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Abstract: During the coronavirus disease (COVID-19) pandemic, we admitted suspected or confirmed
COVID-19 patients to our isolation wards between 2 March 2020 and 4 May 2020, following a well-
designed and efficient assessment protocol. We included 217 patients suspected of COVID-19, of
which 27 had confirmed COVID-19. The clinical characteristics of these patients were used to train
artificial intelligence (AI) models such as support vector machine (SVM), decision tree, random forest,
and artificial neural network for diagnosing COVID-19. When analyzing the performance of the
models, SVM showed the highest sensitivity (SVM vs. decision tree vs. random forest vs. artificial
neural network: 100% vs. 42.86% vs. 28.57% vs. 71.43%), while decision tree and random forest had
the highest specificity (SVM vs. decision tree vs. random forest vs. artificial neural network: 88.37%
vs. 100% vs. 100% vs. 94.74%) in the diagnosis of COVID-19. With the aid of AI models, physicians
may identify COVID-19 patients earlier, even with few baseline data available, and segregate infected
patients earlier to avoid hospital cluster infections and to ensure the safety of medical professionals
and ordinary patients in the hospital.

Keywords: COVID-19; artificial intelligence; support vector machine (SVM); decision tree; random
forest; artificial neural network

1. Introduction

Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical spectrum of
COVID-19 appears to be broad, ranging from no symptoms to mild upper respiratory tract
illness, severe pneumonia with respiratory failure, and death. The existence of asymp-
tomatic patients and patients with non-specific symptoms may significantly delay the
diagnosis of COVID-19 and present a serious threat to public health. The rising incidence
and massive casualties of COVID-19 exert significant pressure on limited healthcare re-
sources. The early diagnosis of asymptomatic or mild COVID-19 patients is essential to
prevent the spread of the infection during the pandemic. However, the gold standard for
COVID-19 diagnosis, the reverse transcriptase polymerase chain reaction (RT-PCR), takes a
maximum of up to two days to give the result. There has also been a heavy shortage of
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RT-PCR test kits in many countries during the pandemic. Thus, effective tools are really
needed to simplify the diagnosis and surveillance of COVID-19. Recently, researchers
found that well-trained artificial intelligence (AI) can ensure accurate and rapid diagnosis
or assist physicians to reduce manual labor. Some of these studies were conducted for
AI-assisted COVID-19 diagnosis [1–18], some were conducted for predicting the progno-
sis of patients [19–28], and others were conducted for predicting the epidemic trend of
COVID-19 [29–31].

Taiwan was initially expected to be one of the most affected countries owing to its
geographic proximity and close people-to-people exchanges with China [32]. However, as
the disease continues to spread globally, Taiwan has been able to contain the pandemic
and minimize its impact on the daily lives of its citizens. Since the first confirmed case in
Taiwan on 21 February 2020 [33], less than 1100 cases were reported in Taiwan till 10 April
2021. This is attributed to the government’s rapid action including border control from the
air and sea, adequate screening, quarantine of suspicious cases, identification of travelers’
infection risks, and comprehensive contact tracing. To coordinate the pandemic-prevention
policies, our hospital set up two isolation wards to admit confirmed COVID-19 patients and
suspected cases since 2 March 2020. Until 4 May 2020, 217 patients had been hospitalized
into our isolation ward, of which 27 had a confirmed COVID-19 diagnosis. To facilitate
diagnosing COVID-19, we tried to apply the clinical characteristics of these patients to
different AI models and find the most effective one.

There are limited data on the clinical characteristics of COVID-19 patients in Taiwan.
We aimed to delineate the epidemic prevention experience of our hospital under the
guidance of Taiwan’s government, clarify the differences in clinical characteristics between
confirmed cases and COVID-19-negative patients admitted to our hospital, and apply the
clinical characteristics to AI models for diagnosing COVID-19.

2. Materials and Methods
2.1. Study Population

Our study included adult patients (age ≥ 20 years) with suspected or confirmed
COVID-19 diagnosis, who were admitted to our isolation wards between 2 March 2020
and 4 May 2020. All patients with COVID-19 were confirmed by using real-time reverse-
transcriptase polymerase chain reaction (RT-PCR) assays from oropharyngeal swab spec-
imens. The patients included travelers entering Taiwan with a positive COVID-19 test
performed at the airport, symptomatic patients with a contact or travel history who visited
our emergency room and needed hospitalization, and people with close contact with con-
firmed cases and who needed hospitalization. The study was approved by the Institutional
Review Board of Tri Service General Hospital, and informed consent was obtained from
all patients.

