
mixed with Alfa-Aesar platinum powder (99.97% purity) for pressure calibration.
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with pressure determined using the platinum EOS [12]. The difference curve shown below the 
powder pattern in Figure 2 resulted from a fit to the hexagonal structure to ReB2. The hexagonal 
phase of ReB2 was found to be stable to the maximum pressure of 241 GPa. The measured lattice 
parameters at 241 GPa were a = 2.586 ± 0.004 Å and c = 6.882 ± 0.007 Å. Platinum peaks in Figure 2 are 
labeled with asterisks (*) and indexed to a face-centered cubic lattice. The platinum lattice parameter 
at maximum pressure of 241 GPa was measured to be a = 3.490 ± 0.009 Å. 

 

Figure 1. (a) Microscope image of two diamond anvils with an opposed configuration within a diamond
anvil cell (DAC). Sample placement is centered on the culet, or flat tip, of one of the anvils. (b) Schematic
of the DAC within experimental settings. Incident X-rays are propagated along the axis of compression
and collected on a Pilatus 1M detector after sample scattering.

X-ray diffraction (XRD) experiments (λ = 0.4133 Å) were carried out on the High-Pressure
Collaborative Access Team (HPCAT) Beamline 16-BM-D at the Advanced Photon Source in Argonne
National Laboratory. As shown in Figure 1b, the X-ray beam was incident along the axis of
compression, and scattered X-rays off the sample were captured on a Pilatus 1M detector with
X-ray beam size 3.7 µm (vertical) × 3.8 µm (horizontal) FWHM (full width at half maximum) and
sample-to-detector distance of 344.63 mm calibrated using the CeO2 diffraction profile in the Dioptas
software. For more information on the optical components of the Beamline 16-BM-D, refer to Park
et al. [10]. Structure refinements of lattice parameters were carried out using the GSAS-II software
package [11]. The measured pressure-volume data for the sample were fitted to the 3rd order
Birch–Murnaghan equation of state (EOS):
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Here, V is the measured volume at high pressure and V0 is the ambient pressure volume with
x = V0/V; K0 and K0’ are the bulk modulus and its first pressure derivative, respectively. To determine
the initial volume V0 of the ReB2 sample, ambient pressure XRD measurements were separately
recorded of the starting material, and the lattice parameters were determined to be a0 = 2.901 Å and
c0 = 7.482 Å. The platinum EOS used was calibrated up to 550 GPa from Yokoo et al. [12] using the 3rd
order Birch–Murnaghan EOS and employed as a pressure marker using K0 = 276.4 GPa and K0’ = 5.12
with the platinum lattice parameter a = 3.924 Å at ambient pressure.

First-principles calculations are based on density functional theory (DFT) [13], which dictates that
the ground state energy (or potential) of interacting electrons is a functional of charge density. The DFT
potential is constructed as the sum of external potential due to atomic nuclei, which are seen as fixed by
electrons within the Born–Oppenheimer approximation [14], and an effective potential due to electron
interactions. The resulting electronic ground state is obtained by solving self-consistently one-electron
Schrödinger-like equations known as Kohn–Sham equations [15]. Here, we used the DFT software
VASP (Vienna Ab initio Simulation Package, version 5.4.4) [16,17], in which a plane-wave basis set
and pseudopotential method are adopted. In our calculations, we employed the projector augmented
wave (PAW) [18,19] method and the Perdew–Burke–Ernzerhof generalized gradient approximation
(PBE-GGA) [20] functional. Charge carriers in the Re:5d66s1 and B:2s22p1 configurations were treated as
valence electrons, and the valence wave functions were expanded in a plane wave basis up to a kinetic
energy of 420 eV. The Monkhorst–Pack k-point sampling of the Brillouin zone [21] was chosen by
a Γ-centered k-point mesh with a fine resolution = 0.01 × 2π/Å (33 × 33 × 13). The convergence criteria
for self-consistent field and structure relaxation were set to 10−6 eV/unit cell and 10−3 eV/Å, respectively.
For each given external pressure point, we first performed a structure optimization calculation in the
hexagonal phase with fully relaxed lattice parameters and atomic positions. The theoretical lattice
parameters at ambient conditions are a0 = 2.913 Å and c0 = 7.504 Å, which are within a 0.5% error
margin compared to the corresponding experimental values. After the structure relaxation, we then
performed calculations with lattice distortion to obtain the crystal’s elastic tensor, which provided
information on mechanical properties such as bulk and shear moduli, as well as crystal anisotropy.
The bulk modulus computed by DFT with the Voigt–Reuss–Hill approximation [22] is K0 = 357 GPa at
ambient conditions, which agrees within a 2% error margin with the value K0 = 364 GPa obtained
by fitting the experimental P-V curve to the 3rd order Birch–Murnaghan equation. The theoretical
structural visualization and charge distribution were plotted by the VESTA software (version 3.4.8) [23].

