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Graphical Abstract

∙ TGF-β is a superfamily of evolutionarily conserved and growth-inhibitory
cytokines that control pleiotropic cellular functions.

∙ TGF-β signalling plays a key role in cell proliferation, differentiation, morpho-
genesis, regeneration and tissue homeostasis implicated in cancer initiation
and progression.

∙ Crosstalk of TGF-β signalling with other pathways is comprehensively dis-
cussed.

∙ Various bioactive natural compounds modulate the TGF-β signalling pathway
to confer potential cancer preventive and therapeutic activities.
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Background: Cancer is the world’s second leading cause of death, but a signif-
icant advancement in cancer treatment has been achieved within the last few
decades. However, major adverse effects and drug resistance associated with
standard chemotherapy have led towards targeted treatment options.
Objectives: Transforming growth factor-β (TGF-β) signaling plays a key role
in cell proliferation, differentiation, morphogenesis, regeneration, and tissue
homeostasis. The prime objective of this review is to decipher the role of TGF-β in
oncogenesis and to evaluate the potential of various natural and synthetic agents
to target this dysregulated pathway to confer cancer preventive and anticancer
therapeutic effects.
Methods: Various authentic and scholarly databases were explored to search
and obtain primary literature for this study. The Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) criteria was followed for the
review.
Results:Herewe provide a comprehensive and critical reviewof recent advances
on our understanding of the effect of various bioactive natural molecules on the
TGF-β signaling pathway to evaluate their full potential for cancer prevention
and therapy.
Conclusion: Based on emerging evidence as presented in this work, TGF-β-
targeting bioactive compounds from natural sources can serve as potential ther-
apeutic agents for prevention and treatment of various human malignancies.
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1 INTRODUCTION

Hippocrates, the father of modern medicine, coined the
word ‘cancer’ and utilised the Greek terms ‘carcinoma’
and ‘karakinos’ to describe tumours.1 Cancer is a global
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health problem, frequently observed in both developed
and developing nations; however, lately, there has been a
remarkable improvement in survival rates of patients due
to early detection and improvement in the development of
treatment options.2 Cancer represents a hyperproliferative
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disease characterised by the transformation of cells, apop-
totic dysregulation, proliferation, angiogenesis, invasion
and metastasis.3
Cancer remains a prime reason for mortality, being the

second leading cause of death worldwide. About 19.3 mil-
lion new cases of cancer and around 10.0 million cancer-
related deaths were expected to occur worldwide in 2020.4
It has been estimated that there were roughly 1 898 160
cases of cancer diagnosis and approximately 608 570 deaths
from cancer in 2021 in the United States,5 which is sig-
nificantly higher than the earlier prediction of the num-
ber of expected cases of cancer in the previous year.6 Sev-
eral factors can be attributed to cancer, including physi-
cal carcinogens (ultraviolet radiation), chemical carcino-
gens (asbestos, tobacco and arsenic), and any type of infec-
tion from viruses, bacteria, fungi or other parasites. Some
other factors include dietary and behavioural problems,
low intake of fruits and vegetables, lack of physical exer-
cise and excessive tobacco and alcohol usage.7
Treatment of cancer has always been a significant chal-

lenge, as there is no complete resolution developed yet
for cancer treatment, although its risk can be reduced by
avoiding exposure to carcinogens. Although chemother-
apy has been standardised and is commonly used for can-
cer treatment along with surgery, radiation therapy and
immunotherapy, often these chemotherapeutic agents can
lead to unhealthy levels of toxicity.8 Natural products have
been an excellent source for drug discovery,9,10 as they
have more ability than bacteria, fungi, insects and climate
to produce structurally diverse primary and specialised
compounds.11 Natural products are the reservoir of phy-
toconstituents possessing substantial chemoprotective and
anticancer properties and are components of over 60% of
currently available anticancer drugs.12 It is also notewor-
thy that ‘combination chemotherapy’, which is widely use-
ful for effective cancer treatment, utilises both natural and
synthetic agents.9 Several potent plant-based chemothera-
peutic agents such as vinca alkaloids, taxols, epothilones
and podophyllotoxins are used commercially.13,14 Addi-
tionally, there are many different compounds, including
curcumin, resveratrol, epigallocatechin gallate (EGCG),
genistein, quercetin, lycopene, apigenin, gallic acid, sul-
foraphane and ursolic acid, which exhibit significant ther-
apeutic effects against cancer.8,16–25
Various phytoconstituents have gained special atten-

tion and provided a novel avenue for cancer treatment
through targeting different cross-linked pathways, such
as oxidative stress, mutagenesis, inflammation, apopto-
sis and autophagy, as well as several signalling inter-
mediaries, including cancer metabolism.26–28 Out of the
various other pathways, some prominent therapeutic
targets for plant secondary metabolites are the mam-
malian target of rapamycin (mTOR), phosphatidylinosi-

tol 3-kinases (PI3K), protein kinase B (or Akt), hypoxia-
inducible factor-1α (HIF-1α) and extracellular signal-
regulated kinase (ERK),29 nuclear factor-κB (NF-κB), acti-
vator protein 1,30 c-Jun NH2-terminal kinases (JNKs),
mitogen-activated protein kinase (MAPK), tumour necro-
sis factor (TNF) receptor-associated factor (TRAF), TNF
receptor 1-associated death domain protein, Janus kinase
(JAK) and the signal transducer and activator of transcrip-
tion (STAT).26–35
The transforming growth factor-β (TGF-β) signalling

pathway plays a crucial role in various cellular responses;
misregulation of this pathway often leads to tumour
progression.36 The regulatory cytokine TGF-β has tumour-
suppressive effects, which can be evaded by cancer cells
through malignant evolution. TGF-β can modify vari-
ous processes, for example, immune regulation, cell inva-
sion and alteration of microenvironments, which may be
exploited by cancer cells for their own advantage.37
TGF-β is involved in various biological functions,

including embryonic stem cell differentiation and self-
renewal, homeostasis differentiation in cells, immune sup-
pression and the promotion of cancer development.38 The
characterisation of the TGF-β signalling pathway is well-
defined. The cell membrane is the location where TGF-β
binds to its receptor and thus initiates a signalling cascade
by phosphorylating smallmothers against decapentaplegic
homolog 2 and 3 (Smad2/3). Afterwards, the phosphory-
lated Smad2/3 attaches to Smad4, and translocation of the
cytoplasmic complex occurs towards the nucleus for acti-
vation of transcription of end effectors, including p21, p15
and the parathyroid hormone-related protein.39,40
Several prior reviews are available on different features

of TGF-β signalling. In this line, a review by Lee et al.,41
published in 2013, was based on the pros and cons of affect-
ing the TGF-β pathway during the progression and devel-
opment of cancer by various natural products. This work
wasmainly focused on the alteration of gene-specific DNA
methylation levels by natural products in different tar-
get tissues and systemic circulations. Another review by
Markov et al.42 focused on natural triterpenoids and their
semi- and synthetic-derivatives on various tumour-related
signalling pathways, including TGF-β and human epider-
mal growth factor receptor. A third review published by
Farooqi et al.43 analysed the role of single phytoconstituent
EGCG on the regulation of various deregulated signalling
pathways, including TGF-β, in cancer.
Despite the aforementioned reviews,41–43 an updated

and comprehensive evaluation of the information is still
lacking due to the effect of the broader categories of natural
products on TGF-β signalling pathways during tumouri-
genesis. The available information is limited to drawing
conclusive insight into the role of natural and synthetic
agents targeting TGF-β in cancer therapeutics. Therefore,
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we aim to provide for the first time a comprehensive and
critical review of the natural products as well as the syn-
thetic agents that act on TGF-β along with their mecha-
nistic attributes. The prime objective of this review is to
decipher the role of TGF-β in oncogenesis and to evaluate
the potential of various natural and synthetic agents to tar-
get this dysregulated pathway to confer cancer preventive
and anticancer therapeutic effects. In addition, the review
provides insight into the omics approaches associated with
TGF-β in oncology as well as comprehensive preclinical
and clinical studies pertaining to various natural products
against different cancers.

2 TGF-β RECEPTORS AND
SIGNALLING PATHWAY

TGF-β is a superfamily of evolutionarily conserved and
growth-inhibitory cytokines that control pleiotropic cel-
lular functions.44 In normal and primary cancer cells,
TGF-β suppresses the tumour by inducing apoptosis over
proliferation.39 However, it also encourages tumourmetas-
tasis via epithelial-mesenchymal transition (EMT) stim-
ulation, invasion, migration, chemoattraction and cell
adhesion.45

2.1 TGF-ß receptors

There are three receptor types, namely, Type I (TβRI), Type
II (TβRII) and Type III (TβRIII), along with seven human
type I receptors, and five Type II receptors; Type III is the
most abundant type. Different members of the TGF-β fam-
ily bind to a combination of the Types I, II and III receptors.
The TGF-β isoforms, that is, TGF-β1, TGF-β2 and TGF-β3,
usually bind to the Type II receptor. Their role is crucial,
as they exert both promoter and terminator properties. In
normal cells, they indicate tumour-suppressive features,
and in malignant cells, they display tumour-promoting
roles.46
TGF-β Type III is the most abundant type of TGF-β lig-

and that is transferred to the signalling receptors TβRI and
TβRII, which are occupied with serine/threonine protein
kinases at their intracellular domains.47 Upon binding of
TGF-β ligand to TβRIII, it either binds to TβRII straight
away or presents TGF-β to TβRII.48 Once the TGF-β ligand
binds to the TβRII receptor, it is auto-phosphorylated and
constitutively transphosphorylases the TβRI GS domain,
thus stimulating the activity of protein kinase. Activated
receptors work with adaptors or cofactors to induce tran-
scriptional activity. TGF-β through the non-Smad pathway
binds with different cytokines, such as JNK, p38, ERK1/2
and PI3K, which promotes transcriptional activity.49

Canonical TGF-β signalling takes place upon binding of
one of the three ligands to TGFBR2, which phosphorylates
TGFBR1. Then, this TGFBR1 phosphorylates downstream
Smad2 and Smad3 on the carboxy terminus (pSmad2/3C)
of a serine residue. Subsequently, it recruits Smad4 and
translocates into the nucleus where it controls the tran-
scription of TGF-β target genes. Upon binding of one of
three ligands to TGFBR2, it phosphorylates and recruits
TGFBR1, resulting in canonical TGF signalling. Conse-
quently, the downstream Smad2 and Smad3 are phospho-
rylated by the action of TGFBR1 on a serine residue at its
pSmad2/3C (carboxy terminus), which attracts Smad4 and
translocates towards the nucleus, where it modulates the
transcription of TGF-targeted genes.46
A chimeric receptor model was used to gather more

insight. TGFBRs are continuously recycled in the absen-
teeism of ligands, and ligand interaction only causes het-
eromeric receptors (TGFBR1/TGFBR2) to be degraded,
while homomeric receptors (TGFBR1/TGFBR1) are recy-
cled again to the plasma membrane.50

