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ABSTRACT 
Changes in feeding behavior and intake have been used to predict the onset of bovine respiratory disease in individual animals but have not been 
applied to cohort-level data. Correctly identifying high morbidity cohorts of cattle early in the feeding period could facilitate the administration of 
interventions to improve health and economic outcomes. The study objective was to determine the ability of feed delivery data from the first 15 
days of feed to predict total feeding period morbidity. Data consisted of 518 cohorts (10 feedlots, 56,796 animals) of cattle of varying sex, age, 
arrival weight, and arrival time of year over a 2-year period. Overall cohort-level morbidity was classified into high (≥15% total morbidity) or low 
categories with 18.5% of cohorts having high morbidity. Five predictive models (advanced perceptron, decision forest, logistic regression, neural 
network, and boosted decision tree) were created to predict overall morbidity given cattle characteristics at arrival and feeding characteristics 
from the first 15 days. The dataset was split into training and testing subsets (75% and 25% of original, respectively), stratified by the outcome of 
interest. Predictive models were generated in Microsoft Azure using the training set and overall predictive performance was evaluated using the 
testing set. Performance in the testing set (n = 130) was measured based on final accuracy, sensitivity (Sn, the ability to accurately detect high 
morbidity cohorts), and specificity (Sp, the ability to accurately detect low morbidity cohorts). The decision forest had the highest Sp (97%) with 
the greatest ability to accurately identify low morbidity lots (103 of 106 identified correctly), but this model had low Sn (33%). The logistic regres-
sion and neural network had similar Sn (both 63%) and Sp (69% and 72%, respectively) with the best ability to correctly identify high morbidity 
cohorts (15 of 24 correctly identified). Predictor variables with the greatest importance in the predictive models included percent change in feed 
delivery between days and 4-day moving averages. The most frequent variable with a high level of importance among models was the percent 
change in feed delivered from d 2 to 3 after arrival. In conclusion, feed delivery data during the first 15 days on feed was a significant predictor 
of total cohort-level morbidity over the entire feeding period with changes in feed delivery providing important information.
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INTRODUCTION
Bovine respiratory disease (BRD) is one of the costliest diseases 
in the feedlot industry (Salman et al., 1991). Early identification 
and prompt treatment of the disease can reduce the costs as-
sociated with BRD (Booker et al., 2004). Additionally, gastro-
intestinal diseases, lameness, and other adverse health events 
negatively impact animal performance, but the prevalence of 
these other diseases is relatively low. Machine learning has been 
applied to various fields in the agricultural industry to decrease 
costs and increase outputs. Predictive modeling techniques have 
not been heavily studied for use in the beef industry (White et 
al., 2018). Feedlots collect large volumes of data daily, including 
feed calls, antimicrobials, and other treatments administered, 
and various arrival characteristics. These data and more are po-
tential inputs for predictive models that could be used to predict 
the health outcome of cohorts of cattle. Therefore, the study ob-
jective was to evaluate the diagnostic ability of predictive models 
to determine whether a cohort would have a health outcome of 
≥15% total morbidity during the feeding period based on data 
collected at arrival and feed delivery data for the first 15 days 

on feed. The hypothesis was that predictive models can accu-
rately predict total feeding period morbidity, and that feed de-
livery patterns during the first 15 days on feed are important 
predictors. The objective was to determine the accuracy, sensi-
tivity, and specificity of five predictive models using arrival char-
acteristics and feed delivery data during the first 15 days on feed 
to correctly identify high (≥15%) morbidity cohorts.

MATERIALS AND METHODS
Animal Care and Use Committee approval was unnecessary 
as data were obtained from an existing database of feedlot 
operational data.

