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Abstract: Reliable and robust systems to detect and harvest fruits and vegetables in unstructured
environments are crucial for harvesting robots. In this paper, we propose an autonomous system that
harvests most types of crops with peduncles. A geometric approach is first applied to obtain the cutting
points of the peduncle based on the fruit bounding box, for which we have adapted the model
of the state-of-the-art object detector named Mask Region-based Convolutional Neural Network
(Mask R-CNN). We designed a novel gripper that simultaneously clamps and cuts the peduncles of
crops without contacting the flesh. We have conducted experiments with a robotic manipulator to
evaluate the effectiveness of the proposed harvesting system in being able to efficiently harvest most
crops in real laboratory environments.
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1. Introduction

Manual harvesting of fruits and vegetables is a laborious, slow, and time-consuming task in food
production [1]. Automatic harvesting has many benefits over manual harvesting, e.g., managing
the crops in a short period of time, reduced labor involvement, higher quality, and better control over
environmental effects. These potential benefits have inspired the wide use of agricultural robots to
harvest horticultural crops (the term crops is used indistinctly for fruits and vegetables throughout
the paper, unless otherwise indicated) over the past two decades [2]. An autonomous harvesting
robot usually has three subsystems: a vision system for detecting crops, an arm for motion delivery,
and an end-effector for detaching the crop from its plant without damaging the crop.

However, recent surveys of horticultural crop robots [3,4] have shown that the performance of
automated harvesting has not improved significantly despite the tremendous advances in sensor
and machine intelligence. First, cutting at the peduncle leads to higher success rates for crop detachment,
and detachment at the peduncle reduces the risk of damaging the flesh or other stems of the plant
and maximizes the storage life. However, peduncle detection is still a challenging step due to varying
lighting conditions and occlusion of leaves or other crops [5], as well as similar colors of peduncle
and leaves [6,7]. Second, existing manipulation tools that realize both grasping and cutting functions
usually require a method of additional detachment [8,9], which increases the cost of the entire system.

In this paper, we present a well-generalized harvesting system that is invariant and robust
to different crops in an unstructured environment aimed at addressing these challenges.
The major contributions of this paper are the following: (i) development of a low-cost gripper
(Supplementary Materials) that simultaneously clamps and cuts peduncles in which the clamper
and cutter share the same power-source drive, thus maximizing the storage life of crops and reducing
the complexity and cost; (ii) development of a geometric method to detect the cutting point of
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the crop peduncle based on the Mask Region-based Convolutional Neural Network (Mask R-CNN)
algorithm [10].

The rest of this paper is organized as follows: In Section 2, we introduce related work. In Section 3,
we describe the design of the gripper and provide a mechanical analysis. In Section 4, we present
the approach of cutting-point detection. In Section 5, we describe an experimental robotic system to
demonstrate the harvesting process for artificial and real fruits and vegetables. Conclusions and future
work are given in Section 6.

2. Related Work

During the last few decades, many systems have been developed for the autonomous harvesting
of soft crops, ranging from cucumber [11] and tomato-harvesting robots [12] to sweet-pepper [2,13]
and strawberry-picking apparatus [14,15]. The work in [16] demonstrated a sweet-pepper-harvesting
robot that achieved a success rate of 6% in unstructured environments. This work highlighted the difficulty
and complexity of the harvesting problem. The key research challenges include manipulation tools along
with the harvesting process, and perception of target fruits and vegetables with the cutting points.

2.1. Harvesting Tools

To date, researchers have developed several types of end-effectors for autonomous harvesting,
such as suction devices [17], swallow devices [18], and scissor-like cutters [15]. The key component
of an autonomous harvester is the end-effector that grasps and cuts the crop. A common approach
for harvesting robots is to use a suction gripping mechanism [16,19,20] that picks up fruit by pushing
the gripper onto the crop to generate air to draw a piece of crop into the harvesting end and through
the tubular body to the discharge end. These types of grippers do not touch the crops during the cutting
process, but physical contact occurs when they are inhaled and slipped into the container, potentially
causing damage to the crops, especially to fragile crops. Additionally, the use of additional pump
equipment increases the complexity and weight of the robotic system, resulting in difficulties for
compact and high-power density required in autonomous mobile robots [21,22]. Some soft plants,
such as cucumbers and sweet peppers, must be cut from the plant and thus require an additional
detachment mechanism and corresponding actuation system. The scissor-like grippers [16,23] that grasp
the peduncles or crops and cut peduncles can be used for such soft plants. However, these grippers are
usually designed at the expense of size. A custom harvesting tool in [16] can simultaneously envelop
a sweet pepper and cuts the peduncle with a hinged jaw mechanism; however, size constraints restrict
its use for crops with irregular shapes [24].

