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A B S T R A C T   

Since the end of 2019, the outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has 
triggered a pneumonia epidemic, posing a significant public health challenge in 236 countries, territories, and 
regions worldwide. Clinically, in addition to the symptoms of pulmonary infection, many patients with SARS- 
CoV-2 infections, especially those with a critical illness, eventually develop multiple organ failure in which 
damage to the kidney function is common, ultimately leading to severe consequences such as increased mortality 
and morbidity. To date, three coronaviruses have set off major global public health security incidents: Severe 
Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS- 
CoV), and SARS-CoV-2. Among the diseases caused by the coronaviruses, the coronavirus disease 2019 (COVID- 
19) has been the most impactful and harmful. Similar to with SARS-CoV-2 infections, previous studies have 
shown that kidney injury is also common and prominent in patients with the two other highly pathogenic 
coronaviruses. Therefore, in this review, we aimed to comprehensively summarize the epidemiological and 
clinical characteristics of these three pandemic-level infections, provide a deep analysis of the potential mech-
anism of COVID-19 in various types of kidney diseases, and explore the causes of secondary kidney diseases of 
SARS-CoV-2, so as to provide a reference for further research and the clinical prevention of kidney damage 
caused by coronaviruses.   

1. Introduction 

Coronavirus is an enveloped virus of the coronavirus subfamily with 
a single-stranded, positive-sense RNA genome. According to the sero-
types and genome characteristics, coronaviruses can be divided into α, β, 
γ, and δ genera. It is called a “coronavirus” because its upstream enve-
lope has a corona of protuberances [1]. In 2003, a highly pathogenic 
coronavirus, Severe Acute Respiratory Syndrome (SARS), caused a 
pandemic. As of July 5, 2003, SARS had killed 774 people worldwide 
[2]. Clinical data from studies of the disease outbreak revealed that the 
mortality rate of SARS patients with acute kidney injury (AKI) was much 
higher than that of SARS patients without AKI [3]. While this public 
health problem has made a profound impression, more outbreaks 
occurred thereafter. Middle East Respiratory Syndrome (MERS) was first 

reported in 2012 [4]. In several case studies in the Middle East, the 
highest mortality rate was 35%, and MERS complications also led to 
renal failure [5,6]. After each outbreak, society slowly returned to calm. 
However, in 2019, when a novel coronavirus was isolated from patients 
with pneumonia of an unknown cause, the peace was broken again. The 
World Health Organization (WHO) named the newly discovered virus 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The 
disease caused by SARS-CoV-2, coronavirus disease 2019 (COVID-19), 
was a new type of coronary pneumonia [7], which mainly manifested as 
a fever, dyspnea, a dry cough, and diarrhea and could develop into 
respiratory failure, organ failure, and death [8]. A study found that 
patients with kidney disease and COVID-19 had a higher mortality rate 
[9]. At present, COVID-19 has become a global epidemic affecting 
worldwide health and development. Therefore, there is an urgent need 
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to explore the characteristics, pathogenesis, and treatment of COVID-19. 
Based on the present situation, studying how viruses work is an ur-

gent concern, especially with respect to their epidemiology, clinical 
features, and pathogenic mechanisms. More attention should be paid to 
organ failure caused by viral infection, of which kidney damage is one of 
the most critical complications. Therefore, we aimed to review the 
characteristics, mechanisms, effects on the kidney, as well as preventive 
measures against kidney damage, to provide possible options for the 
treatment of novel coronaviruses and related renal diseases. 

2. SARS-CoV-2 and kidney disease 

The most recent coronavirus outbreak, COVID-19, has now reached a 
global pandemic status. The issue of coronavirus infection combined 
with kidney injury has also received a large amount of attention. Kidney 
disease is a risk factor for severe COVID-19 and mortality. Therefore, 
this review summarizes the epidemiology of SARS-CoV-2 infections, the 
potential pathogenesis, and the relationship with various types of kidney 
diseases (diabetic, hypertensive, and immunoglobulin A nephropathies 
[IgAN]) and proposes possible treatment methods to address this global 
problem. 

2.1. Epidemiology of new coronavirus infections 

From the end of 2019, SARS-CoV-2 infections have posed a huge 
global public health threat. The WHO reported that data last update 
5:39 pm CEST, 23 September 2022, there have been 611,421,786 
confirmed COVID-19 cases, including 6,512,438 deaths, globally 
(https://covid19.who.int/). 

Basic information on SARS-CoV-2, SARS-CoV, and MERS-CoV, such 
as the extent of spread, number of confirmed cases and deaths, and 
symptoms, are listed in Table 1. The main manifestations of the illness 
are a fever and a dry cough. Serious cases can involve tissue damage in 
the lung and kidney, as well as respiratory failure, organ failure, and 
even death [10]. 

The six known coronaviruses that can infect humans are SARS-CoV, 
HCoV-229E (229E), HCoV-OC43 (OC43), HCoV-NL63 (NL63), HCoV- 
HKU1 (HKU1), and MERS-CoV, four of which cause symptoms similar 
to those of the common cold. The other two, SARS-CoV and MERS-CoV, 
are zoonotic coronaviruses that have caused two deadly pandemics [11, 
12]. However, the newly discovered coronavirus has a less than 80% 
genetic homology with SARS-CoV and an even lower homology with 
MERS-CoV [13]. Furthermore, after extracting RNA from patients with 
SARS-CoV-2 as a template and cloning and sequencing the genome, 
more than 85% of the virus fragments were shown to come from the 
genus coronavirus. Therefore, SARS-CoV-2 is an independent branch of 
the genus coronavirus and the seventh identified virus that can infect 
humans [7,14]. The new coronavirus not only causes respiratory and 
gastrointestinal symptoms but also damages the kidney. This review 
discusses the kidney damage caused by SARS-CoV-2 and the possible 
mechanisms. 