Data Collection
Daily records for 12,657 cohorts of cattle (1,005,320 animals) 
were obtained from 10 U.S. feedlots spanning 2018 to 2020. 
Health event records on an individual animal basis were tied 
to cohort-level data. A cohort was defined as a group of cattle 
purchased and managed together but not necessarily housed 
in the same pen for the entirety of the feeding phase.
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Data Transformation
Data were transformed into the appropriate format and new 
variables generated before use in predictive models. First, in-
clusion criteria were applied to the data. Cohorts needed to 
have complete arrival and feeding data. Feed delivery data 
beyond 15 days on feed were not included in the dataset, and 
remaining feed delivery data were adjusted for arrival body 
weight (percentage of arrival body weight) on a dry matter 
basis. Any cohorts with missing data were removed. This 
resulted in removal of many rows of data as several cohorts 
were rearranged early in the feeding period. Cohorts with ex-
treme values for some arrival characteristics or dry matter 
intake were also removed to reduce data entry errors. Cohorts 
were removed if the cohort was designated as a hospital pen, 
the average arrival weight was less than 182  kg or greater 
than 545 kg, days on feed was less than 0 or greater than 300, 
the cohort had not yet been closed out, or dry matter intake as 
a percentage of average arrival body weight was greater than 
5% or less than 0.1% on any given day within the first 15 
days on feed. After applying these exclusion criteria, 12,139 
cohorts were removed from the dataset. Secondly, data 
wrangling techniques applied in R software (R Core Team, 
2021) were used to create a dataset that consisted of one row 
per cohort.

Several additional variables were created using the existing 
data to describe feed delivery characteristics such as day-
to-day changes in feed delivery and rolling averages of feed 
delivery using 2-to-7-day time spans. Figure 1 outlines the 
feeding variables and which days on feed were accounted for 
in each feeding characteristic variable. Although each variable 
indicated in the figure is noted only once, feeding variables 
were calculated for their respective increments throughout 
the 15-day feeding period of interest. The outcome of interest 
was captured in a variable called total morbidity category. 
This variable described the total morbidity (all diseases) of 
a cohort of cattle during the entire feeding period. It was 
expressed as a categorical variable in which high morbidity 
indicated a total morbidity percentage of greater than or equal 
to 15%. Low morbidity was a total morbidity percentage of 
less than 15%. Table 1 offers a complete overview of all the 
variables that populated the dataset. Following data transfor-
mation and variable creation, the final dataset consisted of 

518 cohorts (56,796 animals) with 18.5% of cohorts having 
high morbidity.

Before the model building step occurred, data were split 
into separate training and testing sets, stratified by the prev-
alence of outcome of interest. The training set represented 
75% of the original dataset while the testing set represented 
the other 25%. Using the Pipeline Designer function in Azure 
Machine Learning Studio (Microsoft, 2022), the datasets 
were used to create five predictive models. The models trained 
and tested in this study were advanced perceptron, neural net-
work, boosted decision tree, decision forest, and logistic re-
gression. A previous description has been given by Rojas et 
al. (2022) from our laboratory. Briefly, neural networks and 
advanced perceptron models can be useful for identifying 
patterns in operational data, but are difficult to utilize for 
describing model structure or importance of predictive 
variables (Rosenblatt, 1957; Zhang, 2010). Boosted decision 
trees and decision forests are classification models creating a 
series of splits in data based on attributes to minimize entropy 
in resulting data subsets (Breiman, 2001; Roe et al., 2005). 
Logistic regression models are often used for statistical anal-
ysis and these algorithms can be created, then used to esti-
mate a probability of even occurrence in a predictive manner 
(Dreiseitl and Ohno-Machado, 2002). The models selected 
for investigation in this study are based on previous work 
conducted by Rojas et al. (2022) and Amrine et al. (2014), as 
well as the resources available on Azure.

Model Evaluation
Finally, test data were used to evaluate model performance. 
Adjustment of the threshold probability was done manually 
for each model to maximize F1 score to balance sensitivity 
and positive predictive value. The metrics used to evaluate the 
models were accuracy, sensitivity (Sn), specificity (Sp), pos-
itive and negative predictive values (PPV and NPV, respec-
tively, and area under the receiver operating characteristics 
[ROC] curve [AUC]). These values were calculated using the 
confusion matrices produced by each model run in Azure. 
Using these metrics, we were able to compare models based 
on their ability to accurately predict the total feeding period 
morbidity of a cohort. Figure 2 demonstrates the training and 
testing process of the predictive models.