2.2 Secretion of TGF-β

Several cells, including macrophages, secrete TGF-β. It is
secreted either through cancer cells or via cells present
on the local stroma, and the attribution of TGF-β-induced
anticancer T-cell immunity inhibition can be an adverse
event for the host.51 Serum proteinases, for instance, plas-
min, accelerate TGF-β release from the complex. This pro-
cess takes place on the macrophages (surface) in which
the latent TGF-β complex is bound to CD36 by its ligand,
thrombospondin-1. The active TGF-β release is enhanced
by inflammatory stimuli, which are responsible for the
activation of macrophages via plasmin activation.52 The
synthesis of TGF-β ligands takes place as precursor pro-
teins with a longer N-terminal pro-peptide and a shorter
mature C-terminal polypeptide.53

2.3 Biology and functions of TGF-β

TGF-β displays various biological activities, such as
chemotaxis, extracellular matrix synthesis, cell differen-
tiation and angiogenesis. It also exhibits growth inhibi-
tion of various cells, including endothelial, epithelial and
lymphocytic cells. It induces the proliferation of mes-
enchymal cells, such as fibroblasts. Additionally, it has
also been associated with several pathophysiological pro-
cesses comprising tissue fibrosis, wound repair, morpho-
genesis and immunosuppression. These bioactivities are
usually carried out through specific cell surface recep-
tors, TβR-I and TβR-II.54,55 TGF-β plays dualistic roles
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F IGURE 1 Figure showing molecular pathways involving the transforming growth factor-β (TGF-β) role in cancer. The TGF-β signalling
pathway regulates embryogenesis, cell homeostasis, proliferation, differentiation and death. TβRI, TβRII and TβRIII—TGF-β receptor
types—serine/threonine kinases induce heterotetrameric receptor complexes. TGF-β can carry out apoptosis through small mothers against
decapentaplegic (Smad)-dependent and -independent pathways. TGF-β also follows a non-Smad pathway where it binds with different
cytokine-like p38, c-Jun N-terminal kinases, extracellular signal-regulated kinase and phosphoinositide 3-kinase and promotes transcriptional
activity. In the nucleus, it regulates gene expression by binding with two types of receptors in the cell membrane with intrinsic
serine/threonine kinase activity which is then conducted by intercellular Smad proteins. These are transcription factor that regulates gene
expression. Created with BioRender.com

in tumourigenesis.56 In the initial stages, it inhibits cel-
lular growth by blocking tumourigenesis and acts as a
tumour suppressor through the regulation of EMT and cell
migration. It usually inhibits cell division via cell cycle
arrest at the G1 phase. This further enhances the cyclin-
dependent kinase (CDK) inhibitors expression, namely,
p15 and p21, with successive c-Myc suppression, which is
a multifunctional oncogene and considered to be present
in various human cancers. When it functions as a tumour
promoter, it overexpresses itself and leads to invasiveness,
cell proliferation and enrichedmetastatic potential. This is
due to regulation in the levels of EMT, angiogenesis and
immunosuppression.57
TGF-β dysfunctions lead to diseases such as cancer, con-

nective disorders and fibrotic diseases.58 The development
of TGF-β chimaera has emerged recently as a potential
approach due to the presence of high-affinity TGF-β lig-
ands for their receptors through rearranging, mixing and
mutating their binding epitopes.58,59

2.4 Regulation of TGF-β

The TGF-β signalling pathway is largely involved in
the cellular process. They have been observed to pos-
sess both positive and negative effects by several mech-
anisms. TGF-β plays an influential, multifunctional role
in cell differentiation and proliferation; however, at differ-
ent stages, there is a different response of TGF-β within
production, secretion, activation and signalling. In the
nucleus, it regulates gene expression by binding with
two types of receptors in the cell membrane with intrin-
sic serine/threonine kinase activity, which is then con-
ducted by intercellular Smad proteins. These are transcrip-
tion factors that regulate gene expression60 as shown in
Figure 1. The R-Smad/Co-Smad complex attaches with
other nuclear cofactor proteins in the nucleus, and the
process of gene transcription starts.60,61 In the epithe-
lial cells, TGF-β is believed to function as a regulatory
tumour suppressor factor of utmost importance due to
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its effect of early inhibition of proliferation and apoptosis
induction.62

3 ROLE OF TGF-β IN
TUMOURIGENESIS

3.1 Proliferation

TGF-β is quite efficient in suppressing the proliferative
activity of cancer cells in multiple ways. As normal epithe-
lial cells and haematopoietic cells multiply by targeting
CDKS, TGF-β either inhibits CDKS directly by suppress-
ing further proliferation of cells, or it upregulates expres-
sion of CDKS inhibitors, such as p15ink4b, p27kip1 and
p21cip1. This process inhibits theCDKS complex and causes
G1 stage cell cycle arrest. TGF-β can even inhibit CDK4,
which is needed for the progression from the G1 stage to
S phase of the cell cycle. Directly inhibiting the cell cycle,
it even suppresses the activity of c-Myc, which inhibits the
action of CDKS inhibitors and leads to a reduction in cell
proliferation.49
TGF-β, or the TGF-β/Smad4 signalling pathway in par-

ticular, regulates the process of signal transduction from
cell membrane to the nucleus. it is also accountable for a
broad array of cellular processes, such as differentiation,
proliferation, migration and apoptosis. In addition, it is
also responsible for the onset and progression of cancer.63
As mentioned previously, TGF-β protein plays a dual role
in tumourigenesis. During the initial stages of tumourige-
nesis, TGF-β plays a suppressive role. Afterwards, with the
tumour progression, cancer cells slowly become resistant,
and finally the TGF-β protein augments immunosuppres-
sion of the tumour and facilitates invasion, tumour angio-
genesis and metastasis.64

3.2 Differentiation

TGF-β expresses its differentiating property differently
depending upon the stage of cancer, type of tumour and
changes in the tumour microenvironment. During the ini-
tial cancer stages, TGF-β plays a tumour-suppressive role
by arresting the cell cycle and stimulating apoptosis. It
can display this activity through the generation of CDK
inhibitor p21Waf1/Cip1, which is considered the controller of
the cell cycle. Cyclin A is a substitute for CDK, and upreg-
ulation of cyclin A accelerates the entry of the S phase
into NIH3T3 andU937 cells. The complex of cyclin A/CDK
is involved in the regulation of progression through the S
phase, and it pushes the cell to theG2phase. Thus, decreas-
ing the expression of cyclin A can stop the cell cycle at the S
phase.65 TGF-β has been reported to regulate the immuno-

logical response and differentiation of T and B lympho-
cytes, which are associated with the inflammatory cascade
in cancer progression at organ and tissue levels.66

3.3 Apoptosis

TGF-β can carry out apoptosis through Smad-dependent
and Smad-independent pathways. Through Smad-
dependent pathways, TGF-β is involved in the release of
pro-apoptotic proteins, mediated by TGF-β-inducible early
response genes, which lead to cellular oxidative stress.67 It
also activates the death-associated protein kinase,68 which
causes apoptosis through mitochondrial cytochrome c
release.68,69 through inositol-5-phosphatase, it downreg-
ulates the pro-survival PI3K-Akt pathway, which leads to
cell death easily.69 Through the Smad4-signalling path-
way, the stress-activated protein kinase/JNK pathway is
regulated, which controls the expression of pro-apoptotic
genes, including the Bcl-2 modifying factor, Bcl-2 interact-
ing mediator of cell death, Bcl-2-associated X protein and
caspase-9. However, cells resistant to TGF-β for growth
inhibition can still react to apoptosis by translocating
the mitochondrial apoptosis-related protein in the TGF-β
signalling pathway to the nucleus, which stimulates
caspase-3 activation and downregulation of Bcl-xL and
X-linked inhibitor of apoptosis protein expression, leading
to apoptosis.49,69–72

3.4 Migration

TGF-β increases the migratory property of cancer cells by
re-constructing the cytoskeleton structure of cells through
releasing focal adhesion kinase signalling, stress fibre
formation and smooth muscle actin expression.49 The
changes associated with EMT allow the cells to lose con-
nection with the epithelial cells and easily migrate the cell
from the initial position as well as promote cancer metas-
tasis. Like in prostate cancer, by cytoskeleton rearrange-
ment of Cdc42 and RhoA in a dependent fashion and via
increasing the stress fibres and lamellipodia,73 it promotes
the migratory property of cancer cells.49,74,75

3.5 Cancer initiation and progression

TGF-β plays a vital dual function in tumour progression
by suppressing and promoting it accordingly. The down-
regulation of TGF-β is considered vital for the onset of
cancer. When cell proliferation is inhibited due to fac-
tors, such as CDK inhibitors or by the secretion of anti-
angiogenic factors and through repressing the expression
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of c-Myc, it acts as a tumour suppressor. It plays a role
as a tumour promoter by activating matrix deposition and
agitating immune function, thus stimulating EMT. EMT is
an important factor in cancer progression and is described
as suppressed epithelial markers and enhancedmesenchy-
mal markers. TGF-β not only regulates EMT but is also
involved in the metastasis of cancer cells. It is considered
as a tumour suppressor in malignant cells; however, it acts
as a promoter in the metastasis of cancer cells.76 TGF-
β’s involvement in cancer microenvironment and its dual
roles have been extensively reviewed elsewhere.66,77–79

3.6 TGF-β downregulation and reactive
oxygen species (ROS) production

ROS and TGF-β both affect cancer progression and
tumourigenesis; hence, their mutual effects are very com-
plex. Different cells and tissues produce high amount of
ROS through various mechanisms; an increased amount
of ROS is a characteristic of all types of cancer as it induces
tumour initiation, progression and acts as a secondary
messenger for regulating different pathways, such as cell
proliferation, survival and apoptosis.80 ROS can lead to
cancer cells’ apoptosis at the molecular level and cause
damage to the nucleic acids.74,81

4 CROSSTALK OF TGF-βWITH OTHER
PATHWAYS

The TGF-β is a superfamily of proteins consisting of TGF-
β1, TGF-β2 and TGF-β3 isoforms; they are similar in struc-
ture but quite distinct in exerting biological response after
interacting with different receptors.82 Along with TGF-β,
other pathways have roles pertaining to cancer, and they
interact differently with receptors and cytokines to pro-
duce responses accordingly. Some of the prominent path-
ways that have interactions with TGF- β are presented in
this section.