Renal disease has been related to mortality in hospitalized COVID-19 
patients [15]. AKI is one of the crucial complications of COVID-19; more 
than 40% of hospitalized patients have renal dysfunction, and 5.1% of 
patients have acute kidney injury [16,17]. According to the autopsy 
results of 26 COVID-19 patients in China, clinical symptoms of kidney 
injury, including elevated serum creatinine levels, increased urea ni-
trogen values, and diffuse proximal tubule injuries, were reported in 9 
cases [18]. Another study showed that the incidence of COVID-19 that 
develops with AKI exceeded 0.5% [19]. Moreover, in the examination of 
hospitalized patients, serum creatinine and urea nitrogen levels were 
significantly increased, accompanied by a decrease in glomerular 
filtration rates and the presence of proteinuria; patients with abnormal 
kidney function were often severely ill [16,20]. 

2.2. The potential mechanism of novel coronavirus infection 

The mechanism of novel coronavirus-induced kidney injury is 
complicated and has not been fully elucidated. The fusion of the virus 
envelope to the host cellular membrane is vital for the viral entrance into 
renal cells. A specific proteolytic cleavage of the S protein, called the 
priming step, generates fusion-activated SARS-CoV-2 peptides. The ex-
pressions of angiotensin converting enzyme 2 (ACE2) as well as the 
activity of certain proteases results in cell infection. Except ACE2, other 
surface receptors including transmembrane protease serine-2 
(TMPRSS2) and CD147 (basigin or extracellular matrix metal-
loproteinase inducer) may be involved in the entry of SARS-CoV-2. 
TMPRSS2 initiates the SARS-CoV-2 S protein, allowing the S2 unit to 
undergo a conformational rearrangement, leading to cell membrane 
fusion. Subsequently, the virus enters the cell, releases its components, 
replicates, and finally infects cells [21–23], SARS-CoV-2 enters the renal 
cells mainly through ACE2 receptor binding, thereby causing kidney 
damage (Fig. 1). 

Clinical samples have shown that the levels of inflammatory factors 
IL-2, IL-7, IL-10, and tumor necrosis factor alpha (TNF-α) were higher in 
patients with COVID-19 [24,25], and the number of T cells, B cells, and 
natural killer (NK) cells decreased sharply, along with a reduced per-
centage of monocytes. Increases in the neutrophil to lymphocyte ratio 
usually indicate a higher disease severity and poor clinical outcome. 
More importantly, biopsies have shown that the level of highly 
pro-inflammatory factors in CD4-T cells increased, confirming either 
immunity decline or injury [26]. Therefore, the increased incidence of 
COVID-19 combined with kidney injury may be due to an immune 
function impairment mediated by the inflammatory disease induced by 
SARS-CoV-2. Transforming growth factor beta (TGF-β)/Smads plays an 
important role in both acute and chronic kidney diseases. Recently, a 
study found the pathogenicity of the SARS-CoV-2 (nucleocapsid) N 
protein in acute kidney injury. The SARS-CoV-2 N protein can interact 
with Smad3, a downstream signaling molecule of TGF-β1, resulting in G1 
cell cycle arrest and tubular epithelial cell necrosis, which directly leads 
to AKI (Fig. 2). However, Smad3 gene knockout mice or specific Smad3 

Table 1 
Basic information of SARS-CoV, MERS-CoV and SARS-CoV-2.  

Name of 
coronavirus 

Number of 
cases 

The 
number of 
deaths 

Infection in 
organs 

Common 
symptoms 

SARS-CoV 8096 774 Lung, intestine, 
liver, kidney, 
lymph node, 
skeletal 
muscle, spleen, 
etc. 

Fever, myalgia, 
discomfort, 
chills, cough, 
and later, 
shortness of 
breath, pleurisy, 
diarrhea, multi- 
organ failure and 
death 

MERS-CoV 2468 851 Lung, kidney, 
liver, 
skeletal 
muscles, 
heart, etc. 

Fever, myalgia, 
nausea, diarrhea, 
malaise, drowsy, 
dyspnea, cough, 
etc, acute 
respiratory 
distress, septic 
shock, multi- 
organ failure and 
death 

SARS-CoV-2 611,421,786 6,512,438 Esophagus, 
lungs, heart, 
kidney, liver, 
ileum, bladder, 
etc. 

Fever, myalgia, 
cough, sore 
throat, chest 
pain, diarrhea, 
etc., severe 
pneumonia, 
acute respiratory 
distress, death 
from multiple 
organ failure  

F. Wang et al.                                                                                                                                                                                                                                   
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inhibitors can significantly reduce cell death and AKI induced by the 
SARS-CoV-2 N protein [27]. Thus, Smad3 may be used as a target to 
treat AKI caused by COVID-19 infections. Next, the relationship between 

various types of kidney diseases and the novel coronavirus is analyzed. 