2.2. COVID-19 Screening, Hospitalization, and Home Quarantine

Figure 1 shows a flow diagram of the protocols followed for COVID-19 screening,
hospitalization, and home quarantine. All travelers entering Taiwan were required to stay
at home or at a quarantine hotel and undergo home quarantine for two weeks. Among
them, individuals with symptoms were tested at the airport for SARS-CoV-2 viral nucleic
acid using RT-PCR assays from oropharyngeal swab specimens. They had to stay at home
or at the quarantine hotel while awaiting the test results. Individuals with a positive
result in the COVID-19 test were sent to the appointed hospital for isolation and treatment.
People with a negative result continued the two-week home quarantine. Symptomatic
patients who visited our hospital with a travel or contact history were referred to our
emergency room (ER) and tested for COVID-19. Patients who needed hospitalization were
admitted to our isolation ward while waiting for the test result. Among them, patients
with a positive result remained hospitalized in the isolation ward, while patients with a
negative result were transferred to an ordinary ward. Patients in the ER who did not need
hospitalization were asked to stay at home until the test results. Among them, patients
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with a positive result were admitted to the isolation ward, while patients with a negative
result home-quarantined for two weeks. Individuals with close contact with confirmed
cases were sent to the appointed hospital for COVID-19 testing, and symptomatic people
among them were isolated in the dedicated ward until the results arrived. People without
symptoms stayed at home or at a quarantine hotel while waiting for the result. Among
them, people with positive results were arranged hospitalization in the isolation ward,
while COVID-19-negative patients continued the home quarantine for two weeks. All
transportation between the airport, home, the quarantine hotel, and the hospital were made
through appointed cars instead of public transportation.
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Figure 1. Flow diagram of COVID-19 screening, hospitalization, and home quarantine for travelers
entering Taiwan, symptomatic patients who visited our emergency room, and people with close
contact with confirmed cases.

2.3. Obtaining the Demographic Data, Clinical Symptoms, and Laboratory Data

Relevant clinical data of the enrolled people, including age, gender, underlying dis-
eases, clinical symptoms, and laboratory data, were recorded. Laboratory data including
white blood cell count, platelet count, neutrophil-to-lymphocyte ratio, renal function, liver
function, levels of total bilirubin, C-reactive protein, D-dimer, and procalcitonin were
examined and noted within 24 h after admission. Patients were diagnosed with pneumonia
based on the lower respiratory tract symptom of cough, the systemic symptom of fever,
and new onset radiology findings of infiltration [34,35].

2.4. Statistical Analysis

The patients were sub-grouped in confirmed COVID-19 patients and suspected cases
with a negative result to compare their clinical characteristics, including demographic data,
underlying diseases, symptoms, and laboratory data. All results were analyzed using a
commercially available software package (SPSS, version 21.0; SPSS Inc., Chicago, IL, USA).
Categorical variables were analyzed using the chi-square test, while continuous variables
with categorical variables were analyzed with the independent two-samples t test for
comparison. All p-values were 2-tailed, and p-values of less than 0.05 were considered to
indicate statistical significance.



J. Clin. Med. 2022, 11, 1437 4 of 13

2.5. Applying the Clinical Characteristics and Routine Laboratory Data to Train AI Models

In order to obtain a confirmed COVID-19 predictive model (“Outcome” feature),
we established four AI models including support vector machine (SVM), decision tree,
random forest, and artificial neural network by inputting the above information comprising
clinical characteristics (sex, age, temperature, SBP, DBP, PR, RR, fever, cough, headache,
muscle ache, distorted sense of taste, distorted sense of smell, rhinorrhea, sore throat, chest
tightness, dyspnea, diarrhea, eye illness, nausea and vomiting) and routine laboratory data
(WBC/1000, PLT, Neu(%), ANC, Lym(%), ALC, Cr, CRP, AST, ALT). We created training
and testing sets by splitting the sample randomly to assess the performance of the model. A
classifier can only be trained using retrospective data in the real world, and it will be used
to classify future data. The machine learning construction process was to split all data into
training and test datasets using 80% and 20% of the data. The process is shown in Figure 2.
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2.5.1. Support Vector Machines

Support vector machines (SVMs) are common classifiers in machine learning. They
map all samples to a hyperplane and separate them with a clear space. In addition, core
tips are used to extend this hyperplane. SVMs have been shown to perform better in
classifying free-text medical literature than naive Bayesian classifiers, C4.5 decision trees,
and adaptive amplification [36]. In this study, we used the four most common kernel tips:
linear, polynomial (degree = 3), radial basis, and sigmoid. We used the e1071 package (R
package version 1.7-4) as the SVM implementation and set all other parameters to their
defaults [37].

