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ABSTRACT
BACKGROUND: Childhood socioeconomic disadvantage is a form of adversity associated with alterations in critical
frontolimbic circuits involved in the pathophysiology of psychiatric disorders. Most work has focused on individual-
level socioeconomic position, yet individuals living in deprived communities typically encounter additional
environmental stressors that have unique effects on the brain and health outcomes. Notably, chronic and
unpredictable stressors experienced in the everyday lives of youth living in disadvantaged neighborhoods may
impact neural responsivity to uncertain threat.
METHODS: A community sample of children (N = 254) ages 8 to 15 years (mean = 12.15) completed a picture
anticipation task during a functional magnetic resonance imaging scan, during which neutral and negatively valenced
photos were presented in a temporally predictable or unpredictable manner. Area Deprivation Index (ADI) scores were
derived from participants’ home addresses as an index of relative neighborhood disadvantage. Voxelwise analyses
examined interactions of ADI, valence, and predictability on neural response to picture presentation.
RESULTS: There was a significant ADI 3 valence interaction in the middle temporal gyrus, anterior cingulate cortex,
hippocampus, and amygdala. Higher ADI was associated with less amygdala activation to negatively valenced im-
ages. ADI also interacted with predictability. Higher ADI was associated with greater activation of lingual and calcarine
gyri for unpredictably presented stimuli. There was no three-way interaction of ADI, valence, and predictability.
CONCLUSIONS: Neighborhood disadvantage may impact how the brain perceives and responds to potential threats.
Future longitudinal work is critical for delineating how such effects may persist across the life span and how health
outcomes may be modifiable with community-based interventions and policies.

https://doi.org/10.1016/j.bpsgos.2022.03.006
In the United States, 16.1% of children live in poverty (1).
Financial insecurity causes undue chronic stress, because in-
dividuals of lower socioeconomic status are faced with un-
certainty and instability in meeting their basic needs, including
access to food, health care, and electricity. Socioeconomic
disadvantage extends beyond individual households, creating
environmental stressors at the community level, e.g., limited
education and employment opportunities (2,3), exposure to
neurotoxins (lead, pollution) (4,5), and higher trauma preva-
lence (6,7). Therefore, the neighborhood where an individual
lives may have adverse effects—beyond those specific to their
own socioeconomic circumstances—on physical and
emotional well-being. Critically, childhood adversity, broadly,
is a known risk factor for psychopathology across the life span
(8). Given the dynamic nature of brain development during
childhood, this link may be mediated by adaptations in brain
structure and function that occur to cope with chronic stressful
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circumstances. Understanding the neural consequences of
neighborhood disadvantage is imperative for improving insight
into risk and resilience for psychopathology.

Function of the neuroendocrine stress response may un-
derlie links between neighborhood disadvantage and the brain.
Stress triggers a robust response via the hypothalamic-
pituitary-adrenal axis to release stress hormones, including
glucocorticoids and cortisol (9–11). While instrumental for
adapting to acute, short-term stressors, prolonged or repeated
exposure to chronic stress increases allostatic load and has
detrimental effects on the brain (9,11–13). Regions such as the
amygdala and prefrontal cortex (PFC) help modulate the
hypothalamic-pituitary-adrenal axis and may be particularly
sensitive to chronic stress (11,12). Children in disadvantaged
neighborhoods are more likely to experience nutritional de-
ficiencies, less social enrichment, and exposure to neurotoxic
substances, increasing physiological stress burden that may
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lead to enduring neurodevelopmental effects (14). Theories
such as the Adaptive Calibration Model have posited that
chronic environmental stress contributes to long-term unre-
sponsiveness in stress reactivity as a form of biological
adaptation (15).

The frontolimbic circuits implicated in facilitating a physio-
logical stress response are central to affective and cognitive
processing that, when disrupted, may lead to clinical symp-
toms (16–19). A rich history of translational research has
suggested that differences in threat responsivity play a role in
the pathophysiology of anxiety-related disorders (20–22).
Threat responding is regulated by a distributed network of
subcortical and cortical regions. Sensory information is relayed
via the thalamus to the amygdala for threat detection and
elicitation of a fear response (23,24), further enhanced by a
cortical affective processing network that includes the anterior
cingulate cortex and insula (25). Prefrontal regions, including
the ventromedial PFC (vmPFC), help dampen arousal when
defensive responding is unnecessary (26,27). Extensive
research has provided compelling evidence demonstrating
that patients with anxiety exhibit hyperreactivity of fear excit-
atory regions and hyporeactivity of inhibitory regions (28–30).
These neurobiological indices directly map onto clinical phe-
notypes defined by exaggerated fear responding, attentional
biases to threat, and disrupted safety learning (20).