3. Results

Figure 2 shows the integrated XRD powder data taken at the maximum pressure of 241 GPa with
pressure determined using the platinum EOS [12]. The difference curve shown below the powder
pattern in Figure 2 resulted from a fit to the hexagonal structure to ReB2. The hexagonal phase of
ReB2 was found to be stable to the maximum pressure of 241 GPa. The measured lattice parameters at
241 GPa were a = 2.586 ± 0.004 Å and c = 6.882 ± 0.007 Å. Platinum peaks in Figure 2 are labeled with
asterisks (*) and indexed to a face-centered cubic lattice. The platinum lattice parameter at maximum
pressure of 241 GPa was measured to be a = 3.490 ± 0.009 Å.
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from Figure 3 that the sample yielding at 30 GPa is a measure of the uniaxial compression strength, 
or the material’s resistance to change before yielding. This is in agreement with the sample’s average 
hardness, or its resistance to deformation being between 30 and 60 GPa [4–7]. The bulk modulus and 
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II for pressures below 65 GPa. Regions of uniaxial compression and non-hydrostatic compression are 
labeled along with the 3rd order Birch–Murnaghan equation of state (EOS) above 35 GPa. 

Figure 2. Powder diffraction of ReB2 indexed to a hexagonal phase at a pressure of 241 GPa. Shown below
the data curve is the difference curve as a result of Rietveld refinement. The platinum peaks (labeled
with asterisk *) were indexed to a face-centered cubic phase and its measured volume was used in the
calculation of pressure.

Figure 3a shows the volume compression for ReB2 in two separate compression experiments with
maximum pressures to 105 GPa in Experiment I (Expt. I) and 241 GPa in Experiment II (Expt. II).
Figure 3b shows the volume compression for low-pressure data that exhibit uniaxial compression
transitioning into non-hydrostatic compression at around 35 GPa. Both Expt. I and II showed transition
zones from uniaxial compression to non-hydrostatic. For data points below the transition zone,
the samples showed a fairly linear volumetric compression that is similarly seen in elastic samples
before yielding to plastic deformation above the transition zone. It can be inferred from Figure 3 that
the sample yielding at 30 GPa is a measure of the uniaxial compression strength, or the material’s
resistance to change before yielding. This is in agreement with the sample’s average hardness, or its
resistance to deformation being between 30 and 60 GPa [4–7]. The bulk modulus and its pressure
derivative are taken from Equation (1) by fitting to the non-hydrostatic curve above 35 GPa, and they
were determined to be K0 = 364 GPa and K0´ = 3.53, respectively.
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Figure 3. (a) Pressure-volume curve for Experiments I and II fitted with a 3rd order Birch–Murnaghan
equation of state (EOS) above 35 GPa. (b) Pressure-volume curve for Experiments I and II for pressures
below 65 GPa. Regions of uniaxial compression and non-hydrostatic compression are labeled along
with the 3rd order Birch–Murnaghan equation of state (EOS) above 35 GPa.
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The axial compression of the a and c lattice parameters for ReB2 are shown in Figure 4, with the
measured lattice parameters at 241 GPa being a = 2.586 ± 0.004 Å and c = 6.882 ± 0.007 Å. For both
experiments, the c-axis showed a strong incompressibility as c/c0 = 0.920 ± 0.001 at 241 GPa, not even
10% compression. In comparison, there was strong anisotropy between the a-axis and c-axis that
persisted throughout the entirety of both experiments, and the anisotropy increased with pressure to
maximum compression of a/a0 = 0.891 ± 0.001. The maximum volume compression at 241 GPa was
measured to be V/V0 = 0.731 ± 0.004.
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Figure 4. Axial compression of the a and c lattice parameters to 105 GPa for Experiment I and 241 GPa
for Experiment II. The anisotropic compression is observed to the highest pressure of 241 GPa.