Fig. 1. Life cycle of SARS-CoV-2 in renal cells. SARS-CoV-2 enters renal cells by binding to ACE2 receptor and splicing S protein by host cell molecule TMPRSS2. 
The virus is then released and translated into non-structural proteins (NSPs). Next translated on the endoplasmic reticulum, and finally reassembled into new virus 
particles with the help of Golgi apparatus, leaving the cells to infect other renal cells, thus infecting the whole kidney and causing damage. 

Fig. 2. Schematic diagram of kidney injury caused 
by SARS-COV-2. SARS-CoV-2 enters the body through 
the respiratory tract, then binds to the angiotensin- 
converting enzyme receptor on the surface of inflam-
matory cells in the kidney and promotes the cells to 
secrete inflammatory factors (IL-6, IL-1, CXCL-1, etc.), 
aggravating acute kidney injury. (b) On the other hand, 
SARS-CoV-2 N protein can interact with Smad3 in renal 
tubular epithelial cells, which is a downstream signal 
molecule of TGF-β1, leading to G1 cell cycle arrest, 
resulting in renal tubular epithelial cell necrosis, thus 
directly causing kidney injury.   

F. Wang et al.                                                                                                                                                                                                                                   
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2.3. COVID-19 and diabetic nephropathy 

The pathogenesis of diabetic nephropathy, the most common 
complication of diabetic patients, is nephron loss with a decreased 
estimated glomerular filtration rate (eGFR). During the COVID-19 
epidemic, diabetic nephropathy was a risk factor for predicting an 
adverse outcome after SARS-CoV2 infection. Compared with patients 
with COVID-19 pneumonia alone, patients with COVID-19 pneumonia 
and diabetic nephropathy had a probability of fatality rate of 14.5%, 
while the probability of fatality rate due to COVID-19 pneumonia was 
5.7%; thus, diabetes is thought to increase COVID-19 pneumonia mor-
tality [28,29]. Currently, many studies have reported that COVID-19 
infects the body through the combination of spike S protein and ACE2 
[30–32]. In addition, ACE2 is highly expressed in the proximal tubules 
of diabetic nephropathy. The high expression of ACE2 increases the 
COVID-19 entry into the kidney and aggravates kidney injury [33]. 
Diabetic patients are more likely to be infected with COVID-19 virus, 
mainly because angiotensin converting enzyme inhibitor (ACEI) and 
angiotensin II receptor blocker are the first-line drugs for diabetes, and 
taking these two drugs can increase the expression of ACE2 receptor 
[34–36]. So we have reason to believe that patients with diabetic ne-
phropathy are more likely to be infected with COVID-19 under the same 
conditions. However, some studies have found that the overexpression 
of ACE2 can significantly inhibit renal fibrosis and improve renal 
function in diabetic nephropathy. Therefore, treating the COVID-19 
disease simply by inhibiting ACE2 is still controversial [37], affecting 
the important life activities of the body. Because ACE2 can antagonize 
the effect of ACE and regulate the balance of signal peptides in tissues. 
ACE can catalyze the hydrolysis of AngI to produce AngII, which is one 
of the strongest vasoconstrictive substances found in current research 
[38]. At the same time, ACE can stimulate aldosterone secretion, pro-
mote the reabsorption of Na+ and K+ by human kidney, and lead to the 
increase of sodium storage and blood volume, thus leading to the in-
crease of blood pressure[39]. It has positive inotropic and chronotropic 
effects on the heart. ACE gene polymorphism is also closely related to 
many cardiovascular diseases, left ventricular hypertrophy, myocardial 
infarction, diabetic nephropathy, etc. 

ACE2 can antagonize the pressor effect of ACE, and has positive 
significance in lowering blood pressure, protecting myocardial 
ischemia, inhibiting thrombosis and atherosclerosis and other heart 
diseases. Other studies have shown that ACE2 can also inhibit tumor cell 
growth and angiogenesis, improve hyperglycemia, inhibit inflammatory 
factors, reduce fiber proliferation, etc., and has complex physiological 
functions [40]. Therefore, inhibiting ACE2 will cause serious damage. 

Most researchers have begun to focus on other potential factors, such 
as neuropilin-1, mitochondrial glutathione, vitamin D, and dipeptidyl 
peptidase-4 (DPP-4). In particular, neuropilin-1 seems to play an 
important role in the underlying mechanism of COVID-19 and diabetic 
nephropathy [34]. The upregulation of neuropilin-1 in the diabetic 
kidney promotes viral entry into tissues, and the involvement of these 
two processes leads to the exhaustion of neuropilin-1, which is closely 
related to the pathogenesis of diabetic nephropathy. 

In addition to targeting important signals through ACE2 and 
neuropilin-1, COVID-19 infection is also related to higher mechanisms 
mediated by DPP-4 and the inhibition of AMP-activated protein kinase 
(AMPK) activation in renal cells. Lowering DPP-4 and restoring AMPK 
levels are organ protective, indicating the pathogenic effect of DPP-4 
and the protective effect of AMPK in diabetic COVID-19 patients [35, 
41]. Besides providing standard treatment for COVID-19 patients, we 
urgently need new drug therapies to support the stability and function of 
diabetic organs and cell types. 