Childhood socioeconomic disadvantage is associated with
alterations in the structure and function of these same affective
circuits, including robust changes in cortical and subcortical
brain morphology in the hippocampus, amygdala, and thal-
amus (31–33). Moreover, these differences may mediate as-
sociations between childhood socioeconomic disadvantage
and anxiety-related psychopathology (34,35). Socieconomically
disadvantaged children may also struggle to effectively regulate
and cope with stress in adolescence and adulthood, in light of
differences in amygdala and PFC activation (36), increased
sensitivity of the insula to acute stress (18), and weaker func-
tional coupling of the amygdala and vmPFC (36,37).

Most literature has focused on individual socioeconomic
position; however, accumulating evidence suggests that area-
level factors, including living in a socioeconomically deprived
community, have unique effects on the brain (38,39). Neigh-
borhood disadvantage has repeatedly been associated with
differences in amygdala structure and function (40–43). More
broadly, amygdala and hormonal response to threat may be
blunted in individuals who experienced various forms of
childhood adversity (42,44–47). For youth in disadvantaged
neighborhoods, this pattern of blunted stress reactivity may be
key for resilience yet may have functional consequences long
term. For instance, neighborhood disadvantage has been
linked to reduced gray matter myelination (48) and neuro-
cognitive performance, such as poorer inhibitory control and
hypoactivation of relevant neurocircuitry (49,50), and wide-
spread alterations in intrinsic functional brain networks sup-
porting cognitive and affective processes (51).

Examining neural response to unpredictable threat may be
key to understanding links between neighborhood disadvan-
tage, brain function, and psychopathology. Children living in
more disadvantaged communities are faced with ongoing
environmental unpredictability (e.g., lack of safety, housing
instability). Uncertainty is known to elicit subjective distress
Biological Psychiatry: Glob
(even in healthy individuals). This anxious apprehension is
exaggerated in clinical populations (52–55) and may have
maladaptive downstream consequences, including behavioral
avoidance (53). Work in youth samples has suggested that the
potentiating effects of uncertainty on threat responding are
present across development (55–57). Neuroimaging work on
threat predictability—conducted primarily in adults—
demonstrates involvement of threat circuitry, including the
amygdala and thalamus, during various aspects of unpredict-
able threat anticipation and response (58–61). Robust insula
response to unpredictable threat has been consistently repli-
cated in the literature (59,62,63) and is thought to facilitate
anticipatory anxiety, while the vmPFC may be involved in
evaluating and inhibiting emotional response to uncertainty
(53,58,60). Compared with healthy control subjects, preado-
lescent children with anxiety disorders exhibit greater amygdala
and insula response to uncertainty (61). For youth living in
disadvantaged neighborhoods, experimental paradigms may
provide insight into how individuals respond to unpredictable
threats and stressors they encounter within their real-world
neighborhoods. Similar to anxiety, hypervigilance related to
chronic environmental stress could potentiate uncertainty pro-
cessing; however, no studies have examined how neighbor-
hood disadvantage relates to neural response to uncertainty.

We conducted whole-brain, voxelwise analyses to examine
associations between neighborhood disadvantage and neural
response to predictable and unpredictable threat in a com-
munity cross-sectional sample of third, sixth, and ninth grade
children (aged 8–15 years). Based on previous work (42,44)
and theories of biological adaptation to environmental context
(15), we hypothesized that greater neighborhood disadvantage
would be associated with blunted responding of regions crit-
ical for response to threat, including the amygdala and thal-
amus, when presented with photographs of negatively
valenced objects and scenes. Because the insula is sensitive
to uncertainty (60,62,63), we also hypothesized that neigh-
borhood disadvantage would be positively associated with
insula response to temporally unpredictable pictures. We hy-
pothesized that vmPFC response to unpredictability would be
inversely associated with neighborhood disadvantage, given
that this region helps modulate anticipatory effects of uncer-
tainty (60) and neighborhood poverty has been linked to less
activation in inhibitory circuits (50). Follow-up models included
effects of household income to examine whether the effects of
neighborhood disadvantage extend beyond individual socio-
economic position. Three-way interactions between neigh-
borhood disadvantage, valence, and predictability were
examined, with no specific a priori hypotheses that neighbor-
hood disadvantage would change the magnitude or direction
of uncertainty-potentiated threat response.