To simulate the high-pressure experiments, we performed structure relaxation DFT calculations
with the GGA functional up to 250 GPa. The DFT-GGA axial and volume compressions simulated
under hydrostatic pressure are shown in Figure 5a,b, respectively. The a/a0 and c/c0 curves with pressure
are both concave up, suggesting that the upturn or concave down behavior observed experimentally
at pressures between 5 and 35 GPa (Figure 3b) is related to a non-hydrostatic condition. Figure 5a
also shows that the lattice parameter a is more compressible than c. In particular, the DFT-GGA value
c/c0 near 240 GPa is 0.919, which is in excellent agreement with the experiment. The DFT-GGA value
a/a0 near 240 GPa is 0.877, which underestimates the experimental value of 0.891. In addition to
non-hydrostatic condition, the theory-experiment deviation at high pressure is most likely due to the
employed GGA functional. In particular, compared with previous local density approximation (LDA)
studies at 100 GPa [24], while in both LDA and GGA values c/c0 = 0.954, the LDA ratio a/a0 = 0.932 is
larger than the GGA value of 0.928. Regardless of the functional being employed, it is clear that an
anisotropic compression behavior persisted up to the maximum pressure under study: a/c began with
0.388 at ambient conditions and decreased monotonically to 0.370 (0.375) in theory (experiment) near
240 GPa.
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Figure 5. (a) Axial compression of the a and c lattice parameters computed by density functional theory
(DFT) using the generalized gradient approximation (GGA) functional for ReB2 under hydrostatic
pressure up to 250 GPa. (b) Pressure-volume curve corresponding to (a).

4. Discussion

The addition of interstitial covalently bonded boron atoms to high-electron-density transition
metals such as Re and Os has given a family of transition metal diborides with desirable mechanical
properties. Re and Os, being one column away from each other on the periodic table, share similar
properties, although Re has a slightly smaller electron density and Os has a higher hardness and
incompressibility [25,26]. OsB2 was shown to have a comparable bulk modulus (342–365 GPa) to
ReB2, but ReB2 is considered somewhat superior due to shorter metallic bonds [27,28]. There is
also a noticeable difference between the brittleness and ductility of the two materials. Pugh [29]
introduced the ratio between the shear modulus and the bulk modulus (G/K) to distinguish a material’s
ductile or brittle behavior. A low (high) G/K value is correlated with ductility (brittleness). Based on
the elastic and plastic properties of pure polycrystalline simple metals, an empirical value of the
brittle-to-ductile transition is 0.571. Figure 6a shows the bulk and shear moduli computed by DFT
using the GGA functional. While both G and K are enhanced by pressure, the rate of increase for K is
larger, indicating that the G/K decreases with pressure, as seen in Figure 6b. In particular, G/K changes
from 0.762 at 0 GPa to 0.627 at 240 GPa. In comparison, the G/K value is substantially smaller in
OsB2 [30]. In our calculation, the G/K values for OsB2 at 0 GPa and 240 GPa are respectively 0.528 and
0.478, both of which are below the critical brittle-to-ductile transition value 0.571, showing that OsB2
is more ductile than ReB2. Another relevant quantity is the Poisson’s ratio, which can be obtained
by (3K − 2G)/[2(3K + G)]. Based on Frantsevich’s rule [31], a material is brittle if its Poisson’s ratio is
less than 1/3; otherwise, the material is ductile. Figure 6b also shows that the Poisson ratio for ReB2
increases with pressure, indicating an enhanced ductility.
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increasing pressure.