2.4. COVID-19 and IgA nephropathy 

IgAN is the most common form of primary glomerulonephritis 
worldwide, resulting in renal failure in 20–40% of patients within 20 

years of diagnosis. IgAN is mainly induced by upper respiratory tract 
infections [42,43]. Its clinical manifestations are mainly recurrent he-
maturia and proteinuria after infection. However, treatment strategies 
are limited, and it has been mainly treated with 
renin-angiotensin-aldosterone system (RAAS) inhibitors and immuno-
suppressants. COVID-19 entering the human body through the respira-
tory tract can affect glomerular diseases and aggravate IgAN [44]. 
Several case reports have shown that the results of renal biopsies of 
patients with IgAN who were infected with COVID-19 were consistent 
with IgAN with cellular glomerulopathy and moderate-to-severe tubu-
lointerstitial scarring, suggesting that COVID-19 aggravated the IgAN 
[45]. The potential mechanism of COVID-19-aggravated IgAN may 
involve the virus directly influencing the damage and the activation of 
the ACE2 pathway, hindering complement regulation. In addition, 
COVID-19 may act as a superantigen, driving the development of 
multisystem inflammatory syndrome as well as cytokine storms in pa-
tients affected by COVID-19. This effect reaches the glomerulus, leading 
to the development of this novel IgAN, in addition to genetic 
component-triggering glomerular diseases, mainly collapsing focal 
segmental glomerulosclerosis, tubulointerstitial, and even vascular 
diseases. 

Vaccination is one of the most effective ways to prevent COVID-19 
infection, but some patients have new autoimmune phenomena, such 
as immune thrombotic thrombocytopenia, autoimmune liver disease, 
IgA nephropathy, rheumatoid arthritis, and systemic lupus erythema-
tosus, after vaccine administration. At present, kidney damage from 
vaccines appears mainly as IgAN and minimal variant nephropathy 
(MCD). A large number of studies have confirmed that administering the 
COVID-19 vaccine can also aggravate kidney damage, which is mainly 
manifested by increased hematuria, proteinuria, and serum creatinine 
levels [46,47]. Renal biopsies of IgAN samples revealed fibrocytes and 
fibromuscular layers. The mechanism may be due to the excessive in-
crease of IgA in vivo while the vaccine activates the immune system, 
which aggravates the IgAN damage. In contrast, the development of 
MCD after vaccination takes longer, indicating that it plays a role in 
cellular immunity. The center of the MCD pathogenesis is the develop-
ment of podocyte damage due to dysregulated T-cell activation. The 
COVID-19 mRNA vaccine has been shown to trigger an enhanced T 
follicular helper (Tfh) response, which peaked at seven days after im-
munization [48,49]. 

2.5. COVID-19 and end-stage renal disease 

In this section, we mainly discuss the susceptibility of patients with 
end-stage renal disease to COVID-19, as well as their higher mortality. 
Patients with end-stage kidney disease require regular dialysis, making 
hemodialysis wards gathering places, owing to frequent visits and long 
hospital stays [50]. One study showed that among the 230 hemodialysis 
patients, 37 patients had concomitant COVID-19, during the 
SARS-CoV-2 epidemic, six of seven dialysis patient deaths were caused 
by COVID-19 [51]. Compared with non-hemodialysis patients, patients 
with COVID-19 who are undergoing hemodialysis have a decreased 
number of peripheral blood T cells, auxiliary T cells, and NK cells, as 
well as significantly decreased levels of serum inflammatory cytokines 
[52]. In conclusion, patients with COVID-19 who are undergoing he-
modialysis have a higher mortality risk. 

The reasons COVID-19 infections occur in hemodialysis patients are 
as follows: First, patients with kidney disease often take ACE inhibitors 
and angiotensin 2 receptor blockers, which increase ACE2 receptor 
levels. However, as the ACE2 receptor is also the receptor of SARS-CoV- 
2, its increased expression further increases the risk of SARS-CoV-2 
entering the host cells [53,54]. Second, B- and T-cell dysfunction in 
hemodialysis patients can cause a decreased lymphocyte count and a 
long-term elevation in calcitonin levels, which are also common in pa-
tients with COVID-19 [55]. Decreased lymphoid numbers may be a 
factor in the disease severity of general patients. Finally, the diagnosis of 

F. Wang et al.                                                                                                                                                                                                                                   
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COVID-19 in hemodialysis patients depends on imaging and viral 
nucleic acid detection. Considering the possible immunosuppression 
and epidemic situation, hemodialysis patients are more likely to be 
infected with COVID-19 than the general population [56]. 

Furthermore, the mortality of patients with end-stage renal disease 
and COVID-19 increased significantly. The reason may be that all pa-
tients with end-stage renal disease need to take ACE2 inhibitors, and the 
treatment strategy for COVID-19 also targets the ACE2 enzyme. Inhi-
bition leads to an angiotensin disorder in the body and affects important 
life functions, such as blood pressure regulation. In addition, patients 
with end-stage renal disease have low immunity. After COVID-19 enters 
the body, it further aggravates inflammatory reactions. The imbalance 
of anti- and pro-inflammatory cells leads to excessive inflammation, 
which can lead to high mortality. 

Patients with end-stage renal disease are more prone to infection 
with the novel coronavirus virus, which is extremely harmful. A special 
treatment plan these patients is necessary. The current measures are as 
follows: (1) A certain distance needs to be maintained when communi-
cating with others, and contact with patients infected with SARS-CoV-2 
should be avoided [57]; (2) To break the transmission chain through the 
dialysis unit, a special person should be dedicated to thoroughly dis-
infecting the dialyzers, to ensure the safety of patients [58]; and (3) 
SARS-CoV-2-infected individuals should be identified to avoid the 
occurrence of combined diseases and reduce the death rate [57]. The 
Chinese Society of Nephrology has developed more detailed guidelines 
for the management of COVID-19 in dialysis wards [59], and has indi-
cated that hemodialysis patients need special treatment for COVID-19. 
We fully agree with the proposed management guidelines. 