2.5.2. Random Forest

A random forest (RF) generates multiple decision trees and uses information from each
tree to make predictions. This is the best classification model in previous text classification
research [38] compared with SVM, Bayes classifier, and k-nearest neighbor algorithm. We
used the version package 4.6-14 [39] as the RF implementation and set all the parameters to
their default values.
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2.5.3. Decision Tree

A decision tree is a non-parametric method among the supervised learning methods.
Supervised learning means automatically building predictive models via algorithms from
a given set of observations (data) as a training dataset [40]. Test datasets are used to
assess how good the algorithm predicts the outcome from unseen data, which is also
known as model evaluation. For decision tree analysis, the variables do not need to be
linear/normal or additive, and their possible interactions do not need to be pre-specified.
Missing values of the covariates, multicollinearity, and outliers are automatically taken into
account [41]. We used the party package (R package version 1.3-6) [42] as the decision tree
implementation and set all other parameters to their default values.

2.5.4. Artificial Neural Network

An Artificial Neural Network is a computational model inspired by the functioning of
the human brain. It is composed by a set of artificial neurons (known as processing units)
that are interconnected with other neurons. Each connection has an associated weight that
represents the influence of one neuron on another. The word network in Neural Network
refers to the interconnection between neurons present in various layers of a system. Every
system is basically a 3-layered system, and the layers are the Input layer, the Hidden
Layer, and the Output Layer. The input layer has input neurons which transfer data via
synapses to the hidden layer, and similarly the hidden layer transfers these data to the
output layer via more synapses. The synapses store values called weights which help them
to manipulate the input and output to various layers. An ANN can be defined based on
the following three characteristics:

1. The architecture indicating the number of layers and the number of nodes in each layer.
2. The learning mechanism applied for updating the weights of the connections.
3. The activation functions used in various layers. We used the MXNet version 0.8.0

package [43] to implement the above architecture. The settings used for the training
model were as follows: (1) the network architecture was 4 × 3 × 1, i.e., the input
layer had 4 nodes, the hidden layer had 3 nodes, and the output layer had 1 node;
(2) minibatch gradient descent with batch size of 20 for optimization; (3) learning
rate = 0.013; (4) momentum coefficient = 0.9; (4) L2 regularization coefficient = 0.

3. Results

From 2 March 2020 to 4 May 2020, there were 217 cases suspected of COVID-19 who
were admitted to our isolation ward at Tri Service General Hospital. The median patient
age was 40.8 years (range, 1–92 years). Among them, 107 (49.3%) were male, 101 (46.5%)
had pneumonia, while 27 (12.4%) were finally confirmed to have contracted COVID-19.

3.1. Demographic Data and Underlying Diseases of Confirmed COVID-19 Patients and
COVID-19-Negative Patients

The demographic data and underlying diseases of confirmed COVID-19 patients and
COVID-19-negative patients are listed in Table 1. There was no gender predominance
in both the confirmed group (male vs. female; 51.9% vs. 48.1%) and the negative group
(male vs. female; 48.9% vs. 51.1%). The median age of the confirmed patients was
41.7 ± 18.5 years, while that of the negative patients was 40.7 ± 20.4 years. The confirmed
COVID-19 patients had a higher prevalence of hyperlipidemia than the COVID-19-negative
patients (18.5% vs. 2.6%; p < 0.001). Between the two groups, there was no significant
difference in the prevalence of hypertension, diabetes mellitus, hyperuricemia, chronic
kidney disease, cerebrovascular accident, coronary artery disease, cardiac arrhythmia,
valvular heart disease, congestive heart failure, bronchial asthma, chronic obstructive
pulmonary disease, solid organ cancer, hematogenic disorder, human immunodeficiency
virus infection, chronic hepatitis, auto-immune disease, chronic urticaria, or allergic rhinitis
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Table 1. Demographic data and underlying diseases of confirmed COVID-19 patients and COVID-19-
negative patients.