METHODS AND MATERIALS

Participants and Procedure

Children (N = 364) were recruited through the ongoing
Charleston Resilience Monitoring (CHARM) study, a multiwave,
2-year study investigating prospective risk and resilience for
anxious pathology in a community-based sample of typically
developing youth. Using an accelerated, longitudinal cohort
design, children and their caregivers were assessed three
al Open Science July 2022; 2:242–252 www.sobp.org/GOS 243
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times annually in paradigms assaying threat responding in
multiple objective measures, including functional magnetic
resonance imaging (fMRI), event-related potentials, startle re-
flex responding, and cortisol. Participants were recruited
through advertisements in schools, pediatric clinics, and the
general community. Participants were eligible if they were
enrolled in third, sixth, or ninth grade, 7 to 16 years old, and
had a caregiver willing to participate. Exclusion criteria
included non-English speaking, history of psychosis, or evi-
dence of developmental delay or functional impairment that
would interfere with completing study procedures.

For the neuroimaging substudy, participants were excluded
for contraindications for MRI (e.g., irremovable metal in body
[including braces]). Eligible participants (n = 287) completed an
experimental paradigm of predictable and unpredictable threat
during an fMRI scan. Caregivers provided demographic infor-
mation related to race and ethnicity, household income,
educational background, and residential address.

Of these participants, 259 had usable fMRI data. Five par-
ticipants were excluded because the neighborhood disad-
vantage metric could not be derived. The final sample of 254
includes 210 different families, with 41 families contributing
more than one child (siblings) to the sample.

All study procedures were approved by the local institu-
tional review board at the Medical University of South Carolina
where data were collected. Participants and their caregivers
provided written informed consent and received monetary
compensation for their participation.

Measures

Individual Socioeconomic Position. Individual de-
mographics (e.g., age, gender, race) were reported by partici-
pants’ caregivers. As an index of individual socioeconomic
Neutral Picture 

with 

Countdown 
Clock

Negative Picture 

with 

Random Clock

3 s 1-8 s

A

B

Figure 1. Depiction of example blocks in experimental paradigm. In predictable
the clock face is filled with red. Then, a picture that is either neutral or negative
position randomly and does not indicate when the picture will be presented. Ro
respectively.
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status, caregivers self-reported their annual household income
using an ordinal scale (1–14) with steps of $1000, $5000, or
$10,000 (1 = $0–$1,000/year; 7 = $30,001–$40,000/year; 14 =
over $100,000/year).

Neighborhood Disadvantage. The Area Deprivation Index
(ADI) (64) quantified neighborhood socioeconomic position.
ADI rankings are based on census block-group–level data from
the National 2014–2018 American Community Survey (64–66).
Each block-group represents a geographic area with a
maximum of 3000 people or 1200 housing units. National ADI
is a factor-based percentile ranking comprising 17 indices
related to housing, income, education, and employment (67)
within a block-group. ADI ranges from 1 to 100, with higher
scores reflecting greater disadvantage.

Unpredictable Threat Task. The experimental task was
based on previous work by Somerville et al. (60) (Figure 1) and
models neural response to pictures that vary in valence
(negative vs. neutral) and temporal predictability (predictable
vs. unpredictable onset). Valence 3 predictability conditions
were presented in a mixed block event-related design wherein
multiple stimulus presentations of the same type (e.g., negative
predictable picture) occur within a larger block. Three blocks of
ten trials for each condition were presented over three runs.
Block order varied across runs (run order counterbalanced
across participants). A 3000-ms written cue alerted partici-
pants to trial type at the beginning of each block: predictable
negative, predictable neutral, unpredictable negative, and un-
predictable neutral. In predictable blocks, a ticking clock
appeared on the screen for 1000 to 8000 ms; when the clock
hand reached the 12 o’clock position and the clock face was
filled with red, the picture appeared on screen for 3000 ms.
3 s
blocks, a clock ticks until the clock hand reaches the 12 o’clock position and
in valence is presented. In unpredictable blocks, the clock hand changes
ws A and B depict predictable neutral and unpredictable negative blocks,
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Table 1. Sample Characteristics (N = 254)

Characteristic n (%) or Mean (SD) [Range]

Gender

Female 122 (48%)