2.6. Therapeutic drugs 

There is an urgent need to develop effective therapeutic drugs to 
control the current occurrence of COVID-19 caused by SARS-CoV-2. 
Currently, the drugs used in clinical treatment include the IL-6 recep-
tor-targeted monoclonal antibody tocilizumab, RNA polymerase in-
hibitors such as remdesivir and favipiravir [60,61], and protease 
inhibitors such as lopinavir/ritonavir [62], which reduce viral infection 
by affecting the assembly of virions in the cells. Chloroquine and 
hydroxychloroquine upregulate anti-inflammatory molecules to inter-
fere with downstream inflammatory pathways and reduce the inflam-
matory response and damage to vital organs in SARS-CoV-2 patients [63, 
64]. In one study, ivermectin inhibited the importin (IMP) 
α/β1-mediated nuclear import of viral proteins, which disrupted the 
immune escape mechanism of the virus [65]. Oseltamivir specifically 
inhibits neuraminidase, which can inhibit the separation of the mature 
virus from host cells, thereby improving the disease situation; it is more 
effective in combination with other antiviral drugs [66]. However, some 
drugs used in the antiviral process can cause kidney damage. Therefore, 
drugs for the treatment of COVID-19 should be cautiously introduced 
and monitored for their effects on the kidney. As one of the main organs 
involved in COVID-19 pneumonia, it is important to explore whether 
drugs used for the treatment of COVID-19 cause kidney damage. For this 
reason, this review summarizes the drugs commonly used in COVID-19 
pneumonia and their effects on the kidney, providing a basis for more 
reasonable clinical drug choices (Table 2). 

3. Patients with COVID-19 and secondary nephropathy 

As SARS-CoV-2 rapidly evolves and expands, the full spectrum of 
effects is becoming evident, from self-limiting respiratory tract illness to 
severe acute respiratory distress syndrome (ARDS), multiple organ 
failure, and death. As an important excretory organ, the kidney plays a 
vital role in the body. The kidney is frequently involved in COVID-19, 
and > 40% of cases have abnormal proteinuria at hospital admission. 
AKI is common among critically ill patients with COVID-19, affecting 
approximately 20–40% patients admitted to intensive care, according to 

the experiences in Europe and the USA, which impacts their survival 
[67]. 

The data of a large-scale clinical study in China showed that 701 
patients with COVID-19 had abnormal renal indicators, with signifi-
cantly increased levels of creatinine and urea nitrogen and the presence 
of proteinuria and hematuria. Approximately 5% of COVID-19 patients 
are diagnosed with AKI during hospitalization [23]. Compared with 
patients with normal renal function, patients with COVID-19 and AKI 
are more prone to various complications. Therefore, AKI is considered a 
negative prognostic factor and an indicator of COVID-19 severity [68]. 
What causes such a high incidence of kidney injury? Next, we will 

Table 2 
Mechanism of action of therapeutic drugs against coronaviruses.  

Name Action 
mechanism 

Effect on kidney Reference 

Oseltamivir Inhibition of 
neuraminidase 

The incidences of AKI in 
influenza-A H1N1 
treated with antiviral 
and antibiotic 
combination was less as 
compared to patients 
who were given antiviral 
alone for treatment of 
influenza infection. 
When renal function 
decreases, the serum 
concentration of 
oseltamivir, a renal 
excretion drug, increases 
its efficacy, which may 
increase the risk and 
frequency of adverse 
reactions. 

[127] 

Remdesivir Inhibition of 
RNA-dependent 
RNA 
polymerase 

There is no significant 
impact for the time 
being. 

[128] 

Ivermectin Inhibition of 
nuclear 
transport of 
viral proteins 

P2X4 purinergic receptor 
agonist ivermectin can 
exacerbates ischemic AKI 
and promotes NLRP3 
inflammasome signaling. 
Ivermectin can cause 
mitochondrial 
dysfunction, oxidative 
stress and damage in 
renal cancer cells. 

[129,130] 

Hydroxychloroquine Block virus-cell 
membrane 
fusion 

In addition to optimizing 
the inhibition of renin- 
angiotensin-aldosterone 
system, 
hydroxychloroquine 
significantly reduced 
proteinuria in IgA 
nephropathy with no 
adverse events for more 
than 6 months. 
Compared with patients 
who did not use 
hydroxychloroquine, the 
use of 
hydroxychloroquine in 
patients with newly 
diagnosed rheumatoid 
arthritis was significantly 
associated with a 
significantly lower risk of 
CKD. 
Hydroxychloroquine can 
reduce renal ischemia 
reperfusion injury and 
improve atherosclerosis 
and angiosclerosis in 
patients with CKD. 

[131–134]  

F. Wang et al.                                                                                                                                                                                                                                   
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analyze the reasons why COVID-19 patients are more likely to have 
secondary kidney diseases. 

3.1. Inflammation and immune responses 

The virus multiplies and affects tissues in response to ineffective 
immune responses. T-cell necrosis or apoptosis is promoted by the 
release of a cytokine storm, leading to a reduction in T cells, especially in 
severe cases, reducing the number of circulating CD4 and CD8 T cells 
and resulting in high levels of IL-10 and TNF-α. Consequently, inflam-
mation disrupts the viral clearance by promoting T-cell exhaustion. 
Almost all patients with COVID-19 develop lymphocytopenia, an 
important marker of immune system disorders [69]. Kidney macro-
phages play a critical immune defense role because they are the primary 
cells that communicate with viral targets and can activate phagocytic 
and chemokine signaling [70,71]. Moreover, the cytopathic effects of 
SARS-CoV-2 can directly damage renal tubular cells and propagate 
complex immune responses during infection and replication. In addi-
tion, chemokine networks, complement cascade activation, and coagu-
lation play potential roles in the development of AKI in COVID-19 
patients [23]. 