We next address the strong lattice anisotropy observed in ReB2. Interestingly, the hexagonal
ReB2 and orthorhombic OsB2 both showed anisotropic behavior in lattice parameters, with the c-axis
being the most incompressible [5,27]. The observed extreme anisotropy of ReB2 shown in Figure 4
is likely attributed to the high electron density of Re and the high density of states (DOS) at the
Fermi level (EF) [4], which result in increased Coulomb repulsion with pressure. Figure 7a shows our
computed DOS for ReB2 at 0 GPa (top panel) and 240 GPa (bottom panel). The DOS plots indicate
that at EF (denoted by the vertical dashed red line), the spectra have a dominant contribution from
the Re atom. At high pressure, the spectral contributions at EF from Re and B atoms both increase,
as seen in Figure 7b. The enhanced DOS also suggests an increased metallic bonding, or a reduced
covalent bonding, which is consistent with the iso-surface charge density plots in Figure 8: at ambient
conditions, ReB2 possesses strong covalent bonds between B-B atoms. When external pressure increases,
the hybridizations between Re-B and B-B atoms both increase, leading to an enhanced DOS at EF and
a reduced directional bonding. The increased Re-B bonding states near EF also can lead to enhanced
bulk and shear moduli at high pressure [32].
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Figure 8. ReB2 unit cells and iso-surfaces of charge density under external pressures up to 240 GPa.
Iso-surface levels were set to be 0.1 a0

-3, with a0 the Bohr radius. The calculations were based on
the VASP software and its CHGCAR file, which contains the lattice vectors, atomic coordinates,
the total charge density multiplied by the volume on the fine fast Fourier transform-grid, and the
projector augmented wave one-center occupancies. The theoretical structural visualization and charge
distribution were plotted by the VESTA software.

In the hexagonal phase of ReB2 (with space group P63/mmc), the two Re atoms are located at
Wyckoff positions (1/3, 2/3, 1/4) and (2/3, 1/3, 3/4), and the four B atoms are located at (1/3, 2/3, ±z)
and (2/3, 1/3, 1/2 ± z), where z is 0.0476 (0.0452) for P = 0 (240) GPa. The Re and B atoms are aligned
along the c-axis. Under compression, as seen in Figure 8, the electron density is centered along the
Re-B bonds, which are parallel to the c-axis. The strong electron Coulomb repulsion between charge
density distributed along the Re-B bond direction makes the material highly incompressible along the
c-axis. A strong anisotropy between the crystal a and c lattice parameters also suggests that the highest
hardness in ReB2 single crystals is along the c-axis [5,33].

In addition to anisotropy in the lattice parameters, it is important to consider crystal elastic
anisotropy, which is related to the occurrence of micro-cracks in materials [34,35]. Figure 9a shows
the five independent elastic constants computed by DFT using the GGA functional for hexagonal
ReB2 as a function of pressure. It is seen that c11 and c33 are largely enhanced upon compression,
compared to the other elastic constants. Also, c33 is larger than c11, indicating that the c-axis is the
least compressible. There are other ways to represent the level of elastic anisotropy of a material.
In a hexagonal crystal, the following three parameters can be used [24,36]: ∆p = c33/ c11, ∆s1 = (c11 + c33
− 2c13)/4c44, and ∆s2 = 2c44/(c11 − c12). These three parameters would be equal to unity for isotropic
compressibility. Figure 9b shows that the computed ∆p, ∆s1, and ∆s2 are all larger than 1 up to the
maximum pressure under study. These results are consistent with previous lower-pressure theoretical
studies [24,37], indicating a strong elastic anisotropy of ReB2, where its c-axis compressibility is smaller
than that along the a-axis.
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5. Conclusions

Ultrahigh non-hydrostatic compression studies were carried out on a superhard material ReB2 for
the first time to a pressure of 241 GPa. The equation of state determined from the non-hydrostatic
pressure-volume curve above 35 GPa yielded a bulk modulus and pressure derivative of K0 = 364 GPa
and K0´ = 3.53, respectively. Substantial anisotropy of the lattice parameters was indicated to increase
with pressure up to the maximum pressure, with a/a0 = 0.891 and c/c0 = 0.919 at 241 GPa, showing ~3%
difference in axial compression. The results from density functional theory simulations for anisotropic
compression, equation of state, and elastic constants were in good agreement with the experimental
data. The superhard and ultra-incompressible features of ReB2 render it a promising material for wide
ranges of applications in extreme environments.
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