Male 132 (52%)

Age, Years 12.15 (2.47) [8–15]

Grade

3rd 78 (30.7%)

6th 91 (35.8%)

9th 85 (33.5%)

ADI 40.57 (25.59) [3–99]

Race

African American or Black 76 (29.9%)

Multiracial 19 (7.5%)

Other 8 (3.2%)

White 139 (54.7%)

Not reported 12 (4.7%)

Ethnicity: Hispanic 26 (10.2%)

Household Income

$0–$1,000 9 (3.5%)

$1001–$5000 3 (1.2%)

$5001–$10,000 6 (2.4%)

$10,001–$15,000 9 (3.5%)

$15,001–$20,000 4 (1.6%)

$20,001–$30,000 25 (9.8%)

$30,001–$40,000 16 (6.3%)

$40,001–$50,000 13 (5.1%)

$50,001–$60,000 7 (2.8%)

$60,001–$70,000 14 (5.5%)

$70,001–$80,000 17 (6.7%)

$80,001–$90,000 19 (7.5%)

$90,001–$100,000 19 (7.5%)

Over $100,000 78 (30.7%)

Not reported 15 (5.9%)

Caregiver Education

Less than high school 10 (4.1%)

High school or GED 19 (7.5%)

Some college 52 (20.5%)

College graduate 76 (29.9%)

Graduate or professional degree 84 (33.1%)

Not reported 13 (5.1%)

Financial Assistance

Anya 59 (23.2%)

SNAP 40 (15.7%)

Section 8 11 (4.3%)

WIC 5 (2%)

SSI 17 (6.7%)

MASC-2 61.10 (22.03) [5–125]

Trauma Exposure (UCLA-RI-5 Screener) 1.64 (1.72) [0–10]

ADI, Area Deprivation Index; GED, General Education Development;
MASC-2, Multidimensional Anxiety Scale for Children; SNAP,
Supplemental Nutrition Assistance Program; SSI, Supplemental
Security Income; UCLA-RI-5, UCLA Posttraumatic Stress Disorder
Reaction Index for DSM-5; WIC, Special Supplemental Nutrition
Program for Women, Infants, and Children.

a
“Any” is not a cumulative percentage as caregivers could report

receiving more than one type of financial assistance.
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During unpredictable blocks, picture presentation could occur
at any time, and the clock was effectively meaningless. Be-
tween blocks, participants viewed a cross-hair on the screen
for 15,000 ms. Visual stimuli were selected from the Interna-
tional Affective Picture System (68). Each trial had a unique
picture. Throughout the task, participants indicated by button
press whenever a picture appeared to promote task engage-
ment. The task was administered via E-prime 3.0 software
(Psychology Software Tools, 2012) running on a Windows
computer connected to the MRI scanner.

fMRI Data

Details about scan acquisition parameters are included in the
Supplement. FSL (version 6.0, FMRIB, Oxford University) was
used for fMRI data analysis. Subjects’ structural and gradient
field map magnitude images were extracted using BET. Pre-
processing steps included head motion correction
(MCFLIRT), geometric distortion correction (FUGUE), spatial
normalization and 12-parameter affine transformation to
standard space (Montreal Neurological Institute), temporal
high-pass filtering (cutoff = 50 seconds), and spatial
smoothing (full width at half maximum = 6 mm). To produce
statistical maps for each subject, individual events associated
with picture presentation (duration = 3000 ms) were modeled
with four explanatory variables (predictable negative, pre-
dictable neutral, unpredictable negative, and unpredictable
neutral) and convolved with a double gamma hemodynamic
response function and temporal derivatives. Interblock rest
intervals and the cues denoting block start and stop were not
explicitly modeled (but were identical across conditions and
participants). To account for the confounding effects of head
motion, regressors for six head motion parameters and vol-
umes with excessive motion (using root mean squared error,
as identified with fsl outliers) were included in subject-level
statistics. All usable functional runs (mean = 2.60, SD =
0.674) for a subject were averaged for each condition using
fixed effects in FSL to produce contrast of parameter estimate
(cope) images (see the Supplement).