To overcome these disadvantages, we have designed a novel gripper that simultaneously clamps
and cuts the peduncles of crops. In addition, the clamping and detachment mechanism share the same
power-source drive rather than using separate drives. The benefits of sharing the same power source
for several independent functions are detailed in our previous work [25,26]. Since the gripper clamps
the peduncle, it can be used for most fruits that are harvested by cutting the peduncle. Since the gripper
does not touch the flesh of the crop, it can maximize the storage life and market value of the crops.
As the clamping and cutting occurs simultaneously at the peduncle, the design of the gripper is
relatively simple and therefore cost-effective.

2.2. Perception

Detection in automated harvesting determines the location of each crop and selects appropriate
cutting points [1,27,28] using RGB cameras [29,30] or 3D sensors [13,15]. The 3D localization allows
a cutting point and a grasp to be determined. Currently, some work has been done to detect the peduncle
based on the color information using RGB cameras [6,7,29,30]; however, such cameras are not capable
of discriminating between peduncles, leaves, and crops if they are in the same color [7]. The work
in [31] proposed a dynamic thresholding to detect apples in viable lighting conditions, and they further
used a dynamic adaptive thresholding algorithm [32] for fruit detection using a small set of training
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images. The work in [27] facilitates detection of peduncles of sweet peppers using multi-spectral
imagery; however, the accuracy is too low to be of practical use. Recent work in deep neural networks
has led to the development of a state-of-the-art object detector, such as Faster Region-based CNN
(Faster R-CNN) [33] and Mask Region-based CNN (Mask R-CNN) [10]. The work in [34] uses
a Faster R-CNN model to detect different fruits, and it achieves better performance with many fruit
images; however, the detection of peduncles and cutting points has not been addressed in this work.
To address these shortcomings, we use a Mask R-CNN model and a geometric feature to detect the crops
and cutting points of the peduncle.

3. System Overview and the Gripper Mechanism

3.1. The Harvesting Robot

The proposed harvesting robot has two main modules: a detection module for detecting
an appropriate cutting point on the peduncle, and a picking module for manipulating crops (see Figure 1).
Specifically, the detection module determines the appropriate cutting points on the peduncle of each
crop. The picking module controls the robot to reach the cutting point, clamps the peduncle, and cuts
the peduncle. The clamping and cutting actions are realized by the newly designed gripper.
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Figure 1. Architecture of the proposed harvesting robot.

3.2. The Gripper Mechanism

The proposed gripper is illustrated in Figure 2 from a 3D point of view. Inspired by skilled
workers who use fingers to gently hold the peduncles and use their fingernails to cut the peduncles,
this gripper is designed with both clamping and cutting functions with three key parts only: a top plate
with a cutting blade, a middle plate to press the peduncle, and a bottom plate to hold the peduncle.
Two torsion springs and an axle are included.
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The clamping and cutting processes work as follows:

1. Clamping the peduncle: pressing the top plate, the middle plate contacts the bottom plate based
on “torsion spring 2”, and thus the peduncle is clamped, as shown in Figure 3b.
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2. Cutting the peduncle: continuing to press the top plate, the cutting blade contacts the peduncle
on the bottom plate, thereby cutting the peduncle, as shown in Figure 3c.

After releasing the top plate, the top and middle plates are automatically restored to the rest
position (Figure 3a) by “torsion springs 1 and 2”, respectively.
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3.3. Force Analysis of the Gripper

As shown in Figure 4, when the cutting blade touches the bottom plate, the cutting force on
the peduncle is calculated using the following equations:

Mcut = Mpush −Mspring_1 −Mspring_2 (1)

Mspring_1 = k1 ·θ1 (2)

Mspring_2 = k2 ·θ2 (3)

where Mcut, Mpush, Mspring_1, Mspring_2 are the moments of cutting force, pushing force, spring 1

and spring 2. k1 and k2 are the torsion coefficients of “torsion springs 1 and 2”, respectively. θ1 and θ2

are the angles of deflection from the equilibrium position of “torsion springs 1 and 2”, respectively.
“Torsion spring 1” is the spring between the top plate and bottom plate, while “torsion spring 2” is

the spring between the top plate and middle plate; see also Figures 2 and 4d. With the moment Mcut,
the cutting force Fcut can be described as:

Mcut = Fcut·Lcut (4)

where Fcut is the force applied on the peduncle from the cutting blade, Lcut is the length between
the axis of the coil and the line of the cutting force, see Figure 4b. P is the contacting point between
the cutting blade and the peduncle.