3.2. Hemodynamics and hypercoagulability 

Of note, patients with COVID-19 may develop myocarditis about half 
a month after the onset of symptoms, and myocarditis may lead to AKI 
because of changes in systemic hemodynamics. ACE2, found in intesti-
nal cells, is closely related to gastrointestinal function [72]. The mutual 
interaction between SARS-CoV-2 and ACE2 might disrupt the function of 
ACE2 and result in diarrhea [73]. However, since the main target of 
SARS-CoV-2 is ACE2, patients with COVID-19 may experience severe 
diarrhea or even dehydration, thus affecting the renal function. 

COVID-19 infection has been accompanied by a surge of clotting, 
disseminated intravascular coagulation, pulmonary infarction, and 
thrombosis [74]. Moreover, a poor prognosis was found in cases with 
lower platelet and enhanced D-dimer levels. Evidence of micro-
angiopathy in other organs, such as the spleen and kidney, has also been 
reported, leading to infarction of these important tissues [75]. Increased 
circulating clotting levels have been widely reported in COVID-19 pa-
tients undergoing dialysis. In addition, elevated myocardial damage, 
similar to myocardial infarction, is a possible outcome of myocardial 
tissue microangiopathy and myocarditis in patients with COVID-19 
[76]. Therefore, hypercoagulation might spread acute tubular necrosis 
to cortical necrosis and thus, induce irreversible kidney damage in se-
vere COVID-19 cases. Also, microthrombi and microangiopathy states 
can elevate the risk of micro-infarctions in different organs, such as the 
heart, liver, and kidney, further leading to impairments in multiple 
tissues. 

3.3. Viral septicemia 

Sepsis is caused by the imbalanced inflammatory response caused by 
the host infection. Data of hospitalized patients show that patients with 
severe COVID-19 infections have high serum levels of cytokines and 
chemokines, similar to sepsis [77]. 

SARS-CoV-2 may cause sepsis if a secondary bacterial or fungal 
infection occurs. Patil et al. [78] suggested that the virus itself may 
contribute to the sepsis syndrome through mechanisms such as immune 
dysregulation, respiratory dysfunction leading to hypoxemia, and cir-
culatory dysfunction leading to metabolic acidosis. The multiple organ 
failure seen in COVID-19 due to hypoxia and circulatory disorders due to 
microvascular dysfunction can also be interpreted as secondary effects. 
Others have suggested that microvascular dysfunction may also inter-
rupt the blood flow to the lungs through disseminated intravascular 
coagulation and micro-embolism, leading to hypoxia and subsequent 
organ failure. Lin [79] emphasized that various degrees of damage to the 

heart, liver, kidney, and other organs in severe infection, together with 
laboratory abnormalities such as decreased lymphocyte and platelet 
counts, increased D-dimer, C-reactive protein (CRP), and liver and 
myocardial enzyme levels, and the high cytokine levels are similar to 
those seen in sepsis caused by bacterial infections. Furthermore, severe 
COVID-19 has all the hallmarks of sepsis, including a specific pathogen, 
and COVID-19 could be considered sepsis caused by a viral infection. 
Other studies have reinforced this view, noting that all infectious agents, 
including viruses, could cause sepsis. Various viral respiratory patho-
gens, including influenza, avian and swine flus, SARS, and MERS, have 
been associated with sepsis. Compared to bacterial sepsis, viral sepsis 
has some similarities but also some differences, including a relatively 
late onset and progression. The appropriate use of systemic steroids 
modulates immune responses and improves survival in patients with 
COVID-19 [80]. Considering severe COVID-19 disease as a sepsis syn-
drome has relevance and may assist in terms of determining treatments 
that will modulate the immune response, limit the intrinsic damage to 
tissue and organs, and potentially improve outcomes. 

3.4. Rhabdomyolysis 

The clinical manifestations of COVID-19 include rhabdomyolysis, 
which causes AKI [81]. Autopsy results of patients with COVID-19 show 
acute proximal tubular injury and rhabdomyolysis, as determined by the 
presence of pigment casting and inflammation. In particular, some pa-
tients may also have potential renal injuries without AKI symptoms. The 
following hypotheses are proposed for the different molecular mecha-
nisms of virus-induced rhabdomyolysis: (1) Direct viral invasion, (2) the 
occurrence of a cytokine storm and the resulting damage, and (3) the 
direct destruction of muscle cell membranes caused by circulating viral 
toxins [82]. Although the exact mechanism by which COVID-19 causes 
rhabdomyolysis has not been determined, excessive cytokine production 
may be the driving factor. 

3.5. Oxygen supply and demand imbalance 

After a COVID-19 infection, the body’s metabolism becomes more 
active, which increases the burden on the heart and leads to an insuf-
ficient oxygen supply. The resulting imbalance of the oxygen supply and 
demand in COVID-19 patients, especially in severe and critical cases, can 
become complicated by sepsis or septic shock [83], resulting in the 
occurrence or aggravation of sepsis-related AKI [84]. At the same time, 
hypoxia can easily cause rhabdomyolysis. Some patients infected with 
H1N1 in 2009 demonstrated significantly elevated creatine kinase levels 
[85]. An analysis showed rising creatine kinase levels in inpatients with 
COVID-19 in the intensive care unit (ICU). Thus, some factors may lead 
to kidney damage after the metabolic acceleration following a COVID-19 
infection [86]. 