Figure 1. Timeline schematic demonstrating the feed delivery data corresponding to various feeding predictor variables. Triangles indicate data on dry 
matter delivered as percentage of arrival body weight (DMI-BW). Arrows indicate data on percent change in DMI-BW from day to day.
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RESULTS AND DISCUSSION
The ROC curves for the five predictive models are presented in 
Figure 3. A line closer to a true positive rate of 1.0 and a false 
positive rate of 0.0 (i.e., top left corner) has greater sensitivity 
(correctly identify true positives—high morbidity cohorts) and 
specificity (correctly identifying true negatives—low-morbidity 
cohorts). Logistic regression, neural network, and decision 
forest models have similar ROC curves, whereas the decision 
tree model appears to be slightly less predictive, and the ad-
vanced perceptron model has very little predictive ability.

Additionally, the overall accuracy, in addition to the AUC 
value, support the conclusion that the advanced perceptron 
model has very poor performance (Table 2). The advanced 
perceptron model identified all cohorts as high morbidity 
based on the sensitivity of 100.0%. The logistic regression 
and neural network models had similar overall accuracy, was 
well as similar sensitivity, specificity, positive and negative 
predictive values. The decision tree and decision forest models 
had the greatest overall accuracy and specificity indicating 
good ability to identify low morbidity cohorts but had low 
sensitivity.

Previous work from our lab (Amrine et al., 2019) re-
ported that predictive models with greater specificity 
had lesser sensitivity when using sale barn and arrival 

Table 1. Complete overview of variables included in the final dataset to train and test the five predictive models

Variable category Variable name Description of variable 

Feeding variables DMI-BW1 for day 0 through 15 Feed intake measured by DMI-BW for each day starting 
on the day of arrival (0) to day 15 (16 total measurements)

Percent change in DMI-BW 
from one day to the next for 
days 0 through 15

Percent change in feed intake measured by DMI-BW be-
tween sequential days (15 total measurements)

2-day increment rolling averages 
of percent change in DMI-BW

Rolling averages in 2-day increments of percent change in 
DMI-BW (14 total measurements)

3-day increment rolling averages 
of percent change in DMI-BW

Rolling averages in 3-day increments of percent change in 
DMI-BW (13 total measurements)

4-day increment rolling averages 
of percent change in DMI-BW

Rolling averages in 4-day increments of percent change in 
DMI-BW (12 total measurements)

5-day increment rolling averages 
of percent change in DMI-BW

Rolling averages in 5-day increments of percent change in 
DMI-BW (11 total measurements)

6-day increment rolling averages 
of percent change in DMI-BW

Rolling averages in 6-day increments of percent change in 
DMI-BW (10 total measurements)

7-day increment rolling averages 
of percent change in DMI-BW

Rolling averages in 7-day increments of percent change in 
DMI-BW (9 total measurements)

Arrival charac-
teristics

Arrival date Date of arrival for the cohort, format: MM/DD/YYYY

Average arrival weight Average weight at arrival of the cohort in pounds

Sex Sex of the cohort, could be heifer, steer, mixed

Arrival animal count Number of animals in the cohort upon arrival

Outcome var-
iable

Total morbidity category High (≥ 15%) or low (< 15%) based on morbidity for any 
diagnosis as a percentage of arrival animal count

1DMI-BW indicates the feed intake on a dry matter basis given as a percentage of the average arrival weight of the cohort.

Figure 2. Illustration of data management, and model training and 
evaluation process.