Thus, Fcut is derived from Equations (1)–(4) as follows:

Fcut =
Mpush − k1 ·θ1 − k2 ·θ2

Lcut
(5)

For further investigating the cutting force on peduncle, we analyzed the stress:

Fcut = τcut·A (6)

τcut =
Mpush − k1 ·θ1 − k2 ·θ2

A·Lcut
(7)

where τcut is the stress, and A is the surface area of the peduncle. The two variables determine if
the peduncle can be cut off. Equation (7) is derived from Equations (5) and (6).
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As shown in Figure 5, when pressing the top plate and the middle plate touches the bottom
plate, “torsion spring 2” creates the pressing force on the middle plate, and thus generates force on
the bottom plate. This force ensures that the gripper clamps the peduncle before the cutting blade
touches the peduncle:

Mclamp = Mspring_2 (8)

Mclamp = Fclamp·L2 (9)

Mspring_2 = k2 ·θ2 (10)
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After the peduncle is cut, the crop is detached from the peduncle if the clamping force is smaller
than the gravity of the crop. To ensure that the crop is clamped, the minimum clamping force
overcoming the gravity is expressed as:

Fclamp ≥
m·g
µ

(11)
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where m is the weight of the crop, g the gravity, and µ the coefficient of friction for a crop on the gripper
plate surface. Based on the Equations (8)–(11), we obtain the minimum coefficient of “torsion spring 2”:

k2 ≥
m·g·Lclamp

µ·θ2
(12)

4. Perception and Control

4.1. Cutting-Point Detection

The approach to detecting the cutting points of the peduncles consists of two steps: (i) the pixel
area of crops is obtained using deep convolutional neural networks; (ii) the edge images of fruits are
extracted, and then a geometric model is established to obtain the cutting points. Here, we obtain
the external rectangle size of each pixel area to determine the region containing the peduncle for each
crop. The architecture of the cutting-point-detection approach is shown in Figure 6.

Accurate object detection requires detecting not only which objects are in a scene, but also where
they are located. Accurate region proposal algorithms thus play significant roles in the object-detection
task. Mask R-CNN [10] makes use of edge information to generate region proposals by using the Region
Proposal Network (RPN). Mask R-CNN uses color images to perform general object detection in two
stages: region proposal, which proposes candidate object bounding boxes, and a region classifier that
predicts the class and box offset with a binary mask for each region of interest (ROI). To train Mask
R-CNN for our task, we perform fine-tuning [37], which requires labeled bounding-box information
for each of the classes to be trained. After extracting the bounding box for each fruit, the geometric
information of each region (e.g., external rectangle) is extracted by geometric morphological calculation.
The cutting region of the interest of the targeted crop can thus be determined. A RGB-D camera like
the Kinect provides RGB images along with per-pixel depth information in real time. With the depth
sensor, the 2D position of the cutting point is mapped to the depth map, and thus the 3D information
of the cutting point (x,y,z) is obtained.
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The peduncle is usually located above the fruit. Thus, we set the ROI of the peduncle above
the fruit, as shown in Figure 7.

The directions of the crops can be downward or tilted. We also adapted the minimum bounding
rectangle to Mask R-CNN, thus to obtain the bounding boxes for crops in tilted direction. Other cases
such as the direction of the crop parallel to the camera or the peduncle being “occluded” by its flesh
will be discussed in the future work.