3.6. Nephrotoxicity of antiviral drugs 

At present, there is insufficient evidence to show that any existing 
antiviral drugs can effectively treat COVID-19 pneumonia. To slow the 
viral spread as quickly as possible, several potentially useful drugs are 
being used; however, some studies have shown that they are useful but 
ultimately ineffective. Hydroxychloroquine, lopinavir/ritonavir, and 
ribavirin are examples of therapeutic agents whose efficacy against 
COVID-19 was later disproved. Furthermore, we found that ribavirin, 
atazanavir/ritonavir, and tenofovir may cause renal damage during 
antiviral therapy [87–89]. The kidney participates in the metabolism of 
antiviral drugs, which in turn affects or aggravates kidney damage. 
Therefore, we speculated that anti-SARS-CoV-2 treatment might also 
cause renal damage [90,91]. Pfizer’s new drug, PAXLOVID™ 
(PF-07321332), has significantly reduced hospital stays and mortality in 
double-blind trials. Although patients could benefit greatly from PAX-
LOVID™, they may be at significant risk for drug interactions and harm 
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owing to the ritonavir component, a particularly potent inhibitor of 
cytochrome P450 system CYP3A enzymes. The interaction between ri-
tonavir and CYP3A-dependent drugs can result in 1.8- to 20-fold in-
creases in the area under the curve blood concentrations of these latter 
drugs. Because cyclosporine, tacrolimus, and the mTOR inhibitors 
sirolimus and everolimus are highly dependent on CYP3A metabolism, 
their plasma levels increase substantially and rapidly on exposure to 
ritonavir. Organ transplant recipients receive immunosuppressive 
drugs, such as tacrolimus. Tacrolimus is metabolized by the cytochrome 
P450 3A4 enzyme system, and many drugs can induce or inhibit this 
enzyme, affecting its levels. It can cause serious side effects such as AKI 
and is a hazard that deserves our attention, although there hasn’t been 
much research [92]. Interestingly, some glucocorticoid drugs may cause 
kidney damage in the anti-inflammatory treatment of COVID-19 and in 
the rescue of critically ill patients [93,94]. As one of the main organs 
involved in COVID-19 pneumonia, it is important to explore whether the 
drugs used for the treatment of COVID-19 cause kidney damage. 

4. When the kidney meets the SARS-CoV 

SARS is an airborne virus. Studies have shown that SARS-CoV rapidly 
invades the lungs and exists in respiratory secretions, feces, and urine. 
As of July 5, 2003, SARS has killed 774 people worldwide [2,95]. During 
the epidemic, 32 countries and regions reported cases to the WHO that 
were mainly distributed in Asia, especially in China, Singapore, and 
Vietnam. However, there were also a small number of cases in Europe 
and America [96,97]. The major clinical manifestations of SARS are a 
fever, muscle soreness, a dry cough, diarrhea, and dyspnea. Severe cases 
can rapidly progress to respiratory failure. Laboratory tests of typical 
cases are characterized by a decreased lymphocyte count and low T 
lymphocyte function. Radiological examinations revealed that almost 
all patients had unilateral or bilateral lung infiltration changes [98,99]. 
Some researchers have found that in addition to its effects on the lungs, 
SARS can also cause kidney damage [100,101]. Therefore, studying the 
relationship between SARS and kidney injury is particularly important. 
Autopsy cases also have shown that coronavirus infection exists not only 
in the lungs but also in the kidneys of 38% (6/16) of patients [102]. 

During the SARS outbreak in 2003, an analysis of clinical parameters 
of 536 patients with SARS-CoV infection found that 36 (6.7%) patients 
developed AKI, and increased serum creatinine levels were found in 
some patients with SARS-CoV, which further confirmed the relationship 
between SARS and kidney injury [103]. Other studies showed that the 
expressions of inflammatory factors such as interleukin (IL)-6 and IL-8 
were increased in patients with SARS-CoV. The patients eventually 
died of multiple organ failure, which suggests that inflammation may 
also cause AKI [102,104,105]. At present, there are two main conjec-
tures about the mechanism of SARS-induced inflammation: virus repli-
cation/proliferation and neutralizing antibodies. In the first proposed 
mechanism, apoptosis and pyrolysis caused by virus replication are 
important factors that cause inflammation. Studies have shown that 
SARS-CoV can activate macrophage nucleotide-binding and oligomeri-
zation domain (NOD)-like receptor protein 3 inflammatory bodies 
through viroporin 3a to cause pyrolysis, which leads to the production of 
many inflammatory factor precursors [106]. In addition, ACE2 may also 
play a vital role in inflammation. Studies found that SARS-CoV can 
induce the downregulation of ACE2 expression on the surface and cause 
the extracellular region of ACE2 to fall off [107]. The imbalance of ACE2 
prevents the effective decomposition of angiotensin 2. Accumulated 
angiotensin 2 induces an inflammatory response and further increases 
the vascular permeability, causing disease progression [108]. In the 
second proposed mechanism, neutralizing antibodies may also induce 
inflammation. When foreign antigens such as viruses invade the body, B 
lymphocytes in the immune system are stimulated by antigens to 
differentiate into effector B cells, namely plasma cells, which produce 
and release neutralizing antibodies that can bind to the virus. Destroying 
the virus before entering the cell is a vital part of the immune system. 