Data Analysis

Voxelwise analyses were conducted using AFNI’s 3dLMEr to
examine the effects of neighborhood disadvantage (ADI) on
activation across the entire brain. First, predictability (predict-
able vs. unpredictable), valence (negative vs. neutral), and the
interactions of ADI and predictability and valence were
modeled as fixed effects, with gender and age included as
covariates. Next, to examine whether area-level socioeco-
nomic disadvantage explained neural activation beyond indi-
vidual socioeconomic position, a fixed effect of household
income was added in a follow-up model. 3dClustSim was
employed using residuals from FSL to identify significant
clusters using a peak threshold p , .001 and cluster threshold
p , .05 (k . 13 voxels).

RESULTS

Participant Characteristics

Sample characteristics are reported in Table 1. ADI frequency
distribution is presented in Figure 2. ADI was significantly
Biological Psychiatry: Global Open Science July 2022; 2:242–252 www.sobp.org/GOS 245
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Figure 2. Frequency of Area Deprivation Index
(ADI) scores in sample (N = 254). Dotted line repre-
sents sample mean of 40.57 (SD = 25.59).

Figure 3. Box plot depicts Area Deprivation Index (ADI) frequency by
racial group. White participants (n = 138) lived in significantly less disad-
vantaged neighborhoods (mean = 29.612, SD = 19.95) compared with Black
participants (n = 71, mean = 59.51, SD = 23.11). Other racial groups were
excluded due to small cell sizes.
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correlated with individual household income (r = 20.578,
p , .001). ADI did not significantly vary by age (p = .539) or
gender (p = .170). ADI was significantly correlated with trauma
exposure (r = 0.197, p = .003) but not self-report anxiety
symptoms (p = .488). Caregivers of children with higher ADI
rankings were more likely to report receiving financial assis-
tance (t235 = 7.709, p , .001). ADI was significantly lower
(t209 = 29.772, p , .001) in White (ADImean = 29.612, SD =
19.95) than Black (ADImean = 59.51, SD = 23.11) participants
(Figure 3). White participants also reported higher household
income (c2

13 = 109.319, p , .001), had higher caregiver
educational attainment (c2

4 = 36.922, p , .001), and were less
likely to be receiving financial assistance (c2

1 = 37.285, p ,

.001). Differences between other racial and ethnic groups were
not examined due to small cell sizes.

Effects of ADI on Task Activation

Results of voxelwise interactions are presented in Table 2 and
Figure 4. After adjusting for gender and age, there was a sig-
nificant ADI 3 valence interaction. Higher levels of neighbor-
hood disadvantage were associated with less activation to
negative versus neutral pictures in the right parahippocampal
gyrus, hippocampus, and amygdala and greater activation in
the left anterior cingulate cortex.

We had strong a priori hypotheses regarding blunted
amygdala response to threat, and neutral International Affec-
tive Picture System images may be sensitive to individual dif-
ferences that impact activation of this region (69,70).
Therefore, in additional exploratory tests, we examined simple
interactions of ADI and negative and neutral images sepa-
rately, rather than the contrast of negative to neutral (Table 3).
Greater ADI was associated with less activation to negatively
valenced images in several regions, including the bilateral
amygdala/hippocampus, primary motor cortex, calcarine sul-
cus, and temporal pole (Figure 5).

ADI also interacted with predictability. Greater neighbor-
hood disadvantage was associated with increased activation
for unpredictable versus predictable stimuli in lingual and cal-
carine gyri and the parahippocampal gyrus (Table 2).
246 Biological Psychiatry: Global Open Science July 2022; 2:242–252
When household income was included in the model, the
interactive effects of ADI and predictability and valence were
identical (see the Supplement). In tests to examine modulatory
effects of ADI to negative and neutral stimuli separately, results
were much less robust than those observed when household
income was not included in the model, with significant in-
teractions of ADI and response to negative images in the
temporal pole and temporal and postcentral gyri. Using a more
liberal voxelwise threshold (p , .005), results were more
consistent with initial findings, including several small clusters
www.sobp.org/GOS
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Table 2. Clusters Showing Significant ADI Interactions With Valence and Predictability

Region Hemi. k

Peak MNI Coordinates

c2x y z

Valence 3 ADI Interaction

Positive Effect

Middle temporal gyrus R 93 62 224 216 19.246

Anterior cingulate cortex L 14 210 28 20 17.421

Negative Effect

Parahippocampal gyrus R 37 36 228 218 19.895

Hippocampus R 22 38 212 224 19.024

Amygdala R 16 28 26 230 16.539

Predictability 3 ADI Interaction

Positive Effect

Lingual gyrus L 114 222 288 216 21.407

Calcarine sulcus L 100 210 298 26 20.632

Parahippocampal gyrus R 30 34 232 212 16.503

Calcarine sulcus R 26 14 292 0 16.884

Voxelwise threshold p , .001, cluster threshold p , .05, adjusted for gender and age.
ADI, Area Disadvantage Index; Hemi., hemisphere; k, number of voxels; L, left; MNI, Montreal Neurological Institute; R, right.
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in the bilateral amygdala, indicating decreased responsivity to
negative images as ADI increased (see Table 3 and the
Supplement).