We then obtain the bounding box of the fruit, i.e., a top point coordinate (xt, yt), and a bottom
point coordinate (xb, yb). The coordinates of the cutting point (xc, yc) can be determined as follows:

RoiL = 0.5·Lmax (13)

RoiH = 0.5·Hmax (14)

Lmax = |xb − xt| (15)
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Hmax = |yb − yt| (16)

xc = 0.5(xb − xt) ± 0.5RoiL (17)

yc = yt − 0.5RoiH (18)
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4.2. System Control

A common method of motion planning for autonomous crop harvesting is open-loop
planning [16,38]. Existing work on manipulation planning usually requires some combination of
precise models, including manipulator kinematics, dynamics, interaction forces, and joint positions [39].
The reliance on manipulator models makes transferring solutions to a new robot configuration
challenging and time-consuming. This is particularly true when a model is difficult to define, as in
custom harvesting robots. In automated harvesting, a manipulator is usually customized to a special
crop; thus, they are not as accurate as modern manipulators and it is relatively difficult to obtain
accurate models of the robots. In addition, requiring high position sensing becomes challenging in
manipulators given the space constraints.

In this paper, we demonstrate a learning-based kinematic control policy that maps target positions
to joint actions directly, using convolutionally neural network (CNN) [40]. This approach makes
no assumptions regarding the robot’s configuration, kinematic, and dynamic model, and has no
dependency on absolute position sensing available on-board. The inverse-kinematics function is
learned using CNNs, which also considers self-collision avoidance, and errors caused by manufacturing
and/or assembly tolerances.

As shown in Figure 8, the network comprises three convolutional layers and three fully connected
layers. The input is the spatial position of the end-effector, and the output is the displacement of all of
the joints. The fully connected layers will serve as a classifier on top of the features extracted from
the convolutional layers and they will assign a probability for the joint motion being what the algorithm
predicts it is.

We collected data by sending a random configuration request q = (q1, q2, . . . , qn) to a robot with n
joints and observing the resulting end-effector position x = (x1, x2, . . . , xn) in 3D space. n is the number
of joints. This results in a kinematic database with a certain number of trails:

X = (< q1, x1>, < q2, x2 >, . . . , < qn, xn >) (19)
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We use the neural network shown in Figure 8 to estimate the inverse kinematics from the collected
data. Then we generate a valid configuration qn for a given target position xn. qn and xn are the nth set
of training data. We use this approach for planning to reach a cutting point of the peduncle.
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5. Hardware Implementation

The following experiments aim at evaluating the general performance of the harvesting system.
As shown in Figure 9, the proposed gripper was mounted on the end-effector of the Fetch robot
(see Figure 9c). The Fetch robot consists of seven rotational joints, a gripper, a mobile base, and a depth
camera. The depth camera was used to detect and localize the crops. The robot is based on the open
source robot operating system, ROS [41]. The transformation between the image coordinate frame
and the robot coordinate frame are obtained with ROS packages. The three plates and the shaft of
the proposed gripper are created using Polylactic Acid (PLA) with a MakerBot Replicator 2 printing
machine. The length, width, and height of modules are taken as 11, 5, and 9 cm, respectively.

Since the Fetch robot is not suitable for working in the field, the experiments were conducted in
a laboratory environment. In order to verify the effectiveness of the proposed system in identifying
and harvesting a variety of crops, we use both real and plastic ones, as shown in Figure 9a,b.
Two experiments are presented in the following section aimed at validating the perception system
and the harvesting system. First, we present the accuracy of the detection of crops and the cutting
points. Second, we present the experiment of the full harvesting platform, demonstrating the harvesting
performance of the final integrated system.Sensors 2019, 19, x FOR PEER REVIEW 9 of 16 
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Figure 9. Setup for the experiments. (a) The experiment setup; (b) The plastic crops with plastic
peduncles hung on a rope; (c) The proposed gripper mounted on the end-effector of the Fetch robot.

5.1. Detection Results

Seven types of crops were tested, including lemons, grapes, common figs, bitter melon, eggplants,
apples, and oranges. For each type of crop, we used 60 images for training and noises were introduced
in the images. The number of images was inspired by Sa et al. [34]. We collected images from Google
and set labelled bounding box information for each crop. The images taken with the Kinect sensor
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were used for testing only. In this paper, we used 15 testing images for each type of crop. These images
are taken from different viewpoints. We have one plant for each type of the real fruits.

An example is shown in Figure 10 where the real crops were on the plants (see Figure 9a).
For a convenient harvesting, all the plastic crops were hung on a rope, as shown in Figure 9b. We had
three attempts and the crops were repositioned the crops every time. Therefore, we used 27 plastic crops
(six apples, three lemons, six oranges, three bitter melons, three clusters of grapes, and six eggplants)
and 31 real crops (seven grape bunches, 14 lemons, and 10 common figs).
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Figure 10. Results of the cutting-point-detection for some plastic (a) and real crops (b).