Studies have shown that anti-coronavirus neutralizing antibodies may 
induce inflammatory reactions, which can lead to acute lung injury in 
severe cases [109,110]. Thus, the mechanism by which anti-coronavirus 
neutralizing antibodies induce inflammation and lung injury is still 
unclear. Some researchers have speculated that the coronavirus anti-
body complex binding to Fc receptors promotes lung inflammation and 
sustained viral replication in some patients [111–113]. 

The relationship between SARS and chronic kidney disease (CKD) is 
also noteworthy. Four SARS patients in Hong Kong were treated with 
high doses of ribavirin and corticosteroids during dialysis; however, all 
eventually died. Based on this small case series, patients undergoing 
dialysis may experience more serious consequences after SARS-CoV 
infection [114]. The use of immunosuppressive agents should be 
reduced to avoid excessive infection in patients with SARS and ne-
phropathy [115]. Emerging evidence suggests that SARS is more inva-
sive in people with kidney disease than in those without kidney disease 
[103]. Therefore, enhanced vigilance against SARS should be used in 
patients with low immunities, such as those with CKD. 

5. When the kidney meets MERS-CoV 

MERS is caused by infection with MERS-CoV, a β-coronavirus. MERS- 
CoV caused respiratory diseases in the Middle East and then spread to 
Europe, Africa, and Asia [116,117]. The WHO reported 2468 MERS-CoV 
cases globally, including 851 deaths, from April 2012 to September 
2019 (https://www.who.int/zh/). The MERS mortality rate is high 
(35%), and complications caused by infection can lead to severe respi-
ratory and renal failure [118,119]. Moreover, MERS-CoV infection 
manifestations range from respiratory diseases to severe diseases with 
septic shock and multiple organ failure [120,121]. 

Unlike SARS-CoV, MERS-CoV uses DPP-4 as its functional receptor 
for intracellular infection [122]. DPP-4, a serine peptidase, exists in 
various cells that highly express mRNA and proteins in the kidney [123]. 
DPP-4 is one of the main membrane proteins in the kidney, suggesting 
that the kidney is a potential target organ for MERS-CoV [124]. The 
pathological features of kidney injury in patients with MERS are tubular 
epithelial cell degeneration and regeneration, glomerular ischemia, and 
an increased number of sclerosing glomeruli [125]. Zhao et al. [126] 
found inflammatory cell infiltration in mice infected with MERS coro-
navirus. However, with an extended infection time, more renal tubular 
epithelial cells were damaged and there was evidence of focal hemor-
rhage in the renal interstitium. On the basis of these findings, we spec-
ulated that MERS first produces an inflammatory response to kidney 
damage. Thereafter, the renal tubular epithelial cells become damaged, 
accompanied by bleeding. A recent study using high-throughput anal-
ysis demonstrated that MERS-CoV induces renal cell apoptosis via 
upregulating the expression of Smad7 and fibroblast growth factor-2 
(FGF2) [6]. It has also been confirmed in non-human primate models; 
common marmosets infected with MERS-CoV developed ARDS, and the 
infection spread to the kidneys and other organs, with a detectable 
increased expression of Smad7 and FGF2 in the kidneys [6]. These re-
sults support the view that Smad7 and FGF2 may play a vital role in the 
pathogenesis of MERS-CoV-induced kidney damage. However, further 
experimental verification is required. 

6. When the kidney meets SARS-CoV-2 

COVID-19 is a global health problem. Currently, SARS-CoV-2 infec-
tion is mainly reduced through vaccination and prevention. When in-
fections occur, there are still no effective treatments. The renal effects of 
SARS-CoV-2 were the focus of this paper, including the kidney damage 
after infection with SARS-CoV-2 and the renal effects before and after 
COVID-19 treatment. We hoped to address the adverse consequences 
caused by SARS-CoV-2 and contribute to the knowledge of this issue. 
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7. Conclusion 

In this review, we summarized the kidney damage caused by SARS- 
CoV, MERS-CoV, and SARS-CoV-2 infections. We also discussed the 
detailed situation of COVID-19 patients undergoing hemodialysis as well 
as current therapeutic drugs that cause renal damage. We concluded that 
highly pathogenic coronaviruses might cause cytopathic changes, such 
as to the ACE2 receptor, or excessive inflammation leading to kidney 
damage. Patients with CKD and kidney transplants are more susceptible 
to infection because of their weakened immune systems, which makes 
them more susceptible to the virus. These conclusions lay an important 
foundation for the control of COVID-19 and provide possibilities for 
future treatments of coronavirus infections. Clinically, in addition to 
actively treating primary diseases induced by SARS-CoV-2, the renal 
injury and other complications caused by the infection should be 
considered. Therefore, to treat pneumonia caused by coronaviruses, the 
renal function of infected patients should be monitored, and drugs 
without adverse renal effects should be used to accelerate the patient’s 
recovery. Our analysis included not only the kidney damage caused by 
the coronavirus infections, including the renal damage from therapeutic 
drugs, but also explored the impact to patients with pre-existing renal 
damage. Our findings provide guidance for primary coronavirus disease 
treatment, and strategies for monitoring and treating patients to prevent 
renal damage and other secondary complications. 
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