Figure 3. Receiver operating characteristic (ROC) curves for five 
predictive models trained to predict high (≥15%) morbidity cohorts of 
feedlot cattle. The five predictive models are Advanced Perceptron, 
Logistic Regression, Neural Network, Decision Tree, and Decision Forest. 
Perf. Pred. represents the perfect predictive model.
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characteristics to predict BRD in the first 14 days on feed. 
The “best” model depends upon the goals of the feedlot 
manager. If the goal is to accurately identify low morbidity 
cohorts, then a model with the greatest specificity would be 
deemed the ‘best’ model. Conversely, if the goal is to accu-
rately identify high morbidity cohorts, then a model with 
the greatest sensitivity would be deemed the ‘best’ model. 
Accurate identification of high morbidity cohorts could 
lead to actions that allow changes in risk management, 
frequency of disease monitoring, and other interventions. 
However, if the model misclassifies low morbidity cohorts 
as high morbidity cohorts, then valuable resources would 
be wasted. The decision forest model had a low sensitivity, 
only accurately classifying 33% of high morbidity cohorts, 
but based on the high PPV, this model had a high prob-
ability of being correct when it did classify a cohort as 
high morbidity. Thus, the decision forest model would not 
identify all of the high morbidity cohorts, but if potential 
interventions were implemented based on this model little 
resources would be wasted.

Several previous studies (Sowell et al., 1999; Buhman et 
al., 2000; Quimby et al., 2001; Moya et al., 2015; Wolfger 
et al., 2015; Jackson et al., 2016) have indicated that feed 
intake, feeding behavior, and drinking behavior are predictive 
of onset of BRD in individual cattle. The onset of BRD can 
be predicted 4 to 7 days before clinical signs can be observed 
using feeding and drinking data (Buhman et al., 2000; Moya 
et al., 2015; Wolfger et al., 2015; Jackson et al., 2016). 
Feeding behavior has predicted BRD with an overall accu-
racy of 84% to 89% and positive predictive value of 85% to 
96% (Quimby et al., 2001). Wolfger et al. (2015) indicated 
that feed behavior correctly predicted 81% of BRD cases and 
77% of healthy animals 3 days prior to clinical signs; adding 
feed intake did not improve these predictions. Similarly, Moya 
et al. (2015), using pattern recognition techniques, reported 
that feeding behavior predicted BRD with good sensitivity 
(58% to 83%) and specificity (67% to 100%) for some of the 
models with the best overall accuracy.

From the Microsoft Azure platform, feature importance could 
be obtained for the decision tree, decision forest, and logistic 
regression models. In each of these models, feeding data were 
among the top five predictors, and the percent change in feed 
delivery from days on feed (DOF) 2 to 3 was one of the most im-
portant predictors. Other predictors were percent change in feed 
delivery from DOF 4 to 5 and from DOF 8 to 9, and rolling av-
erage in percent change in feed delivery from DOF 7 to 10. These 
results indicate that alterations in feeding patterns very early in 
the feeding period are predictive of total morbidity, which may 
allow interventions to mitigate disease progression in the cohort.

In commercial feedlots, cattle are managed as pens except 
for individual animal treatment of disease. Tracking indi-
vidual animal feeding behavior is not practical nor cost-effec-
tive in a commercial feedlot. However, commercial feedlots 
collect real-time data that can be used to make pen-level man-
agement decisions. The results of this study and the previous 
discussion indicate that feeding data can be used to predict 
morbidity in cattle. In our study, we looked at total morbidity, 
but BRD accounted for 65% of the total treatments. The pre-
dictive models in this study were somewhat predictive of total 
cohort level morbidity indicating that feeding data can be 
used to predict morbidity in pens of cattle, which could lead 
to improved management of disease in feedlots. However, in 
the current study, feed delivery data were used as predictors 
in the models, which do not account for feed refusals. Based 
on previous data (Jackson, 2016), feed intake decreases prior 
to clinical signs of BRD and thus in our case, a decrease in the 
feed delivered is likely indicative of significant feed refusals 
and decreased feed intake for the day prior. Although, an 
increase in feed refusals could also be due to several other 
factors such as weather, removal of cattle from the pen, etc., 
which cannot be ascertained from our current dataset.