4.1 ERK pathway

MAPK is a superfamily of specific protein kinases that
transforms extracellular signals to the nucleus and regu-
lates gene transcription; it has an impact largely on the
complex cellular process, comprising cell differentiation,
proliferation, transformation and apoptosis. MAPK is con-
stituted of subfamilies, such as ERK, JNK and p38/MAPKs.
These subfamilies are associated with protein phosphory-
lation that modifies the cell behaviour and have an ‘on-
and-off’ mechanism, which is regulated for the treatment

of cancer.However, their activation can be triggered by var-
ious extracellular molecules, including TGF-β cytokines.83
ERK is one of the major pathways under the MAPK

pathway. This pathway is mainly involved in numerous
cellular processes, including cell proliferation, differenti-
ation, apoptosis, cell growth and survival. These extracel-
lular signals are conducted and end with the activation of
the phosphorylation of proteins. This pathway is activated
by RAS/RAF/MEK, which is usually initiated with tyro-
sine kinase. Even TGF-β may facilitate the activation of
ERK rapidly in cancer cells and normal epithelial cells.84
In vitro studies showed that the ERK pathway activation
was induced by TGF-β.85

4.2 p38 pathway

p38, a stress-induced kinase activated through several
stress stimuli, is involved in various cellular processes.
However, p38 can be stimulated by TGF-β through TAK1
activation and TβR I-TRAF6 interaction. TGF-β-induced
p38 activation can augment Smad4 sumoylation via the
PIAS family of E3 ligase, hence enabling Smad4-dependent
transcription. Both p38 and TGF-β activation is vital for the
activation of transcription of Agc expression.86,87
Interestingly, a crosstalk of TGF-β, RAC1 and RAC1b

on the tumour cells of the breast and pancreas has been
demonstrated.88 TGF-β is considered a paradox as depend-
ing upon the cancer stage, it can act as both an enhancer
or a suppressor of cancer cells to invade, migrate and
metastasise through the Smad pathway. However, RAC1
and RAC1b proteins have a role in tumourigenesis and
overexpression in breast cancer and can be activated
by TGF-β.88
TGF-β and the agonist of G-protein coupled recep-

tor proteinase-activated receptor-1 (PAR1) and PAR-2 are
involved in fibrosis and cancer, as well as being involved in
the regulation of many processes, such as tumour cell pro-
liferation, migration, invasion and metastasis. TGF-β pro-
vides a regulatory effect on PAR1 expression, and upregula-
tion is associated with enhanced expression of integrin αv
and β6 subunits. However, platelet activation, along with
the agonist of PAR1, stimulates the release of TGF-β, which
brings EMT in cancer cells. Moreover, TGF-β and the PAR1
or PAR2 ligand and its receptors interactmutually at differ-
ent levels of transcription and post-transcriptional stages.
More precisely, they modulate both PAR1 and PAR2 at
the transcriptional level. This mutual interaction between
PAR1/PAR2 and the TGF-β signalling leads to feed-forward
loops/brutal cycles of matrix deposition and malignant
traits, which aggravate fibrosis and oncogenesis.89 Hence,
it has been found that the TGF-β can have crosstalks with
various other pathways, such asMAPK, P38 and ERK. This
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can also be examined further for the simultaneousmodula-
tion of these pathways from various natural and synthetic
agents.
Higher TGF-β1 expression was implicated in prostate

tumour progression in spite of its growth-inhibitory effect
on normal prostate epithelial and carcinoma cells. It was
also reported that TGF-β1 stimulated the G1-to-S transition
of the cell cycle in the TSU-Pr1 prostate cancer cell line.
PD98059, aMAPK inhibitor, caused blockade of theMAPK
pathway, and also reinstated the growth-inhibitory role of
TGF-β1 in TSU-Pr1 cells. Moreover, it was also reported
that there was a complete inhibition of negative growth
regulation through TGF-β1 by Smad2, Smad3 or Smad4,
revealing a Smad-independent action. In conclusion, it has
been opined that by producing autocrine TGF-1, prostate
carcinoma cells with activated Ras/MAPK pathway may
have a selective growth advantage.90 The detailed informa-
tion on the role of TGF-β and MAPK in the progression of
cancer has been described elsewhere.91

5 TGF-β INHIBITORS FOR CANCER
THERAPY

5.1 TGF-β inhibitors

As described earlier, TGF-β can act as a tumour promoter
or suppressor.39,82,92–96 TGF-β has a prominent role in can-
cer via the primary phase tumour suppression of neoplasia,
and additionally it promotes progression of tumours and
metastasis in later stages. The tumour cell growth suppres-
sion through TGF-β is based on the potential of upregula-
tion of cyclin kinase inhibitors. Severalmalignant tumours
can downregulate or mutate the TGF-βRII receptor or fur-
ther abnormalities of the TGF-β signalling pathway.97 Sev-
eral tumours generate large amounts of TGF-β and are
resistant towards its growth inhibition. Simultaneously,
TGF-β generated through tumours can depress antitu-
mour immune responses at cytotoxic T lymphocytes, T-
helper cells, dendritic cells, natural killer (NK), B cells and
macrophage levels though enhanced Tr cells.98 Downreg-
ulation of TGF-βRIII (betaglycan) is also associated with
breast cancer progression.99
During late cancer progression phases, TGF-β acts as

a promoter of metastasis through EMT induction. This
leads to the enhancement of the invasion of cancer-
ous cells through induction of gene expression, which
eases metastatic colonisation of the secondary organ sites,
such as bones, lungs, brains and livers.37 Despite the
fact that information about opposing functions of TGF-
β has existed for a long time within both earlier/later
stages of cancer, it is still not clear exactly how and
when TGF-β switches from its role as a tumour suppres-

sor to the metastasis promoter.78 In light of the promi-
nent effect of the TGF-β signalling pathway in tumouri-
genesis and other diseases, efforts have been made to tar-
get TGF-β signalling in tumours, as well as its microen-
vironment for the development of chemotherapeutic
agents.64,100–104

5.2 Synthetic TGF- β inhibitors

Many TGF-β signalling antagonists, such as antisense
molecules, antireceptor monoclonal antibodies and lig-
ands trap for suppression of the interaction of ligand-
receptor. Inhibitors of TGF-β receptor kinases aptamers
are developed and used in clinical practice.105 Many TGF-
β pathway inhibitors are approved and used clinically,
and a few small molecules are also emerging within new
research (Table 1). Small molecule inhibitors are fun-
damentally designed to inhibit TGF-β receptors and are
dependent upon imidazole scaffolds or dihydropyrrolopy-
razole scaffold. Other inhibitors are based on pyrazole,
pyrazolopyridine, triazole, imidazopyridine, isothiazole
and pyridopyrimidine scaffolds. Out of the small molecule
inhibitors, one drug candidate, galunisertib (LY2157299
monohydrate), established by Eli Lilly, is among the
most advanced and promising outcomes in two Phase II
trials.106 However, the development of this drug was dis-
continued by Eli Lilly in January 2020 due to financial
reasons.
An entirely humanised, high-affinity monoclonal anti-

body, XOMA089, for the neutralisation of TGF-β1 and
TGF-β2, has been co-developed by Novartis and Xoma.
Preclinical evidence revealed that XOMA089 exhibited
antitumour activity against the growth of squamous cell
neck and head carcinoma as well as breast cancer in
preclinical models. Additionally, the results also revealed
that XOMA089 may have a synergistic effect with pro-
grammed cell death protein 1 inhibition.106 Another Phase
IIb trial was conducted on trabedersen (synthetic TGF-
β2 antisence oligodeoxynucleotide), and temozolomide
(or procarbazine/vincristine/lomustine)was conducted on
145 patients with refractory, recurrent glioblastoma mul-
tiforme or anaplastic astrocytoma and showed positive
results.107
A few antibodies, ligand traps and vaccines have

also been developed/are under development as TGF-
β inhibitors with new levels of understanding of the
promising therapeutic potential for the development
of TGF- β inhibitors in cancer therapy. Fresolimumab
(GC1008), LY2382770 and P144 are some examples that tar-
get the TGF-β1, β2, β3, TGF-β1 and TβRI/II complexes,
respectively.108 However, all these agents are in Phase I or
II trials.
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TABLE 1 Clinical studies conducted on various synthetic and small molecules as transforming growth factor-β (TGF-β) inhibitors
studied against different cancers

Drug Cancer type Phase
Patient
numbers Outcome Reference

Fresolimumab (GC1008) Malignant melanoma and
renal cell carcinoma

I 29 Block TGF-β activation by
neutralising TGF-β1, TGF-β2
receptors

106,249

LY3022859, an anti-
TGF-ß receptor Type
II (TβRII) monoclonal
antibody

Advanced solid tumours I 14 Inhibit the activation of
receptor-mediated TGF-β
signalling

250

Galunisertib Advanced hepatocellular
carcinoma

II 149 Decrease in TGF-β1 and
circulating serum
α-fetoprotein and associated
with longer survival

251

Galunisertib +
gemcitabine

Pancreatic cancer II 104 Attach to adenosine
triphosphate (ATP)-binding
domain of TβR kinases and
inhibit receptors’ kinase
activity improved overall
survival

252

AP12009 (trabedersen) High-grade glioma IIb 145 Found superior risk assessment
and positive risk-benefit

253

Lanreotide Pancreatic and intestinal
neuroendocrine
tumours

III 88 Found beneficial and showed
antitumour effects

254

Romidepsin Relapsed peripheral T-cell
lymphoma

II 131 Complete and durable responses
with manageable toxicity
(approved by Food and Drug
Administration)

255

Dovitinib Castration-resistant
prostate cancer

II 44 Modest antitumour activity with
controllable toxicities

256

M7824 Advanced solid tumours I 600 Manageable study design and
showed efficacy

257

6 NATURAL COMPOUNDS AS
CANCER PREVENTIVE AND
THERAPEUTIC AGENTS VIA TARGETING
TGF-β

Within the history of drug discovery, various compounds
derived from plants have delivered promising effects in
cancer treatment.109 Therefore, the inclusion of natu-
ral products in cancer treatment in combination ther-
apy (surgery, radiation and chemotherapy) is an active
area of interest.110 In a recent comprehensive analysis
by Newmann and Cragg,9 the authors clearly indicated
natural products as the best options to search for novel
agents/active templates that offer tremendous potential for
drug discovery for a range of human diseases, including
cancer. Several studies have reported that a diverse range
of dietary and non-dietary compounds possess an impor-
tant role in cancer prevention and therapy.111

6.1 Methodology for literature search
and selection

Various authentic and scholarly databases, such as
PubMed, Science Direct, Google Scholar and Scopus,
were explored to search and obtain primary literature for
this study. The Preferred Reporting Items for Systematic
Reviews and Meta-Analysis criteria112 was followed for
the review (Figure 2). Unpublished results, conference
abstracts, books and articles written in other languages
than English were excluded. For the literature search,
major keywords, such as phytochemicals, natural prod-
ucts, extracts, TGF-β, cancer, apoptosis, proliferation,
signalling pathway, treatment, prevention, in vitro, in vivo
and clinical studies, were used in various combinations.
In addition, bibliographies of primary literature were
studied to gather additional appropriate articles. We have
also used the Boolean information retrieval method113,114
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F IGURE 2 Preferred Reporting Items for Systematic Reviews and Meta-Analysis diagram showing literature search and selection
strategy

using TGF with the ‘AND’ operator. The last search was
conducted in August 2021.