There were no significant three-way interactions between
ADI, valence, and predictability.

Despite ADI’s correlation with trauma exposure, further
analyses showed that our findings were unique to ADI. Also, in
a subsample where all participants were from unique families
(n = 209), findings were similar, although the ADI 3 valence
effect in the middle temporal gyrus produced a smaller cluster
(k = 30). These analyses are presented in the Supplement,
along with basic task effects and interactions with age.
DISCUSSION

In a community sample of third, sixth, and ninth grade children,
neural response to predictable and unpredictable threat was
Biological Psychiatry: Glob
associated with neighborhood disadvantage. Notably, children
living in more socioeconomically deprived communities
exhibited blunted bilateral amygdala response to threat,
consistent with hypotheses. Greater neighborhood disadvan-
tage was also associated with greater activation in the lingual
and calcarine gyri for unpredictable compared with predictable
stimuli (regardless of outcome valence).

Individuals living in more disadvantaged neighborhoods are
faced with profound adversities stemming from the circum-
stances of their geographic environments. For children who
grow up in deprived communities, the higher burden of
chronic stress may alter developmental trajectories of physi-
ological stress responding and confer risk for poor physical
and mental health outcomes (9). Consistent with previous
work (42), neighborhood disadvantage was associated with
blunted amygdala response to threat. The amygdala is
instrumental for the detection of threat and facilitation of
Figure 4. Clusters depict significant interactions
of Area Deprivation Index with task conditions
(valence, predictability), adjusted for age and gender
with voxelwise p , .001 and cluster threshold p ,

.05. (A) Greater neighborhood disadvantage was
associated with greater activation in the middle
temporal gyrus (62, 224, 216) and less activation in
the parahippocampal gyrus (36, –28, 218) for
negative versus neutral images. (B) Greater neigh-
borhood disadvantage was associated with greater
activation in the lingual gyrus (222, 288, 216) and
parahippocampal gyrus (34, 232, 212) for unpre-
dictable versus predictable images.

al Open Science July 2022; 2:242–252 www.sobp.org/GOS 247
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Table 3. Clusters Showing Significant Interactions of ADI
With Negative and Neutral Valence Images

Region Hemi. k

Peak MNI
Coordinates

zx y z

ADI 3 Negative

Primary motor cortexa B 199 0 222 64 23.661

Calcarine sulcusa R 157 8 286 6 23.984

Temporal poleb L 106 232 22 228 24.678

Temporal pole L 71 244 22 220 23.986

Amygdala/hippocampusa R 70 18 24 216 24.270

Lingual gyrus R 69 10 254 6 23.695

Amygdala/hippocampusa L 58 218 24 218 23.416

Cerebellum (IV–V)a R 27 16 238 216 23.808

Superior temporal gyrus R 27 66 232 14 23.726

Precentral gyrus L 26 246 0 48 23.718

Lingual gyrus L 24 212 254 2 23.626

Inferior frontal gyrus R 15 54 38 2 23.953

Postcentral gyrus R 15 18 232 74 23.431

ADI 3 Neutral

Calcarine sulcusa R 133 8 286 6 24.203

Cerebellum (VI)a L 28 222 273 220 23.730

Cerebellum (VI) R 23 20 272 216 23.468

Cerebellum (VI) L 22 28 278 216 23.589

Calcarine sulcus R 22 16 254 6 23.546

Lingual gyrus L 17 22 270 8 23.616

Voxelwise threshold p, .001, cluster threshold p, .05, adjusted for
gender and age. No clusters emerged where ADI interacted with
negative or neutral images to elicit greater activation (i.e., positive
effect).