We utilize the precision-curve [42] as the evaluation metric for the detection of cutting points of lemons.
The performance of the proposed detection method and the baseline method Conditional Random Field
(CRF) [43] was compared. Figure 11 shows that the two methods have similar performance. It can be seen
that there is a gradual linear decrease in precision with a large increase in recall for the proposed approach.Sensors 2019, 19, x FOR PEER REVIEW 10 of 16 
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Figure 11. Precision-recall curve for detecting lemons using the CRF-based approach
and the proposed approach.

Some of the detection results for real and plastic crops were shown in Figure 10. The results show
that the detection success rates for plastic and real crops are 93% (25/27) and 87% (27/31), respectively.
The detection success rates for the cutting points for plastic and real crops are 89% (24/27) and 71%
(22/31), respectively. The result can be seen in Figure 12.
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5.2. Autonomous Harvesting

Motion planning is performed for autonomous attachment and detachment. The attachment
trajectory starts at a fixed offset from the target fruit or vegetable determined by the bounding
box. Then, the trajectory makes a linear movement towards the cutting point. The whole motion
was computed using the control policy that maps target positions to joint actions introduced in
Section 4.2. Self-collisions of the robot were included within the motion planning framework to ensure
the robot safely planned. Once the attachment trajectory has been executed attaching the peduncle,
the end-effector is moved horizontally to the robot from the cutting point.

A successful harvest consists of a successful detection of the cutting point and a successful clamping
and cutting of the peduncle. The crop that was successfully picked was replaced with a new one hung
on the rope. We repositioned the crop for repicking if it was not harvested successfully. For real crops,
the robot harvests each crop once, including seven grape bunches, 14 lemons, and 10 common figs.
Similar to plastic fruits, reaching the crop’s cutting point is counted as a successful attachment,
and clamping and cutting of the peduncle is counted as a successful detachment. Results show that
most plastic fruits and vegetables were successfully harvested. The result is shown in Figure 12.
The detailed success and failure cases can be seen in Table 1. The attachment success, i.e., the success
rate of the robot’s end-effector reaching the cutting point is 81% and 61% for plastic and real crops,
respectively. The detachment success rates are 67% and 52%, respectively.

Table 1. Harvesting results for plastic and real crops.

Success
Cases

Plastic Crops Real Crops

Apple
(6)

Lemon
(3)

Orange
(6)

Bitter
melon (3)

Grapes
(3)

Eggplants
(6) Total Grapes

(7)
Melons

(14)
Common
figs (10) Total

Attachment 5 2 5 3 2 5 81% 5 11 6 71%
Detachment 5 2 4 1 2 5 70% 4 8 5 55%

Figure 13 is the video frames showing the robot reaching a cluster of plastic, cutting the peduncle,
and placing them onto the desired place. Figure 14 is the video frames showing the robot harvesting
real lemons, grapes and common figs in the laboratory environment. A video of the robotic harvester
demonstrating the final experiment by performing autonomous harvesting of all crops is available
at http://youtu.be/TLmMTR3Nbsw.

For cases where the crop’s cutting point is occluded by leaves, the robot can remove the leaves
to make the crop’s cutting point visible. First, the overlap between crop’s cutting area and the leaf
is calculated to see if it exceeds a given threshold. Then, the robot detects the leaf’s cutting point
and cuts it using the same method as that for cutting crops. Figure 15 shows a modified scenario in
which the robot removed leaves that occluded the fruits. We made four attempts and failed twice.

http://youtu.be/TLmMTR3Nbsw
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The figure shows that the leaf stuck onto the cutting blade and it did not detach even if the gripper
is open.
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5.3. Discussion

A failure analysis was conducted to understand what were the major causes of harvesting failures
within the system proposed, and thus to improve the system in the future work. The mode of failures
includes: (1) fruits or vegetables not detected or detected inaccurately due to occlusions; (2) cutting
point not detected due to the irregular shapes of the crops; (3) peduncle not attached due to motion
planning failure; (4) peduncle partially cut since the cutting tool stuck into the peduncle; (5) crop
dropped since the gripper does not clamp the crop tightly; (6) detachment fails since the crops or leaves
stays on the blade when the gripper is open.