Confirmed Patients Negative Patients

Sex male 14 (51.9%) 93 (48.9%) p = 0.778
female 13 (48.1%) 97 (51.1%)

Age (years) 41.7 ± 18.5 40.7 ± 20.4 p = 0.801
Underlying diseases
HTN yes 3 (11.1%) 32 (16.8%) p = 0.449

no 24 (88.9%) 158 (83.2%)
DM yes 1 (3.7%) 15 (7.9%) p = 0.436

no 26 (96.3%) 175 (92.1%)
Hyperlipidemia yes 5 (18.5%) 5 (2.6%) p < 0.001

no 22 (81.5%) 185 (97.4%)
Hyperuricemia yes 1 (3.7%) 2 (1.1%) p = 0.27

no 26 (96.3%) 188 (98.9%)
CKD yes 0 2 (1.1%) p = 0.592

no 27(100%) 188 (98.9%)
CVA yes 1 (3.7%) 2 (1.1%) p = 0.27

no 26 (96.3%) 188 (98.9%)
CAD yes 0 7(3.7%) p = 0.311

no 27 (100%) 183 (96.3%)
Cardiac arrhythmia yes 0 3 (1.6%) p = 0.511

no 27 (100%) 187 (98.4%)
VHD yes 0 4(2.1%) p = 0.447

no 27 (100%) 186 (97.9%)
CHF yes 0 8 (4.2%) p = 0.447

no 27 (100%) 182 (95.8%)
Bronchial asthma yes 0 7 (3.7%) p = 0.311

no 27 (100%) 183 (96.3%)
COPD yes 0 2 (1.1%) p = 0.592

no 27 (100%) 188 (98.9%)
Solid organ cancer yes 1 (3.7%) 5 (2.6%) p = 0.751

no 26 (96.3%) 185 (97.4%)
Hematogenic disorder yes 0 2 (1.1%) p = 0.592

no 27 (100%) 188 (98.9%)
HIV infection yes 0 2 (1.1%) p = 0.592

no 27 (100%) 188 (98.9%)
Chronic hepatitis yes 2 (7.4%) 5 (2.6%) p = 0.189

no 25 (92.6%) 185 (97.4%)
Autoimmune disease yes 0 5 (2.6%) p = 0.394

no 27 (100%) 185 (97.4%)
Chronic urticaria yes 0 3 (1.6%) p = 0.511

no 27 (100%) 187 (98.4%)
Allergic rhinitis yes 1 (3.7%) 2 (1.1%) p = 0.27

no 26 (96.3%) 188 (98.9%)
CAD, coronary artery disease; CHF, congestive heart failure; CKD, chronic kidney disease; COPD, chronic
obstructive pulmonary disease; COVID-19, coronavirus disease; CVA, cerebrovascular accident; DM, diabetes
mellitus; HIV, human immunodeficiency virus; HTN, hypertension; VHD, valvular heart disease.

3.2. Symptoms of Confirmed COVID-19 and COVID-19-Negative Patients

The symptoms of confirmed COVID-19 and COVID-19-negative patients are listed
in Table 2. The most frequent symptoms in both groups were cough and fever (confirmed
cases vs. negative cases; 81.5% vs. 52.1% and 63% vs. 43.7%, respectively). The confirmed
COVID-19 patients, compared to the negative patients, had a higher prevalence of cough
(81.5% vs. 52.1%; p = 0.004), distorted sense of taste (25.9% vs. 0; p < 0.001), distorted sense
of smell (37% vs. 0.5%; p < 0.001), rhinorrhea (44.4% vs. 14.2%; p < 0.001), chest tightness
(18.5% vs. 6.3%; p = 0.027), dyspnea (37% vs. 12.6%; p = 0.001), diarrhea (33.3% vs. 5.3%;
p < 0.001), and nausea and vomiting (11.1% vs. 2.1%; p = 0.013). On the contrary, there was
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no significant difference in the prevalence of fever, headache, muscle ache, sore throat, or
eye illness.

Table 2. Symptoms of confirmed COVID-19 patients and COVID-19-negative patients.