6.2 TGF-β signalling pathway
modulation by anticancer phytochemicals

Researchers have performed various experiments to under-
stand the mode of action of several natural products on
the TGF-β signalling pathway in various models of cancer
through in vitro and in vivo studies. The following sections
summarise the main findings regarding different natural
products, which were evaluated for their potential anti-
cancer effects through interference with the TGF-β path-
way.

6.2.1 Arjunolic acid

Arjunolic acid (Figure 3) is a triterpenoid saponin, iso-
lated initially from Terminalia arjuna as well as from other
plant species, such as Combretum nelsonii and Leandra
chaeton.115 A study was performed to examine the anti-
tumour effect of 100 and 250 mg/kg of arjunolic acid
in mice bearing Ehrlich ascites carcinoma, and it was
found that arjunolic acid was able to reduce the volume
of tumours as well as decrease their cell count and viabil-
ity. It was also reported that arjunolic acid increased cel-
lular toxicity. Additionally, arjunolic acid reduced inter-

leukin (IL)-1β, TNF-α, TGF-β and TGF-β Type I recep-
tors and levels of latency-linked peptide related with ele-
vated IL-10. Therefore, arjunolic acid was found to possess
antitumour activity against Ehrlich ascites carcinoma cells
via enhancement of cytotoxicity and apoptosis. This effect
was mediated by the partial blocking of TGF-βR1 and also
by its impact upon the levels of inflammatory cytokine116
(Table 2). Although the study showed an inhibition of TGF-
β by arjunolic acid, it has not been explored how arjunolic
acid caused this effect.

6.2.2 Asiatic acid

Asiatic acid (Figure 3), an ursane-type pentacyclic
triterpenoid molecule, is mainly obtained from Centella
asiatica.117 In a study conducted with asiatic acid in
combination with naringenin, a potential inhibition of
translation and phosphorylation of Smad3 was shown;
however, a restoration of Smad7 expression was also
reported.118 The effect was mediated by the promotion of
NK cell differentiation, maturation and cytotoxicity via
Id2/IRF2-associated mechanisms. In addition, naringenin
and asiatic acid exhibited an additive-type effect on
TGF-β1/Smad3 signalling inactivation and reduced lung
carcinoma as well as melanoma growth.118 In another
study, asiatic acid increased protein and mRNA expres-
sion levels of E-cadherin, and reduced expression levels of
N-cadherin, snail family transcriptional repressor (Snail)
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F IGURE 3 Chemical structures of bioactive phytochemicals affecting TGF-β signalling in cancer
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TABLE 2 Natural products conferring anticancer effects via regulation of TGF-β signalling in vitro

Compound/
extract

Concentration
tested

Cell line used
(cancer type) Anticancer effects

Effect on TGF-β
signalling Reference

Arjunolic acid 20–120 μM Ehrlich ascites
carcinoma
(breast cancer)

↑Cytotoxicity, ↑apoptosis Blocked TGF-β1R1 116

Asiatic acid 5–80 μM A549 (lung cancer) ↓Cell viability Inhibited
TGF-β1-induced cell
invasion and
migration

119

Betulinic acid 1–15 μM RKO and SW480
(colon cancer)

↓Cell growth, ↑ apoptosis Downregulated Sp1,
Sp3 and Sp4

122

Caffeine .2–.8 mM MDA-MB-
231 (breast
cancer)

Stabilise active breast stromal
fibroblasts and ↓metastatic
potential, ↓SDF-1, and ↓
matrix metalloproteinase 2
(MMP-2) expression

Suppressed TGF-β
expression

134

Corilagin 20–80 μM SKOv3ip, Hey and
HO-8910PM
(ovarian cancer)

Arrested G2/M phase,
↑apoptosis, ↓cytokine,
↓cyclin B1, ↓Myt1,
↓phospho-cdc 2

Inhibited secretion of
TGF-β and blocked
the TGF-β-induced
Snail stabilisation

139

Curcumin 10 μM A549 (lung cancer) ↓Metastasis via miRNA gene
network, and ↓
mitogen-activated protein
kinase (MAPK), ↓Wnt
signalling pathways.

Downregulated of
TGF-β

145

Curcumin 12.5–50 μM BCPAP cell line
(thyroid cancers)

↑E-cadherin and ↓vimentin
expression and ↓cell
attachment, ↓migration,
↓progression, ↓ small
mothers against
decapentaplegic homolog 2
(Smad2) and Smad3
phosphorylation

Inhibited TGF-β1 147

Curcumin 10–30 μM/ml PANC-1 cell line
(pancreatic
cancer)

↓Cell proliferation, ↓cell
migration, ↑apoptosis

Inhibited TGF-β1
signalling pathway,
reversed epithelial-
mesenchymal
transition (EMT) of
TGF-β1 via
Hedgehog signalling
pathway

148

Curcumin +
endoxifen +
betaestradiol

8.5–17 μM MCF-7 (breast
cancer)

↓Cell viability, ↑vimentin, and
↑E-cadherin expression.

Endoxifen increased
mRNA expressions
of TGF-β1; however,
curcumin decreased
TGF-β1 mRNA
expressions

238

Curcumin +
emodin

15–25 μM SiHa and HeLa
(cervical cancer)

↓Cell migration, ↓EMT
markers

Downregulated TGF-β,
↓TGF-β receptor II
expression;
↓Wnt/β-catenin
signalling in the
presence of TGF-β↓
P-Smad3, Smad4,
↓cyclin D1, p21 and
Pin1

146

(Continues)
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TABLE 2 (Continued)

Compound/
extract

Concentration
tested

Cell line used
(cancer type) Anticancer effects

Effect on TGF-β
signalling Reference

3,3′-
Diindolymethane

10–40 μM MCF-7 and HCC38
(breast cancer)

↓Cell migration, ↓Smad2/3, ↓
extracellular signal-related
kinase 1/2

Suppressed TGF-β/
tumour necrosis
factor-α
signalling pathway

159

Dioscin .5–4 μM A549 (lung cancer) ↓Cell growth, and ↓cell
proliferation

Suppressed the EMT
induced by TGF-β, ↑
E-cadherin and
N-cadherins
expression induced
by TGF-β

171

Dioscin
(disogenin)

.5–2 μM HepG2 cells
(hepatocellular
carcinoma)

↓Cell division, invasion and
migration and ↓MAPK
pathway, ↓cell proliferation

Reversed
growth-promoting
activity of TGF-β

170

Emodin 15–25 μM SiHa and HeLa
(cervical cancer)

↓Cell migration, and ↓ EMT
markers

Downregulated TGF-β
signalling pathway,
↓TGF-β receptor II
expression; ↓Wnt/β-
catenin signalling
pathway in the
presence of TGF-β↓
P-Smad3, Smad4,
↓cyclin D1, p21 and
Pin1

146

Ginsenoside
Rb2

20–40 μM Ishikawa cell lines
and HEC1A
(endometrial
cancer)

↓Growth of cells and
metastasis, ↑E-cadherin
levels, ↓vimentin

Decreased TGF-β and
Snail levels

180

Ginsenoside
Rb2

.1 mg/ml PC3 (prostate
cancer)

↓Cell proliferation and
↓invasion by regulation of
cell-cycle controllers and
MMPs

Activated TGFβ
receptor signalling

181

Ginsinoside Rb2 .1–10 μg/ml HCT116 and SW620
(colorectal
cancer)

↓EMT, adhesion, growth,
metastasis of colorectal
cancer cell (CRC)

Inhibited TGF-β1
expression. Docking
simulation showed
binding of
ginsinoside Rb2 to
TGF-β1 and
disrupted TGF-β1
dimerisation

179

Ginsinoside Rb2 25–100 μg/ml HNE1 and CNE2
nasopharyngeal
carcinoma (NPC)

↓Invasion and migration
ability of NPC cells and the
EMT process

Reversed TGF-β
induced
morphological
conversion and
alteration in marker
proteins and EMT

182

Podophyllotoxin 1.56 μM Hepatocellular
carcinoma cell
lines (liver
cancer)

↓Migration and invasion and
↓MMP.

No effect due to TGF-β1
but due to p53/
phosphatidylinositol
3-kinases (PI3K)/
protein kinase B
(Akt)/ mammalian
target of rapamycin
pathway

186

(Continues)
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TABLE 2 (Continued)

Compound/
extract

Concentration
tested

Cell line used
(cancer type) Anticancer effects

Effect on TGF-β
signalling Reference

Resveratrol 6.25–200 μM LoVo (colorectal
cancer)

↓EMT Decreased TGF-β1;
effect produced via
TGF-β1/Smads
signalling
pathway-mediated
expression of
Snail/E-cadherin

194

Resveratrol 5–80 μmol/L PLA-802
(rhabdomyo
sarcoma)

↓Cell growth, ↓Smad4
expression at protein and
mRNA levels, ↓cells in the
S phase, arrested G0/G1
transition

Decreased TGF-β1 195

Resveratrol 50 μM Tamoxifen-resistant
MCF-7 (breast
cancer)

Reversed EMT Suppressed production
of endogenous
TGF-β; acts as a
chemosensitiser by
TGF-β/Smad
signalling, ↓ Smad
cascade

196

Resveratrol 25 μmol/L A549, NCI H23 and
NCI H460 (lung
cancer)

↓Proliferation by cell cycle
arrest, ↑apoptosis, ↓Smad
activators, ↓Smad2 and
Smad4, ↓mRNA level,
↑Smad7

Blocked the nuclear
signalling of TGF- β
pathway and altered
the intracellular
Smad signalling of
the TGF-β

197

Sulforaphane 10–80 μM HepG2
(hepatocellular
carcinoma)

↓Cell invasion, ↓cell
migration, ↓cell
proliferation

Inhibited TGF-β
induced EMT via
ROS-dependent
pathway

207

Thymoquinone 5–20 μM MCF 7 and
MDA-MB-231
(breast cancer)

↓Cell proliferation, ↓Bcl2,
↑p53

Restored the basal level
of TGF- β

213

Triptolide 25–100 nM HCT116, CRC,
HT29 and
SW620 (colon
cancer)

↓Cell migration, ↓cell
proliferation

Suppressed TGF-βRI
ans II

219

Withaferin A .8–1.2 μM Caski and SK-Hep1
(metastatic
cancer)

↓Invasive property,
↓migratory ability, ↓MMP-9
expression via pAkt
signalling pathway
suppression

Inhibited TGF-β
induced
phosphorylation of
Akt

225

Withaferin A 2 μM MDA-MB-231,
MCF-10A and
MCF-7, cells
(breast cancer)

Reversed biochemical
features of EMT

Inhibited
TGF-β-induced EMT
and migration

224

Withania
somnifera
root extract

500 nM MDA-MB-231,
HCC1806, T47D,
MCF-7, Hs578-T
and
MDA-MB-468
(breast cancer)

Potential association was
found between vimentin
expression and cytotoxicity

TGF-β inhibits
vimentin expression
at the protein level
but not at mRNA
level

228

(Continues)
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TABLE 2 (Continued)