CONCLUSION
Feed intake and feeding behavior data are predictive of BRD 
in individual animals, and feed delivery data are predictive 
of total morbidity in commercial feedlot pens. Predictive an-
alytics is a valuable tool that can be used to convert feedlot 
operational data into animal health management decisions. 
Future research should evaluate the ability of feed delivery to 
predict specific diseases (BRD, bloat, etc.), and combine feed 
delivery data with other data types to improve the prediction 
of morbidity in feedlot cattle.

Conflict of Interest Statement
The authors declare no actual or potential conflicts of inter-
est.

LITERATURE CITED
Amrine, D. E., J. G. McLellan, B. J. White, R. L. Larson, D. G. Renter, 

and M. Sanderson. 2019. Evaluation of three classification models 
to predict risk class of cattle cohorts developing bovine respira-
tory disease within the first 14 days on feed using on-arrival and/
or pre-arrival information. Comp Electron Agric. 156:439–446. 
doi:10.1016/j.compag.2018.11.035.

Amrine, D. E., B. J. White, and R. L. Larson. 2014. Comparison of clas-
sification algorithms to predict outcomes of feedlot cattle identified 

Table 2. Model evaluation of five predictive models trained to predict high (≥15%) morbidity cohorts of feedlot cattle

Model AUC1 Acc (%) Sn (%) Sp (%) PPV NPV 

Advanced perceptron 0.653 18.5 100.0 0.0 0.18 —

Logistic regression 0.675 67.7 62.5 68.9 0.31 0.89

Neural network 0.691 70.0 62.5 71.7 0.33 0.89

Decision tree 0.691 78.5 29.2 89.6 0.39 0.85

Decision forest 0.671 85.4 33.3 97.2 0.73 0.87

1AUC, area under the receiver operator characteristic (ROC) curve; Acc, overall accuracy; Sn, sensitivity, ability to predict high morbidity cohorts; Sp, 
specificity, ability to predict low morbidity cohorts; PPV, positive predictive value, probability that predicted high morbidity cohorts are truly high 
morbidity cohorts; NPV, negative predictive value, probability that predicted low morbidity cohorts are truly low morbidity cohorts.

https://doi.org/10.1016/j.compag.2018.11.035


Feed intake predictive models 5

and treated for bovine respiratory disease. Comp Electron Agric. 
105:9–19. doi:10.1016/j.compag.2014.04.009.

Booker, C. W., G. H. Loneragan, P. T. Guichon, G. K. Jim, O. C. 
Schunicht, B. K. Wildman, T. J. Pittman, R. K. Fenton, E. D. Janzen, 
and T. Perrett. 2004. Practical application of epidemiology in  
veterinary herd health/production medicine. In: American Associ-
ation of Bovine Practitioners Proceedings of the Annual Confer-
ence; September 23–25; 2004; Fort Worth, TX; p. 59–62. (vol. 37). 
doi:10.21423/aabppro20044902.

Breiman, L. 2001. Random forests. Mach. Learn. 45:5–32. 
doi:10.1023/A:1010933404324.

Buhman, M. J., L. J. Perino, M. L. Galyean, T. E. Wittum, T. H. 
Montgomery, and R. S. Swingle. 2000. Association between 
changes in eating and drinking behaviors and respiratory tract dis-
ease in newly arrived calves at a feedlot. Am. J. Vet. Res. 61:1163–
1168. doi:10.2460/ajvr.2000.61.1163.

Dreiseitl, S., and L. Ohno-Machado. 2002. Logistic regression and arti-
ficial neural network classification models: a methodology review. J. 
Biomed. Inform. 35:352–359. doi:10.1016/s1532-0464(03)00034-
0.

Jackson, K. S., G. E. Carstens, L. O. Tedeschi, and W. E. Pinchak. 2016. 
Changes in feeding behavior patterns and dry matter intake before 
clinical symptoms associated with bovine respiratory disease in grow-
ing bulls. J. Anim. Sci. 94:1644–1652. doi:10.2527/jas.2015-9993.