Symptoms Confirmed Patients Negative Patients

Fever yes 17 (63%) 83 (43.7%) p = 0.06
no 10 (37%) 107 (56.3%)

Cough yes 22 (81.5%) 99 (52.1%) p = 0.004
no 5 (18.5%) 91 (47.9%)

Headache yes 4 (14.8%) 19 (10%) p = 0.447
no 23 (85.2%) 171 (90%)

Muscle ache yes 5 (18.5%) 15 (7.9%) p = 0.074
no 22 (81.5%) 175 (92.1%)

Distorted sense of taste yes 7 (25.9%) 0 p < 0.001
no 20 (74.1%) 190 (100%)

Distorted sense of smell yes 10 (37%) 1 (0.5%) p < 0.001
no 17 (63%) 189 (99.5%)

Rhinorrhea yes 12 (44.4%) 27 (14.2%) p < 0.001
no 15 (55.6%) 163 (85.8%)

Sore throat yes 8 (29.6%) 32 (16.8%) p = 0.109
no 19 (70.4%) 158 (83.2%)

Chest tightness yes 5 (18.5%) 12 (6.3%) p = 0.027
no 22 (81.5%) 178 (93.7%)

Dyspnea yes 10 (37%) 24 (12.6%) p = 0.001
no 17 (63%) 166 (87.4%)

Diarrhea yes 9 (33.3%) 10 (5.3%) p < 0.001
no 18 (66.7%) 180 (94.7%)

Eye illness yes 1 (3.7%) 1 (0.5%) p = 0.106
no 26 (96.3%) 189 (99.5%)

Nausea and vomiting yes 3 (11.1%) 4 (2.1%) p = 0.013
no 24 (88.9%) 186 (97.9%)

COVID-19, coronavirus disease 2019.

3.3. Laboratory and Radiological Findings of Confirmed COVID-19 Patients and
COVID-19-Negative Cases

The laboratory and radiological findings of confirmed COVID-19 patients and COVID-19-
negative cases on admissions are listed in Table 3. Confirmed COVID-19 patients had a lower
absolute neutrophil count (3436.7 ± 1151.8 cells/µL vs. 7011.1 ± 8888.9 cells/µL; p = 0.038) and
a lower absolute lymphocyte count (1334.4 ± 645.5 cells/µL vs. 1912.4 ± 1357.8 cells/µL;
p = 0.031) than COVID-19-negative cases. Among them, 17 (63%) confirmed COVID-19
patients and 84 (44.2%) COVID-19-negative patients had pneumonia.

3.4. Accuracy, Sensitivity, and Specificity of Support Vector Machine (SVM), Decision Tree,
Random Forest, and Artificial Neural Network for COVID-19 Detection and Diagnosis

The accuracy, sensitivity, and specificity of the AI models we used for COVID-19
detection and diagnosis are shown in Table 4. In the performance of the models, SVM
showed the highest sensitivity (SVM vs. decision tree vs. random forest vs. artificial neural
network: 100% vs. 42.86% vs. 28.57% vs. 71.43%), while decision tree and random forest
had the highest specificity (SVM vs. decision tree vs. random forest vs. artificial neural
network: 88.37% vs. 100% vs. 100% vs. 94.74%).
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Table 3. Laboratory and radiological findings of confirmed COVID-19 patients and COVID-19-
negative patients on admission.

Confirmed Patients Negative Patients

Lab WBC (/µΛ) 5239 ± 1498 9907 ± 13,371 p = 0.072
Neutrophil (%) 65.4 ± 11.4 68.6 ± 14.3 p = 0.27

ANC (/µL) 3436.7 ± 1151.8 7011.1 ± 8888.9 p = 0.038
Lymphocyte (%) 25.5 ± 11.1 23 ± 12.7 p = 0.332

ALC (/µL) 1334.4 ± 645.5 1912.4 ± 1357.8 p = 0.031
CRP (mg/dL) 1.8 ± 3.1 3.1 ± 6.1 p = 0.117
PCT (ng/mL) 0.08 ± 0.11 0.55 ± 0.84 p = 0.071

D-dimer (mg/L) 0.85 ± 1.8 4.1 ± 8.1 p = 0.089
AST (U/L) 21.1 ± 7.5 26.8 ± 31.8 p = 0.353
ALT (U/L) 18.6 ± 8.6 27.4 ± 37.3 p = 0.242

Total bilirubin (mg/dL) 0.53 ± 0.24 1.01 ± 1.50 p = 0.2
BUN (mg/dL) 13.2 ± 8.1 13.6 ± 9.0 p = 0.84