ADI, Area Disadvantage Index; B, bilateral; k, number of voxels;
L, left; MNI, Montreal Neurological Institute; R, right.

aWhen income was added to the model, cluster was significant at a
more liberal voxelwise p , .005 threshold.

bWhen income was added to the model, cluster was significant at
original voxelwise p , .001 threshold (see the Supplement for more
details).
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appropriate defensive responding (23), affecting how threats
are perceived or processed. Given its role in helping to
modulate the neuroendocrine stress response, amygdala
function may also impact physiological preparedness to deal
with stress (11,12). Future longitudinal work across the life
span is needed to elucidate how amygdala responsivity may
248 Biological Psychiatry: Global Open Science July 2022; 2:242–252
play a role in the development of psychopathology, especially
at critical periods in development. Given the challenges of
making reverse inferences from brain data, it is also imperative
for future work to examine behavioral correlates of blunted
amygdala responsivity to threat to better understand how this
response may reflect different phenomena, such as reduced
threat salience.

Greater neighborhood disadvantage was associated with
increased activation in several clusters within the visual cortex
for unpredictable pictures, regardless of valence. These re-
gions are generally involved in emotional processing circuits
(71) and are sensitive to uncertainty (72). Uncertainty-
potentiated lingual gyrus response has been shown to char-
acterize clinical (rather than induced) anxiety (73). Perhaps
because youth living in more disadvantaged communities face
more uncertainty in their day-to-day lives, regions important for
visual attention and processing may be especially sensitive to
unpredictability and reflect enhanced vigilance and/or more
effortful processing in response to a novel stimulus to ascer-
tain whether it is safe.

Contrary to hypotheses, neighborhood disadvantage did
not interact with predictability in either the vmPFC or insula.
The vmPFC is proposed to exert top-down control over limbic
circuits to modulate emotional responding to uncertainty (53)
and is sensitive to neighborhood disadvantage (43,50). How-
ever, inhibitory function attributed to the vmPFC has largely
been demonstrated in threat tasks that involve learning [e.g.,
fear conditioning and extinction (74,75)] or the opportunity to
avoid/control threat (76,77), whereas the task in this study was
passive in nature. The PFC is not fully matured until young
adulthood (78); therefore, top-down regulation is highly
dependent on stage of brain development (79). Indeed, in the
current sample, prefrontal activation in response to aversive
images was greater in older participants. It has also been
proposed that lower-level sensory processes driven by
cognitive stimulation shape PFC development (80).

Uncertainty has also consistently been shown to increase
insular activation to threat (57,59,62). Although childhood
poverty has been linked to exaggerated insula responsivity to
acute stress in adulthood (18), other work has demonstrated
blunted insula responsivity in youth exposed to other forms of
adversity, e.g., maltreatment (81,82), which may reflect an
avoidant coping strategy. This neurobehavioral response could
be somewhat compensatory but may put them at greater risk
of anxiety-related disorders in adolescence and adulthood.
Figure 5. Neighborhood disadvantage associated
with blunted amygdala response to negatively
valenced stimuli (k = 70 voxels [18, 24, 216] and k =
58 voxels [218, 24, 218]). Scatterplot depicts as-
sociation between Area Deprivation Index (ADI) and
activation in the right amygdala cluster.
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There was no three-way interaction among ADI, valence,
and predictability. Given the absence of literature on neigh-
borhood disadvantage and unpredictable threat, we did not
have specific hypotheses about such an effect. Recent work
has suggested that children process unpredictable threat
differently than adults (83); additional research is needed to
better understand developmental differences in threat
processing.

When taking individual socioeconomic position into ac-
count (i.e., household income), ADI’s effects on neural acti-
vation to negatively valenced images were consistent, if less
robust. Neighborhood factors, including exposure to crime,
pollution, and green space, can have developmental conse-
quences that may diverge from individual socioeconomic
circumstances. Although there is limited neuroscientific
research on community-level socioeconomic disadvantage,
previous findings have also suggested that effects do indeed
go beyond the individual (40,43,50,51,84). ADI factors in area-
level income, and collinearity makes it challenging to disen-
tangle ADI and individual income. However, as a composite
measure factoring in multiple facets of socioeconomic posi-
tion, ADI provides a much richer characterization of the is-
sues affecting disadvantaged communities. It is becoming
increasingly clear that neurobiological function and health of
individuals cannot be understood in isolation from their
environment; area-level disadvantage may influence critical
functions related to threat responding, emotion regulation,
and cognition (40–43,50,51). Critically, the scope of economic
inequality within the United States severely limits economic
mobility and makes it astoundingly difficult for one to better
their own financial circumstances (85). In the absence of re-
sources and public support for economic and social policies
providing direct aid to low-income families, interventions may
be more effective (and more easily implemented) when
focused on building stronger communities; such interventions
are also likely to reduce the burden of personal financial
stress, which perhaps plays a more central role in certain
aspects of brain function. Further work is critical to better
understand common and dissociable effects of individual and
neighborhood socioeconomic position to inform the most
effective interventions and reduce disparities in physical and
emotional well-being.