Microsoft. 2022. Azure machine learning—ML as a service. Microsoft 
Azure. Available from https://azure.microsoft.com/en-us/services/
machine-learning/

Moya, D., R. Silasi, T. A. McAllister, B. Genswein, T. Crowe, S. Marti, 
and K. S. Schwartzkopf-Genswein. 2015. Use of pattern recogni-
tion techniques for early detection of morbidity in receiving feedlot 
cattle. J. Anim. Sci. 93:3623–3638. doi:10.2527/jas.2015-8907.

Quimby, W. F., B. F. Sowell, J. G. P. Bowman, M. E. Branine, M. E. Hubbert, 
and H. W. Sherwood. 2001. Application of feeding behaviour to pre-
dict morbidity of newly received calves in a commercial feedlot. Can. 
J. Anim. Sci. 81:315–320. doi:10.4141/A00-098.

R Core Team. 2021. R: A language and environment for statistical com-
puting. Vienna (Austria): R Foundation for Statistical Computing. 
Available from https://www.R-project.org/

Roe, B. P., H. -J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor. 2005. 
Boosted decision trees as an alternative to artificial neural networks 
for particle identification. Nucl. Instrum. Methods Phys. Res., Sect. 
A 543:577–584. doi:10.1016/j.nima.2004.12.018.

Rojas, H. A., B. J. White, D. E. Amrine, and R. L. Larson. 2022. Predicting 
bovine respiratory disease risk in feedlot cattle in the first 45 days 
post arrival. Pathogens. 11:442. doi:10.3390/pathogens11040442.

Rosenblatt, F. 1957. The perceptron: a perceiving and recognizing auto-
mation. Buffalo (NY): Cornell Aeronautical Laboratory, Inc. Avail-
able from chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.
pdf

Salman, M. D., M. E. King, K. G. Odde, and R. G. Mortimer. 1991. 
Costs of veterinary services and vaccines/drugs used for preven-
tion and treatment of diseases in 86 Colorado cow-calf operations 
participating in the National Animal Health Monitoring System 
(1986–1988). J. Am. Vet. Med. Assoc. 198:1739–1744.

Sowell, B. F., M. E. Branine, J. G. P. Bowman, M. E. Hubbert, H. E. 
Sherwood, and W. Quimby. 1999. Feeding and watering behavior 
of healthy and morbid steers in a commercial feedlot. J. Anim. Sci. 
77:1105–1112. doi:10.2527/1999.7751105x.

White, B. J., D. E. Amrine, and R. L. Larson. 2018. Big data analytics 
and precision animal agriculture symposium: data to decisions. J. 
Anim. Sci. 96:1531–1539. doi:10.1093/jas/skx065.

Wolfger, B., K. S. Schwartzkopf-Genswein, H. W. Barkema, E. A. Pajor, 
M. Levy, and K. Orsel. 2015. Feeding behavior as an early predictor 
of bovine respiratory disease in North American feedlot systems. J. 
Anim. Sci. 93:377–385. doi:10.2527/jas.2013-8030.

Zhang, G. P. 2010. Neural networks for data mining. In: Maimon, O. and 
L. Rokach, editors. Data mining and knowledge discovery hand-
book. Boston (MA): Springer US; p. 419–444. doi:10.1007/978-0-
387-09823-4_21

https://doi.org/10.1016/j.compag.2014.04.009
https://doi.org/10.21423/aabppro20044902
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2460/ajvr.2000.61.1163
https://doi.org/10.1016/s1532-0464(03)00034-0
https://doi.org/10.1016/s1532-0464(03)00034-0
https://doi.org/10.2527/jas.2015-9993
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://doi.org/10.2527/jas.2015-8907
https://doi.org/10.4141/A00-098
https://www.R-project.org/
https://doi.org/10.1016/j.nima.2004.12.018
https://doi.org/10.3390/pathogens11040442
https://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://doi.org/10.2527/1999.7751105x
https://doi.org/10.1093/jas/skx065
https://doi.org/10.2527/jas.2013-8030
https://doi.org/10.1007/978-0-387-09823-4_21
https://doi.org/10.1007/978-0-387-09823-4_21