Cr (mg/dL) 0.82 ± 0.3 0.96 ± 1.26 p = 0.57
Pneumonia yes 17 (63%) 84 (44.2%)

no 10 (37%) 106 (55.8%) p = 0.068
AST, aspartate aminotransferase; ALT, alanine aminotransferase; ANC, absolute neutrophil count; ALC, absolute
lymphocyte count; BUN, blood urea nitrogen; COVID-19, coronavirus disease 2019; Cr, creatinine; CRP, C-reactive
protein; PCT: procalcitonin; WBC, white blood cell.

Table 4. Accuracy, area under the curve (AUC), sensitivity, specificity, positive prediction value (PPV),
and negative predictive value (NPV) of support Vector Machine (SVM), decision tree, random forest,
and artificial neural network for COVID-19 detection and diagnosis.

Model Accuracy Area under the
Curve (AUC) Sensitivity Specificity

Positive
Prediction

Value (PPV)

Negative
Predictive

Value (NPV)

Support Vector Machine (SVM) 88.89% 64.29% 100.00% 88.37% 28.57% 100%
Decision tree 91.11% 71.43% 42.86% 100.00% 100% 90.48%

Random Forest 88.88% 64.29% 28.57% 100.00% 100% 88.37%
Artificial Neural Network 91.11% 83.83% 71.43% 94.74% 71.43% 94.74%

4. Discussion

COVID-19 spread worldwide in just two months since December 2019. Taiwan has
been containing it thanks to efforts in early pre-assessment and appraisal to control the
disease risk. Between March 2 2020 and May 4 2020, 217 patients with possible COVID-19
were admitted to our isolation wards, with 27 confirmed cases. These 27 confirmed patients
recovered and were discharged, with no occurrence of hospital outbreak.

According to the Taiwan Centers for Disease Control and Prevention (CDC),
934 (89.0%) of the 1050 confirmed COVID-19 cases in Taiwan were imported. Thus, trav-
elers entering Taiwan and symptomatic patients with a travel history are thought to be
at the highest risk of SARS-CoV-2 infection. A previous study revealed that the real-time
effective reproduction number (R(t)) of SARS-CoV-2 was 3.27 for Italy, 6.32 for France,
6.07 for Germany, and 5.08 for Spain [5]. With the time-dependent method, the R(t) value
was 3.1 for Italy, 6.56 for France, 4.43 for Germany, and 3.95 for Spain [44]. Owing to
the highly contagious nature of SARS-CoV-2, people with close contact with confirmed
patients are also considered to be at the highest risk. Thus, physicians in our hospital
are requested to be aware of high-risk groups and/or individuals, i.e., travelers entering
Taiwan, symptomatic patients with a travel or contact history, and people with close contact
with confirmed patients, and are requested to follow the well-designed and efficient assess-
ment protocol of COVID-19 screening, hospitalization, and home quarantine presented in
Figure 1. The timely identification of individuals at risk may be one of the main factors that
assisted Taiwan in containing the pandemic and in preventing outbreaks in its hospitals.
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In our study, confirmed COVID-19 patients had a higher prevalence of hyperlipidemia.
According to a New York-based study, the most common comorbidities in COVID-19
fatalities were hypertension (55.4%), diabetes (37.3%), hyperlipidemia (18.5%), and coronary
artery disease (12.4%) [45]. In another study conducted in Wuhan, of the 138 patients
hospitalized for COVID-19 and requiring an intensive care support, 25% had cardiovascular
disease, and 58% had hypertension. Of those who did not require an intensive care units
support, 10% had cardiovascular disease and 22% had hypertension [46]. According
to these studies and our study, dysfunction of lipid metabolism, associated metabolic
dysfunction, or related complications such as atherosclerotic disease may increase the
vulnerability or severity of COVID-19. Further studies are needed to clarify the relationship
between lipid metabolism and COVID-19 pathophysiology.