Figure 11 shows the success rates for three scenarios: Scenario 1 with plastic crops, Scenario 2
with real crops, and a modified scenario in which the robot picked crops by removing occlusions.
The detection of the fruits and the cutting-points, attachment, and detachment harvest success rate
were included. The detachment success rate reflects the overall harvesting performance.

The results showed that Scenario 1 with plastic crops has a higher harvest success. The most
frequent failure mode was (2) cutting point not detected and (5), occurring 30% harvest failure.
For instance, the two attachment failures (orange 1 and eggplant 1) occurred in the first nine crops.
For orange 1, the cutting blade missed the peduncle as the peduncle is short and the cutting blade
missed it. Eggplant 1 was irregularly shaped, which resulted in a poor cutting-pose estimation. We then
adjusted the directions of the orange and eggplant for the following two rounds, and there was no
detection error. The lower detachment success rate is most likely attributed to the grapes and bitter
melon since they have a larger weight and fall.

The harvest success rate (55%) was lower for Scenario 2 with real crops. The most frequent failure
modes were (4), and (5) which represented a significant portion of the failure cases and showed that
attachment and detachment process is challenging due to the lower stiffness of the cutting mechanism,
as well as the sophisticated environment. For instance, the common figs have shorter peduncles
and the gripper is thick and wider, resulting in a detachment failure. The grape peduncle is thicker
and difficult to be cut off.

The results also showed a lower harvest success rate (50%) for the modified scenario. The most
failure modes were (2) and (6). For instance, the leaves of the lemon tree did not fall when the gripper is
open since the leaves were thin and light. The cutting points of the leaves were difficult to be detected
due to the random poses. Thus, the leaves may not be removed completely once. In the future work,
we will improve the detection of the occluded crops and the leaves, as well as the robot grasping pose.

6. Conclusions and Future Work

In this paper, we developed a harvesting robot with a low-cost gripper and proposed a cutting-point
detection method for autonomous harvesting. The performance of the proposed harvesting robot
was evaluated using a physical robot in different scenarios. We demonstrated the effectiveness of
the harvesting robot on different types of crops. System performance results showed that our system
can detect the cutting point, cutting the fruit at the appropriate position of the peduncle. Most failures
occurred in the attachment stage due to irregular shapes. This problem was avoided by adjusting
the directions of crops. In the future, we plan to devise a new approach to detect the cutting pose for
irregularly shaped crops.

There are some detachment issues related to the fabrication of the gripper. For instance, the crop
did not detach from the peduncle when the gripper is open, while the clamped crop falls due to
gravity. Thus, we are working to improve the gripper using metal materials with a better cutting blade,
so the gripper would be sufficiently stiff to successfully clamp different types of crops, including one
with a thicker peduncle.

In this paper, we mainly focused on the cases where the directions of the crops are downward
or tilted. The hypothesis posed in this paper is that a robot capable of reaching targets or leaves
without considering obstacles. Human approaches a fruit by pushing a leaf aside or going through
the stems without causing any damage to the plant since a damage can seriously hamper plant growth
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and affect future production of fruit. Inspired by this, we demonstrated how a robot removes leaves
to reach the target crop. However, the proposed crop picking process by removing leaves is still in
an ideal situation. In the future, we will improve the detection of obstacles, such as unripen crops,
leaves and stems. For cases where the direction of a crop parallel to the camera or the peduncle being
“occluded” by its flesh, the robot needs to rotate the camera to the next best view [44] to make the cut
point of the crop visible. A method to determine the next best view with an optimal grasp [45] based on
occlusion information will be considered in the future work.

For the case where stems are viewed as obstacles which are not avoided, we are currently working
on developing a vision-guided motion planning method, using a deep reinforcement learning algorithm.
This approach allows the robot to reach the desired fruits and avoid obstacles using current visual
information. The aforementioned next-best-view-based approach will be combined with the motion
planning. Furthermore, we aim to explore the estimation of the locations of crops in three dimensions
and predict the occlusion order between objects [46].

As our current robot is inappropriate for use outside, we have not tested our harvesting robot in
the field. Our next step is to test more types of crops in the field using a UR5 robot and, in addition,
consider the autonomous reconstruction of unknown scenes [47].

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/1/93/s1.
Video: Autonomous fruit and vegetable harvester with a low-cost gripper using a 3D sensor.
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