It is also imperative to consider the gravity of racial and
ethnic disparities in the United States. In this study, we did not
examine or control for race or ethnicity; however, we observed
substantial disparity within our own research sample. Black
participants, on average, lived in considerably more disad-
vantaged neighborhoods (ADImean = 59.5) than White partici-
pants (ADImean = 29.6) and held a lower individual
socioeconomic position (e.g., income, caregiver education).
Previously, Harnett et al. (42) demonstrated that differences in
neural response to threat between Black and White youth were
dramatically reduced once negative life experiences, including
neighborhood disadvantage, were taken into account. Socio-
economic status also mediates racial differences in amygdala
volume (86). While neuroscientific work typically frames aber-
rant findings from a deficit perspective, blunted amygdala
responsivity may be adaptive for youth residing in disadvan-
taged neighborhoods, allowing for attenuation or suppression
of the neuroendocrine stress response (15,87). However, in the
Biological Psychiatry: Glob
long term, blunted neural and endocrine stress responsivity is
likely to have detrimental effects on well-being (88,89) that may
even be perpetuated via intergenerational transmission (90).
With socioeconomic adversity disproportionately affecting
racial and ethnic minorities, these groups will continue to be
burdened with high rates of psychopathology and other health
conditions unless systemic changes are implemented to
improve the socioeconomic position of marginalized in-
dividuals and their communities (91).

This study has several limitations. Individuals of higher so-
cioeconomic position were disproportionately represented. A
third of the sample reported household income over $100,000
and lived within the top quarter of U.S. neighborhoods. In
addition, 68% of caregivers had at least a college education.
As such, results may not generalize to samples with greater
levels of socioeconomic disadvantage. As an index of neigh-
borhood disadvantage, ADI rankings are also limited in that
they do not account for other critical area-level variables, such
as community violence, that may impact threat-relevant cir-
cuitry (92–94). Theories posit that deprivation experiences
(e.g., neglect) are more likely to affect cognitive function and
prefrontal brain regions, whereas threat experiences (e.g.,
physical abuse) may have a greater impact on the neural cir-
cuits supporting fear regulation and emotional responding (95).
Future work would benefit from incorporating individual- and
area-level measurements of other adverse experiences to
better disentangle whether there are dissociable effects of
threat and deprivation on the brain and how this relates to
outcomes. Finally, although these findings provide compelling
evidence for the impact of neighborhood disadvantage on
brain function, these data are cross-sectional and cannot
make inferences about causation. Longitudinal work is vital for
better understanding these effects and how changes in so-
cioeconomic position relate to changes in brain function
across development.

Overall, these findings demonstrate that neighborhood
disadvantage is associated with blunted amygdala response to
threat; where a child lives may impact how they attend and
respond to threats and stressors, potentially having critical
implications for their current and future risk for psychopathol-
ogy. While it has long been known that socioeconomic
disadvantage and chronic stress have detrimental effects on
diverse health outcomes, there is rapidly accumulating evi-
dence that neighborhood disadvantage has unique and pro-
found consequences on neurobiology (40–43,50,51,96,97).
This work should not be simply a scientific exercise but rather
should be seen as a call to action. Community-level in-
terventions may help overcome some of the shortcomings of
existing interventions and policies targeted at individuals by
providing more widespread aid that improves outcomes for
large groups of people. Although adverse experiences during
childhood may negatively shape the cascade of neural devel-
opment that occurs throughout young adulthood, increased
neural plasticity during childhood may also make it a key time
point to intervene and lessen the impact of these effects.
Indeed, positive family and school environments have been
shown to moderate associations between neighborhood
disadvantage and the brain (51,96), suggesting an important
role for more structural, community-based interventions and
policies. Building better bridges between science and public
al Open Science July 2022; 2:242–252 www.sobp.org/GOS 249
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policy will aid in evaluating efficacy of interventions, directing
local and federal aid, developing community resources, and
improving education and employment quality and availability,
which can hopefully lessen the persistent burden that neigh-
borhood disadvantage has on brain health and well-being.
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