Similar to several previous studies, we noted cough and fever to be the most common
symptoms in confirmed COVID-19 patients [46–49]. In contrast to the what observed for
severe acute respiratory syndrome (SARS) of 2003, fever is not considered an important
indicator for SARS-CoV-2 transmission. Several studies documented SARS-CoV-2 trans-
mission during the pre-symptomatic incubation period [50–53], while others documented
SARS-CoV-2 infection in patients who never developed symptoms (asymptomatic) [54–56].
As shown in an increasing number of studies that report a high prevalence of distorted
sense of taste or smell in COVID-19 patients [57,58], 37% of our confirmed COVID-19
patients had a distorted sense of smell, and 25.9% had a distorted sense of taste. This could
be due to the high expression level of angiotensin-converting enzyme 2 (ACE2) proteins
in nasal respiratory epithelial cells and olfactory epithelial support cells [59]. A previous
study suggested that the loss of taste and smell, in combination, is a strong predictor of
SARS-CoV-2 infection [60]. Physicians should be on alert when patients have distorted
smell or taste.

Considering the laboratory findings noted in our study, confirmed COVID-19 patients
had a higher prevalence of neutropenia or lymphopenia than COVID-19-negative patients.
According to previous studies, lymphopenia was found to be the most common laboratory
finding in COVID-19 patients [48,61,62]. Several factors may contribute to COVID-19-
related lymphopenia. First, lymphocytes express the ACE2 receptor on their surface
and may be a direct target of SARS-CoV-2 [63]. Second, the subsequent cytokine storm
with increased expression of interleukin-6 (IL-6), granulocyte colony-stimulating factor
(GCSF), tumor necrosis factor (TNF)-α, and other pro-inflammatory cytokines may cause
lymphocyte dysfunction or apoptosis [64,65]. Third, the substantial cytokine storm may also
be associated with a dysfunction of lymphoid organs such as the spleen [66]. Lymphopenia
is considered one of the predictive factors of severe disease in COVID-19 patients [67,68].
Physicians should be vigilant for the presence of lymphopenia in undiagnosed or confirmed
COVID-19 patients.

Early detection and timely diagnosis of COVID-19 infections is very helpful to reduce
the spread of the virus. However, the nonspecific clinical characteristics of COVID-19
infections make the diagnosis even more difficult. Thus, the development of AI tools
for a timely diagnosis of COVID-19 infection is important and imperative, especially
in the circumstances when we only have few data regarding suspicious cases. During
the pandemic, many AI models were developed for the early detection of COVID-19.
Among them, models based on chest computed tomography (CT) images were the most
abundant [1–18]. Several studies have developed AI techniques to detect and identify
features from chest CT images to assist in the diagnosis of COVID-19 with high accuracy
(70.00 to 99.87%), sensitivity (73.00 to 100.00%), specificity (25 to 100.00%), and AUC
(0.732 to 1.000) [1–18]. However, performing CT scan in all suspected COVID-19 patients
may cause significant pressure in countries with limited healthcare resources during the
pandemic. In our study, we describe a model to early detect COVID-19 infection by
inputting clinical characteristics and routine lab data which is more feasible and economic
than routine expensive examinations such as chest CT. With the aid of the AI models we
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developed, we can identify patients at risk of COVID-19 and early decide who should be
quarantined and undergo further exams such as chest CT or RT-PCR.

However, the present study has several limitations that must be considered. First, we
enrolled only 217 suspected COVID-19 patients in our study. The small sample size may
affect the reliability of the results because it leads to a higher variability, which may cause
bias. Second, the study patients were enrolled almost 2 years ago. The sensitivity and
specificity of the AI models we used to identify COVID-19 maybe different when applying
to current diagnosed patients. Third, these AI models may help physicians to identify
symptomatic COVID-19 patients earlier by analyzing their clinical characteristics. However,
asymptomatic patients may not be identified by using our AI systems. Forth, our study
was conducted during the COVID-19 pandemic. As we know, behavioral changes (social
distancing, mask wearing, and hygiene measures) and travel and movement restrictions
during the COVID-19 pandemic have led to a reduction in the incidence of influenza and
other common respiratory infections [69,70]. The high sensitivity and specificity of the AI
models we used to identify COVID-19 maybe due to the reduction in the incidence of other
common respiratory infections. Further AI-assisted detection tools still need to be studied
and developed.

5. Conclusions

In conclusion, COVID-19 is a highly contagious disease characterized by a long period
of communicability, varied presentations, and nonspecific laboratory findings. Physicians
should be aware of the clinical characteristics of the disease and keenly observe patients at
high risk. Besides, the AI-assisted system for the early detection and timely diagnosis of
COVID-19 infection needs to be further developed.
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