Compound/
extract

Concentration
tested

Cell line used
(cancer type) Anticancer effects

Effect on TGF-β
signalling Reference

Andrographis
paniculata
herb extract

800 μg/ml EC-109 (oesophagal
cancer)

↑Apoptosis, ↓proliferation,
↓metastatic, ↓drug
resistance and
↓intercellular adhesion

TGF-β gave negative
feedback

258

Momordica
charantia leaf
extract

25–50 mg/ml PLS10 cell line
(prostate cancer)

↓Progression by anti-invasive
effects

Induction of TGF-β has
not reported

259

and β-catenin in A549 cells treated with TGF-β1, hence
inhibiting TGF-β1-induced EMT in lung cancer.119

6.2.3 Betulinic acid

Betulinic acid (Figure 3) is a triterpenoid phytocon-
stituent reported for the growth inhibition of differ-
ent tumours.120,121 Betulinic acid was evaluated against
prostate cancer using SW480 and RKO colon cancer cells
and also by utilising the athymic nude mice xenograft
model (Table 3). The study exhibited that betulinic acid has
the ability to inhibit tumour growth and induce apoptosis
by decreasing the expression of various transcription fac-
tors, namely, Sp1, Sp3 and Sp4, as well as decreasing levels
of the survivin, p65 subunit of NF-κB and cyclin D1.122 It
was also reported that betulinic acid did not have the abil-
ity to inhibit the production of TGF- β but butein did.117
However, it is notable a substantial amount of studies are
not available for understanding the effect of betulinic acid
against different cancer models.
TGF-receptors are translocated from lipid raft/caveolae

microdomains to non-caveolae microdomains by betulinic
acid, with no change in total TGF-receptor levels. TGF-
receptor translocation mediated by betulinic acid is rapid,
and it correlates with TGF-driven plasminogen activator
inhibitor-1 (PAI-1) reporter gene activation and growth
inhibition inMv1Lu cells. The betulinic acid-inducedTGF-
β receptor translocation is also rapid and correlates with
the growth inhibition and TGF-β-induced PAI-1 reporter
gene activation in Mv1Lu cells.54
Another study on a bioactive subfraction from Mesua

ferrea stem bark was performed on HCT 116 colon cancer
cells. The betulinic acid fraction was themajor active com-
ponent examined. This study has reported that multiple
pathways were involved in the anticancer activity of the
standardised fraction. The mechanism behind the effect
was attributed to the downregulation of Wnt, epidermal
growth factor receptor and HIF-1α along with a simulta-
neous upregulation of TGF-β, p53 andMyc/Max signalling
pathways.123 This shows that betulin shows its anticancer

effect by simultaneous modulation of multiple pathways,
including TGF-β signalling.

6.2.4 Caffeine

Caffeine (Figure 3) is naturally found in over 60 differ-
ent plants as well as various beverages and food items,
including tea, chocolate, cocoa beans, kola nuts and
guarana berries.124 Caffeine was found potentially effec-
tive in the treatment of many cancers, such as colon,
bladder and pancreatic cancers.125–128 It is easily avail-
able as an over-the-counter drug for pain relief and also
possesses anti-inflammatory and analgesic effects.129,130
Caffeine suppresses oxidative stress and inflammation,
improves insulin sensitivity, inhibits angiogenesis and has
a protective role in liver cancer.131 Various studies convey
that consumption of caffeine reduces the risks of different
types of cancer as it affects cell cycle progression, influ-
ences apoptosis and inhibits angiogenesis and migration
by antagonising adenosine receptors.132
In recent years, caffeine has emerged as a potentially

active compound for its preventive and therapeutic role
in cancer. Mechanistically, caffeine affects the progres-
sion of the cell cycle at checkpoints, persuades apoptosis
and hinders drug efflux from cells.131–133 Caffeine showed
potent anticancer effects through TGF-β, as it upregu-
lated various tumour suppressor proteins, such as p16,
p21, p53 and caveolin-1in breast stromal fibroblasts. It
also inhibited the metastasis of cancer-associated fibrob-
last cells (CAF) through phosphatase and tensin homolog-
dependent ERK1/2 and by Akt activation. It inhibited the
release of vascular endothelial growth factor (VEGF) A
in CAF cells and inhibited the pro-angiogenic activity of
breast cancer cells.134
Caffeine inhibits TGF-β-induced CTGF production in

rat hepatocytes via stimulation of TGF-β effector Smad2
degradation, inhibiting phosphorylation of Smad3, and
PPARγ-receptor upregulation.135 Caffeine is able to upreg-
ulate various tumour suppressor proteins, such as p21, p16,
p53 and Cav-1, and is also able to reduce expressions of
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TABLE 3 In vivo anticancer activities of natural products affecting TGF-β signalling

Compound/
extract Cancer type Animal model

Dose
(mg/kg) Anticancer effect

Effect on TGF-β
signalling Reference

Betulinic acid Colon cancer RKO xenograft
athymic mice
model

25 ↓Tumour growth,
↓tumour volume

Reduced expression
of Sp1, Sp3 and
Sp4

122

Ginsenoside
Rh2

Prostate cancer PC3-luc
glioblastoma
imaging by
bioluminescence

1 ↓Cell growth, ↓cell
proliferation and
invasion of prostatic
cancer

Activated TGFβ
signalling

181

Ginsenoside
Rb2

Colorectal
cancer

HCT116 xenograft
tumour model

10 ↓Tumour volume,
↓tumour growth

Inhibition of EMT
and inhibited
TGF-β1, TGFβRI
and TGFβRII

179

Polyphyllin Gastric cancer GC7901/DDP
xenograft studies

1 ↓Tumour growth,
↓tumour weight

Antagonised the
facilitative effects
of TGF-β1

226

Resveratrol Colorectal
cancer

LoVo cells in vivo
imaging in mice
by tail vein
injection

150 Reduced metastatic
lesions

Inhibited TGF-β1
effects on EMT

194

Resveratrol Lung cancer MDA231 xenograft-
bearing mouse
model

40 ↓Lung metastasis of breast
cancer, ↓tumour growth

Inhibited EMT
induced by
TGF-β1-via
PI3K/Akt, Smad
and MMP
regulation

198

Sulforaphane Liver cancer HepG2 xenograft
mouse tumour
model

50 ↓Tumour growth,
↓tumour volume
↓Proliferation,
migration and invasion,
↓EMT via reactive
oxygen
species-dependent
pathway

Suppressed
TGF-β-induced
EMT

207

Thymoquinone Hepatocellular
carcinoma

Thioacetamide
induced liver
cancer

20 ↓Growth and progression
through ↓ oxidative
stress, induction of
TNF-related
apoptosis-inducing
ligand
(TRAIL)-mediated
apoptosis

Decreased hepatic
TGF-β1 mRNA
level by 1.8-fold

214

Thymoquinone Renal cell
carcinoma

Tumour xenograft
model male
C57BL/6 on mice

10 and
20

Prevents 786-O-SI3 cells
transfer to lungs in
mice,↓invasion, ↓cell
movement and
production, cell
adhesion and
cytoskeletal
reorganisation

Suppressed TGF-β1 215

Triptolide Melanoma Melanoma bearing
mice model

.15 ↓Tumour growth by
reduction in proportion
of regulatory T cells and
Foxp3 level in lymph
node and spleen in
tumour-bearing mice

Decreased TGF-β,
IL10 and vascular
endothelial
growth factor

221

(Continues)
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TABLE 3 (Continued)

Compound/
extract Cancer type Animal model

Dose
(mg/kg) Anticancer effect

Effect on TGF-β
signalling Reference

Withaferin A Breast cancer MMTV-neu
transgenic
mouse model
using female
athymic mice

4 ↓Growth of cancer cells
and migration with
↓vimentin protein
expression

Reversed the EMT
induced by
TGF-β

224

Withania
somnifera
root extract

Breast cancer Human xenograft
and mouse
mammary
carcinoma
models

4, 8 ↓Motility, ↓invasion of
cancer cells and
disturbed vimentin
morphology and
↓tumour volume

Inhibited EMT
induced by
TGF-β

228

IL-6, SDF-1, TGF-β andmatrix metalloproteinase 2 (MMP-
2), as well as downregulate α-SMA. The study has con-
cluded that caffeine may suppress the pro-carcinogenic
actions of active stromal fibroblasts, making it a safe
and efficient way to prevent breast tumour growth
and recurrence.134 A similar purine alkaloid to caffeine,
theacrine, was reported to attenuate EMT, cell adhesion,
invasion andmigration induced by TGF-β inMDA-MB-231
cells. The results indicated that theacrine inhibited breast
cancer cell metastasis through EMT process reversal.136
In a clinical study, after 5 months of green tea and

chemotherapy administration, the TGF-β and IL-10 serum
levels decreased in patients and control groups during
the green tea intake period. Green tea appears to be
able to modify circulating Tregs in chronic lymphocytic
leukaemia patients in the early stages of the disease. This
can help to keep lymphocytosis under control while also
preventing disease development.137

6.2.5 Corilagin

Corilagin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-
glucose, Figure 3) is an ellagitannin compound isolated
from Phyllanthus niruri L. as well as other plants, such
as Caesalpinia coriaria. Corilagin has been recently exam-
ined for several therapeutic activities, including cancer.138
Corilagin was studied against ovarian cancer cell lines,
namely, SKOv3ip, HO-8910PM and Hey, and also in a
xenograft tumour model.139 The study demonstrated that
corilagin has a specific targeting effect on TGF-β secretion,
and thus was able to block non-canonical ERK/Akt and
canonical Smad pathway activation.
When evaluated in ovarian cancer cell lines (OC316,

OVCAR5 andHOPMSnail), corilagin treatmentwas able to
downregulate Snail expression. TGFβ-enhanced Snail was
also blocked in HOPM-Snail cells. Thus, it was revealed
that corilagin not only showed its effect by acting via dis-
tinct pathways, such as Snail inhibition but also as an

apoptosis inducer, such as chemotherapeutic drugs.140 In
another similar study, corilagin inhibited TGF-β secretion
into the culture supernatant of different ovarian cancer
cell lines and inhibited TGF-β-induced Snail stabilisation.
TGF-β production was not reduced in cancer cells treated
with paclitaxel, demonstrating that corilagin specifically
targeted TGF secretion.139

6.2.6 Curcumin

Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-
1,6-heptadiene-3,5-dione Figure 3) is extracted from the
rhizome of Curcuma longa of family Zingiberaceae.
Curcumin has aromatic parts, such as an O-methoxy
phenolic and β-dicarbonyl group. There are various bio-
logical properties and therapeutic benefits of curcumin
that can be utilised for the treatment of chronic human
disease, as it possesses antioxidant, anti-inflammatory,
anticancer, antidiabetic, immune-regulatory, cardiovas-
cular protective, neuroprotective and hepatoprotective
effects.141–143
Curcumin possesses anticancer effects when studied in

pre-clinical and clinical conditions.16,144 Curcumin deliv-
ers its anticancer properties by stimulation of apoptotic
pathway in cancer cells along with suppression of tumour
microenvironment, such as inflammation, angiogenesis
and tumour metastasis.16 Several studies were performed
to evaluate the potential of curcumin to treat various can-
cers, such as thyroid, lung, cervical, pancreatic and breast
cancers, through modulation of the TGF-β pathway. In
lung cancer, curcumin was able to inhibit metastasis and
suppress cancer cell proliferation via interference with
many other pathways along with TGF-β, such as MAPK or
the Wnt signalling pathway.145 The TGF-β signalling path-
way was downregulated by curcumin via a decrease in
the expression of TGF-β receptor II, P-Smad3 and Smad4
and reduced TGF-β-induced invasion andmigration in the
HeLa and SiHa cells lines. Additionally, it inhibited p21,
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cyclin D1 and Pin1, with Slug and Snail in human cervi-
cal cancer cell lines.146 The study146 showed that curcumin
and emodin exhibited a synergistic effect and inhibited
cell migration and TGF-β activated the Wnt/β-catenin sig-
nalling pathway.
Curcumin increased E-adherin expression while

repressing vimentin expression and also suppressed cell
attachment, migration and progression in BCPAP thyroid
cancer cells. It was also found to inhibit TGF-β1-mediated
Smad2 and Smad3 phosphorylation and also inhibited
TGF-β1-induced EMT via Smad2/3 downregulation.147
Sun et al.148 studied the effect of curcumin against pancre-
atic cancer and showcased that curcumin repressed cell
proliferation, decreased cell migration, invasion, induced
apoptosis and reversed EMT of TGF-β1-stimulated PANC-1
cells via Hedgehog signalling pathway inhibition.148
In a notable study, curcumin in combination with dox-

orubicin reduced the survival and proliferation of neu-
roblastoma cells by inducing apoptosis via p53 and p21
upregulation.149 Another study emphasised the impor-
tance of time and demonstrated that a combination
of curcumin and doxorubicin promotes apoptosis via
Bcl-2 downregulation, Bax and acaspase-9 overexpres-
sion in a concentration- and time-dependent way.150 In
another study, curcumin and emodin synergistically sup-
pressed cell migration and population in HeLa and SiHa
cells. TGF- β also stimulated the Wnt/β-catenin sig-
nalling pathway in HeLa cells, and emodin and cur-
cumin decreased β-catenin, hence suppressing the path-
way. Therefore, curcumin and emodin can be used syner-
gistically for the treatment of cervical cancer.146
HCT116/oxaliplatin (OXA), an oxaliplatin-resistant cell

line, was effectively developed, and OXA combined with
curcumin lowered OXA resistance in vitro. Further-
more, the combination treatment reduced p-p65 and Bcl-
2 expression while increasing activated caspase-3 lev-
els. Curcumin also prevented EMT by regulating the
TGF/Smad2/3 signalling pathway. Curcumin could also
reduce OXA resistance in colorectal cancer cells in an in
vivo investigation.151 Curcumin blocked the TGF-β and
PI3K/Akt signalling pathways, which are both involved in
doxorubicin-induced EMT. Curcumin also improved dox-
orubicin’s antiproliferative actions in triple-negative breast
cancer cells and showed that doxorubicin in conjunction
with curcumin could be a viable treatment option for
triple-negative breast cancer.152
A quercetin and curcumin combination was evalu-

ated against K562/CCL-243 chronic myeloid cell lines and
found to be effective on various genes attributed to the p53,
NF-κβ and TGF-α pathways. For instance, the combina-
tion exhibited a downregulatory effect on IFN- γ AKT1,
CDKN1B and an upregulatory effect on CDKN1A, BTG2
and FAS. A multitargeted therapy for chronic myeloid

leukaemia cells without impacting healthy cells may be
provided by the downregulation of CDKN1B, AKT1, IFN- α
and upregulation of gene and protein expressions of BTG2,
CDKN1A and FAS.153 The combination of cisplatin and
nanocurcumin reduced the volume and weight of ovarian
tumours significantly. There was also a decrease in Ki67,
TGF-β, PI3K and Akt phosphorylation expression. JAK
expression, STAT3 phosphorylation and IL-6 concentra-
tions were all lowered when cisplatin and nanocurcumin
were combined. Overall, nanocurcumin, when given as a
co-treatmentwith cisplatin, inhibited proliferation in ovar-
ian cancer models by downregulating the PI3K/Akt and
JAK/STAT3 signalling pathways.154 However, one in vivo
study showed no involvement of TGF-β when curcumin
was investigated against tumourigenicity assay using an
athymic nude mouse model. This suggests that more con-
firmatory studies are required to understand the effect of
curcumin on TGF-β.155

6.2.7 3,3′-Diindolymethane (DIM)

DIM (Figure 3) is a dimeric condensation product of
indole-3-carbinol and a potent anticancer compound
obtained from several vegetables of the genus Brassica,
including broccoli, cabbage and Brussels sprouts. It is con-
sidered to exhibit anticancer properties by affecting cell
proliferation, autophagy, endoplasmic reticulum stress,
the cell cycle and apoptosis through different signalling
mechanisms.156 DIM selectively kills cancer cells with-
out toxic exposure to normal cells.157 DIM was examined
against human endometrial cancer cells and exhibited a
cytostatic effect. The mechanistic investigation revealed
that this effect was associated with the enhancement
of TGF-α.158 Another study has shown that DIM has
the potential to inhibit breast cancer migration through
inhibition of the TGF-β and TGF-α signalling pathways,
which was associated with the suppression of EMT.159
In a recent study, DIM was evaluated against MCF-7
breast cancer cells, and it was reported that DIM signif-
icantly reduced the TNF-α/TGF-β-induced breast cancer
cells migration. Furthermore, the results demonstrated
thatDIMefficiently suppressedEMTprocesses by the inhi-
bition of TNF-α/TGF-β-associated signalling pathways in
breast cancer cells. Hence, it can be stated that DIM has
the potential to serve as a candidate for breast cancer
therapy.159

6.2.8 Dioscin

Diosgenin (Figure 3) is a steroid saponin extracted
from the tuber of various species of Dioscorea. It is
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frequently used in the commercial synthesis of estrogen,
progesterone, cortisone and steroids. Diosgenin displays
many beneficial properties, such as antioxidant,160 anti-
inflammatory,161 hypoglycemic,161 hypolipidemic162 and
antidiabetic163 effects. Additionally, it is effective against a
variety of cancers and has shown a pro-apoptotic effect.164
It has been demonstrated that diosgenin induces anti-
cancer activity mainly by its antiproliferative property,
induces apoptotic cell death, and avoids the formation of
malignant tissue by arresting the cell cycle phases.164–167
Dioscin, a natural derivative of diosgenin, is used for the
treatment of breast cancer.168,169
Dioscin exhibited inhibition of proliferatingHepG2 hep-

atocellular cancer cells. Low concentrations of dioscin
reversed the growth-promoting effect on HepG2 cells
induced by TGF-β1. Furthermore, it suppressed TGF-β1-
induced proliferation of HepG2 cells. The compound also
inhibited the migrations and invasive property of cells,
and treatment with dioscin increased the expression of
various proteins, such as claudin-1 and E-cadherin. It
decreased the expression ofN-cadherin, vimentin and slug.
Dioscin inhibited the MAPK pathway, which has a sig-
nificant role in the growth of cancer cells and metasta-
sis, as well as inhibiting the EMT malignant transforma-
tion triggered by TGF-β1 in HepG2 liver cancer cells.170
When evaluated against lung cancer cell lines, dioscin
inhibited cell growth and suppressed cell proliferation in
a concentration-dependent manner. The compound was
also found to suppress the EMT induced by TGF-β in A549
lung cancer cells. Additionally, it increased the expression
of E-cadherin and N-cadherin, and decreased cell migra-
tion and invasion of TGF-β1-induced A549 lung cancer
cells.171

6.2.9 Emodin

Emodin (1,3,8-trihydroxy-6-methylanthraquinone,
Figure 3) is a natural anthraquinone derivative, mostly
present in several Chinese medicinal herbs. It is iso-
lated from many plant parts, such as roots and barks
of plants belonging to the Rubiaceae, Rhamnaceae,
Fabaceae and Polygonaceae families. It exerts various
pharmacological effects, including antibacterial, antiviral,
antiulcerogenic, diuretic vasorelaxant and antitumouri-
genic properties.172 Emodin was studied against human
cervical cancer cell lines, and it was found that emodin
was able to downregulate the TGF-β signalling pathway.146
Emodin in combination with 3′-azido-3′-

deoxythymidine was found to exhibit a synergistic effect
on cell apoptosis and proliferation and downregulated
NF-κB, TGF-β mRNA, and Bcl-2 proteins in the concen-
trated leukaemia stem cells (KG-la cells). The synergic

effect was mechanistically associated with Bcl-2 activation
inhibition and TGF-β and NF-κB downregulation.173

6.2.10 Ginsenosides

Ginsenosides (Figure 3) are triterpene saponins obtained
from Panax ginseng, commonly known as Chinese gin-
seng of the family Araliaceae. Ginsenosides were first
isolated from this family in 1963174 and have shown
substantial potential in the treatment of cancer. Fur-
thermore, ginsenosides are well-known for their cardio-
protection, antiobesity, antidiabetic, immunomodulation,
neuroprotection, antimicrobial action, sexual potentiat-
ing and antitumour activities.175 They have many benefi-
cial effects, which explains their use as a complementary
or an alternative form for the treatment of various can-
cers, such as breast, colorectal, endometrial and nasopha-
ryngeal carcinoma.175–178 They exhibit anticancer effects
by inhibiting the proliferation of cancer cells through
oxidation prevention and by inducing apoptosis and
autophagy.177
To evaluate the anticancer effect in colorectal cancer

through modulation of TGF-β, a docking study was per-
formed between the ginsenoside Rb2 and TGF-β complex.
The docking score was−9.667 by binding to the hydropho-
bic pocket of TGF-β1 and partially overlapping with the
TGF-binding site and finally disrupting the TGF-β1 dimeri-
sation. Further, western blot analysis also showed inhibi-
tion of the expression of TGF-β1 in HCT116 and SW620
cells. Ginsenoside Rb2 was able to inhibit EMT and upreg-
ulate the expression of E-cadherin as well as downregulate
the function of N-cadherin and vimentin.179
Ginsenoside Rb2was evaluated onHEC1A and Ishikawa

cell lines for endometrial cancer. It displayed growth
inhibitory effects on the cancer cells by reversing EMT-
induced changes in cell mobility and metastasis, and
through further western blot analysis, it displayed an
improvement in the E-cadherin levels while the expres-
sion level of vimentin alongwithTGF-β and Snail declined.
The result suggested that ginsenoside can deliver the
anticancer effect by inducing apoptosis and by inhibit-
ing EMT.180 Another study was conducted to examine
the effect of ginsenoside Rb2 on PC3 prostate cancer cell
lines. The results revealed that the compound activated
TGF-β receptor signalling and inhibited cell proliferation
and invasion by regulation of cell cycle controllers and
MMPs.181 A recent study showed the potential suppres-
sive effect of ginsenoside Rg3 against nasopharyngeal car-
cinoma (NPC) cells, where Rg3 inhibited migration and
invasion ability of NPC cells and the EMT process. Addi-
tionally, Rg2 altered marker proteins of EMT and affected
TGF-β-induced morphological transition.182
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6.2.11 Podophyllotoxin

Podophyllotoxin (Figure 3), a non-alkaloidal antimitotic
lignan, is extracted from the roots and rhizomes of
podophyllum species. The compound also has different
derivatives, such as teniposide and etoposide, which have
obtained scientific focus due to their widespread biologi-
cal properties, including anthelminthic, antiviral and anti-
neoplastic effects.183 The podophyllotoxin, along with its
derivatives, is widely used for the effective treatment of
breast, lung, ovary and stomach cancer.184,185 Upon evalu-
ation of liver cancer cells (Bel-7402, HepG2 andHCCLM3),
podophyllotoxin was found to reverse the effect of EMT
without having any effect from TGF-β1. In addition, a sig-
nificant inhibition in metastasis and invasion on liver car-
cinoma cells was also recorded.186
The polyamidoamine dendrimer-conjugated podophyl-

lotoxin treatment substantially decreased NF-κB and IL-
6 in mice tissue and serum, respectively. A significant
reduction was reported in liver fibrous tissue deposition,
which was confirmed by declined levels of mRNA and
TGF-β expressions in the liver. Thus, DPODO treatment
suppressed hepatocellular carcinomaprogression viamod-
ulation of fibrogenic and inflammatory factors.187

6.2.12 Resveratrol

Resveratrol (3,4,5-trans-trihydroxy-stilbene, Figure 3) is a
naturally occurring phytoalexin, belonging to the stilbene
family. It is isolated from white hellebore Polygonum cusp-
idatum roots as well as many other plant families, such as
Fabaceae, Gnetaceae and Cyperaceae. Various food prod-
ucts, including grapes, wine, mulberry and peanuts, con-
tain this compound.188 Resveratrol has the capability to tar-
get cancer cells at their initiation, promotion and progress-
ing stages. It displays chemopreventive and chemothera-
peutic effects by regulating the signal transduction path-
ways that manage cell division, initiates apoptosis, reduces
inflammation, angiogenesis and inhibition of metastasis
and invasion of human tumour cells.15,189
Resveratrol has many medicinal properties, including

antioxidant, anticancer, cardioprotective, immunomodu-
latory, antihypertensive, anti-inflammatory, antimicrobial,
antidiabetic and neuroprotective activities; hence, it can
protect against many diverse chronic diseases.15,190–193 Var-
ious in vitro and in vivo studies have established the poten-
tial effect of resveratrol against colorectal cancer, and it
was found effective in inhibition of EMT by TGF-β1 and
suppressed invasive and metastatic properties. Addition-
ally, resveratrol was able to enhance the expression of
E-cadherin and suppress the expression of vimentin. It
also suppressed the invasive and migratory properties and

inhibited the TGF-β1/Smad pathway when examined in
the LoVo cell line.194
Resveratrol was evaluated against rhabdomyosarcoma

soft tissue malignant tumour cells and was found to
decrease cell growth, reduce cells in the S phase, arrest
G0/G1 transition and reduce TGF-β1and Smad4 expres-
sion at the protein and mRNA levels in PLA-802 human
alveolar rhabdomyosarcoma cell.195 Shi et al.196 studied
the effect of resveratrol on MCF-7 breast cancer cells and
found that resveratrol reversed EMT and has the ability
to overcome tamoxifen resistance. The effect of resvera-
trol was meditated by TGF-β/Smad signalling, and resver-
atrol was found to suppress the production of endoge-
nous TGF-β and downstreamSmad cascade.Whyte et al.197
studied the effect of resveratrol against A549, NCI H23
and NCI H460 lung cancer cell lines and found that
resveratrol inhibited A549 cell proliferation via cell cycle
arrest, apoptosis induction and alteration of the intra-
cellular Smad signalling of the TGF-β pathway. Fol-
lowing resveratrol treatment, Smad activators, namely,
Smad2 and Smad4, were downregulated at the mRNA
level, Smad7 was upregulated and Smad2/Smad3 at the
protein levels blocked nuclear signalling of the TGF-β
pathway.
Resveratrol was reported to inhibit the migration of

MDA231 cells via TGF-β1-induced EMT reversal and
also inhibited the lung metastasis in the MDA-MB-231
xenograft mouse tumour model. The MMP-9, MMP-2, α-
SMA, fibronectin, p-PI3K, Smad2, Smad3, p-Akt, p-Smad2,
p-Smad3, Snail1, vimentin and Slug expressions were also
decreased by resveratrol, and E-cadherin in MDA-MB-
231 cells was increased.198 All these results support the
hypothesis that resveratrol in combination with nutlin-3
would be able to induce programmed cell death at about
half of the typical concentration of nutlin-3 for the induc-
tion of apoptosis.199 A combination of resveratrol and cis-
platin synergistically inhibited the MDA-MB-231 breast
cancer cell viability and also inhibited TGF-β1-induced
migration and invasion of MDA-MB-231cells by inhibiting
EMT.Resveratrolwas also reported to enhance antitumour
effects and decrease adverse effects of cisplatin in MDA-
MB-231 xenografts and involved in the mechanism for the
effect of the regulations of the JNK, PI3K/Akt, NF-κB and
ERK expressions.200 Another study showed that the com-
bination of sitagliptin (an antidiabetic drug) and resver-
atrol synergistically ameliorated clear cell renal cell car-
cinoma, and this effect was mediated by the decrease in
TGF-β1 and other inflammatory cytokines, such as TNF-α,
IL-6 and STAT3.201 In irradiated mice, HS1793 (a resvera-
trol analogue) reduced tumour development by activating
effector T cells. HS1793 treatment improved the outcome
of radiation therapy by enhancing antitumour immunity.
Additionally, HS1793 reduced the number of Tregs and
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lowered IL-10 and TGF-β secretion in irradiation tumour-
bearing mice.202

6.2.13 Sulforaphane

Sulforaphane (Figure 3) is an isothiocyanate isolated
from different vegetables of the crucifereae family, promi-
nently from broccoli. Both preclinical and clinical stud-
ies underscore the ability of sulforaphane in preventing
the development and/or suppressing the progression of
various cancers.203–206 The compound was studied against
HepG2 hepatocellular carcinoma cells and also through
a xenograft tumour growth model.207 This study revealed
that sulforaphane has emerged as a safe compound for the
treatment of hepatocellular carcinoma. The same study
also confirmed that sulforaphane has the potential to
inhibit TGF-β-induced EMT through the ROS-dependent
pathway.207
A recent study by Luo et al.208 was conducted to

record the impact of sulforaphane on long non-coding
RNAs in pancreatic ductal adenocarcinoma using several
human immortalised pancreatic duct cell lines. This study
revealed that sulforaphane exhibited potential activity
against pancreatic cancer, which was due to APOBEC3G
downregulation that prevented Smad2 phosphorylation,
and hence TGF-driven pancreatic ductal adenocarcinoma
progression.

6.2.14 Thymoquinone

Thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone,
Figure 3) is mostly found as the biologically active com-
pound in the oils of Nigella sativa seeds. Thymoquinone
is considered a potential anticancer agent,209 and it plays
dual roles, depending upon the molecular environment;
it can act as an antioxidant or pro-oxidant (by generating
ROS in tumour cells).210 Thymoquinone inhibited the
growth of cancer cells by inducing apoptosis, regulating
the cell cycle and inhibiting the proliferation, migration
and metastasis of tumour cells.211,212 Its anticancer effect
has been observed in various cancer types, such as lung,
colorectal, prostate and breast cancer. In a recent study,
thymoquinone was investigated as a radiosensitiser in
the MCF-7 and MDA-MB-231 breast cancer cells. Ionising
radiation is considered to induce metastasis in cancer cells
by eliciting TGF-β, which is also known to regulate radio-
resistance. Thymoquinone downregulated E-cadherin
and cytokeratin 19, while mesenchymal markers, such
as integrin aV, MMP-9 and MMP-2 were upregulated
by irradiation treatment.213 Interestingly, in an in vivo
study, decreased hepatic TGF-β1 mRNA levels by 1.8-fold

were recorded from thymoquinone in hepatocellular
carcinoma.214 Another in vivo study on renal cell carci-
noma showed that TGF-β1 might promote the metastasis
in renal cell carcinoma, and thymoquinone has the ability
to inhibit TGF-β1-induced metastasis.215

6.2.15 Triptolide

Triptolide (Figure 3), a diterpenoid triepoxide com-
pound, is extracted from different herbs used in Chinese
medicine. Due to its considerable therapeutic effects, it
has attracted considerable attention from researchers. It
has been found to possess various pharmacological effects,
such as antirheumatic, antimicrobial, anti-inflammatory,
immunomodulatory and antitumour activities.216,217 Trip-
tolide can produce cancer cell death by modulating apop-
totic and autophagic pathways aswell as inhibition of EMT
and metastasis.217,218
Triptolide inhibited the growth, migration and invasion

of HT29 and HCT116 colon cancer cells with simultaneous
reduction in the expression of VEGF and cyclooxygenase-
2. It also inhibited the expression of different TGF-β recep-
tor subunits (TGFΒRI and TGFΒRII).219 In another study,
triptolide was tested against HT-29 and SW480 colon can-
cer cells, where it reduced cell viability, metastatic poten-
tial and enhanced the apoptosis rate with simultane-
ous caspase-3 and caspase-9. Furthermore, it neutralised
the changes caused by TGF-β, such as alterations in E-
cadherin, N-cadherin, vimentin and snail.220 In vivo stud-
ies showed that triptolidewas able to decrease TGF- β, IL10
and VEGF in B16-F10 xenograft mouse tumour model.221

6.2.16 Withaferin A

Withania somnifera, commonly known as ashwagandha,
or Indian ginseng, belongs to the family Solanaceae. its
main constituents are alkaloids, steroidal lactone (with-
anolides and withaferins) and saponins.222 Withaferin
A (Figure 3) isolated from W. somnifera was found to
exert antineoplastic effects againg various in vitro and in
vivo tumour models.223 This phytochemical was evaluated
against MCF-10A breast cancer cells and reported to par-
tially reverse TGF-β levels. During invasive breast can-
cer, EMT is usually characterised by low E-cadherin and
occludin levels and increased levels of the mesenchymal
marker protein vimentin and fibronectin. However, after
the treatment of withaferin A onMCF-7 cells, there was an
increase in the level of E-cadherin and occludin, as well as
suppression in vimentin.WithaferinA also led to the apop-
tosis of MDA-MB-231 and MCF-7 by the intrinsic caspases
pathway, without affecting vimentin levels.224
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Withaferin A also inhibited the invasive property of
human cervical cancer Caski cells and resulted in a reduc-
tion of MMP-9 expression via Akt signalling pathway sup-
pression. It was also found to inhibit TGF-β-induced Akt
phosphorylation and caused downregulation of MMP-9.
This effect strongly supports the ability of withaferin A to
control the invasiveness of the tumours.225

6.2.17 Miscellaneous natural products and
their synergistic effects

Polyphyllin, an active phytoconstituent of Paris polyphylla,
exhibited a decrease in the tumour growth in the xenograft
tumour model by antagonising facilitative effects of TGF-
β1.226 Similarly, andrographolide from Andrographis pan-
iculata was also reported to decrease tumour growth and
was bound to TGF-β in an in vivo study for prostate
cancer.227 The root extract of W. somnifera was studied
on MDA-MB-231, MCF-7 and T47D breast cancer cell
lines and demonstrated a potential association between
vimentin expression and cytotoxicity. Vimentin plays an
important role in EMT’s being an intermediate filament
protein to promote metastasis. After treatment with the
root extract ofW. somnifera, TGF-β did not inhibit expres-
sion of vimentin at the mRNA level but did on the protein
level by disrupting its morphology in cells, finally inhibit-
ing EMT.228
Marine natural products offer huge diversity but have

limited explored resources. Marine products are enormous
potential source reservoirs to isolate novel bioactive com-
pounds from, and they also possess diverse chemical struc-
tures, which are potential sources for the drug discov-
ery process.229 Marine organisms are valuable sources for
novel anticancer agents and can be of prominent impor-
tance in the process of drug discovery.230–235 Out of many
marine products, very few have been investigated specifi-
cally for their effect onTGF-β in cancer. For example,MS80
is a sulfated oligosaccharide (8000 Da) isolated from sea-
weed. This compound was reported to exhibit a potential
inhibition of TGF-β/Smad signalling in breast and lung
cancer cell lines, and the compound also inhibited lung
metastasis in orthotopic 4T1 xenografts by inhibiting TGF-
β.236
Natural products are very effective when utilised in

association with other natural or synthetic agents. Stud-
ies have reported that the combined effect of natural
products might improvise chemotherapeutic treatment
effects against cancer cell proliferation.237 In a study on
breast cancer, a combination of curcumin, endoxifen (a
drug under development for breast cancer) and β-estradiol
(estrogen steroid hormone) was tested on MCF-7 cell
lines. The endoxifen upregulatedEMTmarkers and altered

MCF-7 breast cancer cells’ morphology. However, cur-
cumin addition did not prevent EMT activation. Endoxifen
activated EMT and increased mRNA expressions of TGF-
β1; however, curcumin decreased TGF-β1 mRNA expres-
sions in comparison to endoxifen.238
Emodin, along with curcumin, was evaluated in cervi-

cal cancer cell lines SiHa and HeLa, which induced the
EMT by the TGF-β signalling pathway. The combination
effectively downregulated the TGF-β signalling pathway;
hence, there was a decrease in the TGF-β receptor II, P-
Smad3 and Smad4 expression level.Moreover, it alsomain-
tained the tumourigenic effects by inhibiting migration
and invasion of cancer cells. Therefore, this combination
had a synergistic chemotherapeutic effect against cervical
cancer cells.146

7 TGF-β-ASSOCIATED AND
-DEPENDENT OMICS APPROACHES IN
CANCER THERAPEUTICS

To understand and subtype Wnt signalling-driven malig-
nancies and subsequent determination of relevant Wnt
signalling-targeted treatments, transcriptomic, genome
sequencing and/or immunohistochemistry studies are of
tremendous importance. These studies are also benefi-
cial for the identification of the subset of patients that
can get benefitted from the combination therapies with
various signalling inhibitors.239 A multiomics data-based
study was performed to understand the molecular signa-
tures linked with TGF-β in gastrointestinal adenocarci-
noma and a comprehensive neural network was framed.
The results of this study suggested that TGF-β can be
a potential and possible drug target in gastrointestinal
adenocarcinoma.240
An explorative pathway analysis study conducted by

Helleman et al.241 of various gene sets found that TGF-
β was a prominent gene associated with ovarian cancers
that were chemotherapy-resistant. Extra cellular matrix
(ECM)/integrin-mediated pathway induced by TGF-β was
considered as a potential target for ovarian carcinomas.
This also showed that TGF-β could play an important role
in chemotherapy-resistant cancers, and natural products
targeting TGF-βmight show significant potential for such
neoplasms. Various other proteomic and genomic analy-
ses were conducted to explore the mechanism of TGF-β
in cancer progression.242,243 However, a substantial gap is
there, andmore exhaustive and exclusive omics studies are
needed to unravel the precise role of TGF-β in tumourigen-
esis. A schematic representation of TGF-β-associated mul-
tidimensional omics approaches in cancermedicine is pre-
sented in Figure 4.
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F IGURE 4 Schematic representation of various multiomics approaches for the mechanistic investigations of cancer. The image depicts
omics-based mechanistic evaluation of a multiple cancer patient’s tumour environment with the help of metabolomics and genomics
investigations. The image symbolically represents the utilisation of multiomics approach for the development of TGF-β neural network

8 CONCLUSION, CURRENT
LIMITATION, CHALLENGES AND
FUTURE RESEARCH DIRECTIONS

Cancer is one the deadliest diseases known to man, the
rate of which is increasing unexpectedly due to urbanisa-
tion, environmental issues and collective lifestyle changes.
Although there are numerous significant medical and
technological developments to combat this disease, many
conventional cancer-targeted therapies have severe side
effects and complications, including exposure to severe
toxicities and the development of resistance to themedica-
tions. Although cancer drugs act through various mecha-
nisms involving different signalling pathways to treat indi-
viduals, we have narrowed the scope of our research to the
TGF-β signalling pathway. The TGF-β signalling pathway
plays a critical role in various cellular responses related
to cell growth, apoptosis, motility, invasion, angiogenesis
and differentiation. Although TGF-β’s role is extensively
studied for its tumour suppressive character during the
early stages of cancer, it is also known to be involved in
cancer progression, especially within the later stages. The
possession of this unique property allows the pathway to

act as a double-edged sword, as it can play the roles of
both tumour suppressor and promoter at different stages
of cancer.
TGF-β induces EMT in various epithelial cells, which is

able to induce a stem cell-like phenotype in cancer cells.
Inhibiting TGF-β signalling decreases the expression of
protein markers and induces cell differentiation to less
aggressive phenotypes. Clinical studies have revealed that
drugs, such as galunisertib, show severe side effects in
different phases of clinical trials. Several of these promi-
nent side effects include a significant decline in lympho-
cytes, platelet count and white blood cells along withmore
common side effects, such as fatigue, nausea, constipa-
tion and alopecia.244,245 Similar adverse events were also
recorded for other drugs, such as fresolimumab.246 Due
to the adverse effects pertaining to many of the TGF-β
inhibitors, usage of natural productsmay arise to become a
better therapeutic approach for treating cancer due to their
lesser amount of side effects in comparison to chemother-
apy. In addition, natural compounds, such as curcumin,
resveratrol, podophyllotoxin and emodin, can also be used
as a bioenhancer for their synergistic effects to promote the
anticancer potential. However, substantial clinical studies
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F IGURE 5 Mechanism of different natural compounds targeting the TGF-β pathway in cancer. The figure illustrates the effects of
various bioactive phytocompounds, such as betulinic acid, caffeine, diosgenin, ginsenoside, podophyllotoxin and resveratrol, on apoptosis,
cell cycle, cell proliferation and metastasis linked to interference with the TGF-β signalling

are required to have a proper understanding of the thera-
peutic efficacy of various natural products.
The prospective of natural agents in the field of drug

discovery is boundless. A minimum of about one-third
of apex 20 drugs on the market are derived from natu-
ral products (specifically from plants), and approximately
50% of today’s available and marketed drugs are cate-
gorised as naturally derived or designed based on natural
products.247,248
Therefore, treating cancer through targeting the TGF-β

pathway with various phytoconstituents is a new strategy
that is most likely to result in fewer side effects for can-
cer patients. Despite ongoing research on natural product-
based cancer therapeutics many questions may arise, such
as: (i) Do these natural products and their derivatives only
kill cancer cells? If there is an effect on other types of
cells, do they produce a favourable or harmful effect? (ii)
Do these natural compounds and their derivatives have
a synergistic effect with the conventional form of can-
cer treatment, or does their interaction induce unexpected

effects? (iii) Does the use of natural products have advan-
tages over the usage of conventional cancer treatment?Our
review addresses these questions and provides comprehen-
sive details about natural products and their derivatives,
and whether they manage or inhibit cell proliferation with
negligible effects on normal cells. To answer the second
question, it is clear frommultiple studies that natural prod-
ucts and their derivatives have highly synergistic effects
and can be used as a bioenhancer to augment the anti-
cancer effects of other chemotherapeutic drugs. Finally,
additional evidence is available that shows the beneficial
effects of natural products over conventional chemothera-
peutic agents, specifically in terms of severe adverse effects
of chemotherapy.However, comprehensive clinical studies
are required not only to establish the anticancer effects of
the natural products and their impact on TGF- β but also to
evaluate the synergistic anticancer effects with other natu-
ral products and synthetic agents.
As demonstrated, cancer treatment with the usage of

natural products has a long way to go within the area of
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preclinical and clinical studies. It is of utmost importance
to optimise doses of natural compounds that will not lead
to toxicity, but exhibit favourable pharmacokinetics and
pharmacodynamics parameters, along with the precise
mechanisms of action. As summarised in Figure 5, several
bioactive natural compounds act through diverse mecha-
nisms of the TGF-βsignalling pathway. These include sup-
pression of cell proliferation and inhibition of invasion
andmetastasis. Various natural compounds either directly
inhibit TGF-β signalling or can possibly act through mito-
chondria and induce apoptosis or cause cell cycle arrest at
different stages.
Various natural products play important roles in the

alteration of DNA methylation. Since there is a close
association between the profiles of DNA methylation and
TGF-β signalling, a comprehensive investigation to bet-
ter understand the value of TGF-β as a target for anti-
cancer natural agents is crucial. Several natural prod-
ucts have the potential of inducing TGF-β production in
the target cells, which might be valuable for cancer pre-
vention. However, it could also be potentially harmful
to patients with advanced-stage cancer. Very few clinical
studies pertaining to the effects of various natural products
on TGF-β signalling have been carried out; therefore, addi-
tional clinical studies are urgently warranted. We also rec-
ommend future studies utilising advanced pharmacologi-
cal approaches, such as multiomics investigations. There
is also a tremendous scope in the understanding of the
involvement of TGF-β at genomic levels. Additionally, the
impact of various plant secondary metabolites can also
be thoroughly investigated by using approaches, such as
metabolomics. Based on emerging evidence as presented
in this work, TGF-β-targeting bioactive compounds from
natural sources can serve as potential therapeutic agents
for the prevention and treatment of various human malig-
nancies.
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