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ABSTRACT

Energy functions, fragment libraries, and search methods constitute three key components of fragment-assembly methods

for protein structure prediction, which are all crucial for their ability to generate high-accuracy predictions. All of these

components are tightly coupled; efficient searching becomes more important as the quality of fragment libraries decreases.

Given these relationships, there is currently a poor understanding of the strengths and weaknesses of the sampling

approaches currently used in fragment-assembly techniques. Here, we determine how the performance of search techniques

can be assessed in a meaningful manner, given the above problems. We describe a set of techniques that aim to reduce the

impact of the energy function, and assess exploration in view of the search space defined by a given fragment library. We

illustrate our approach using Rosetta and EdaFold, and show how certain features of these methods encourage or limit con-

formational exploration. We demonstrate that individual trajectories of Rosetta are susceptible to local minima in the energy

landscape, and that this can be linked to non-uniform sampling across the protein chain. We show that EdaFold’s novel

approach can help balance broad exploration with locating good low-energy conformations. This occurs through two mecha-

nisms which cannot be readily differentiated using standard performance measures: exclusion of false minima, followed by

an increasingly focused search in low-energy regions of conformational space. Measures such as ours can be helpful in char-

acterizing new fragment-based methods in terms of the quality of conformational exploration realized.
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INTRODUCTION

Predicting protein tertiary structure from sequence

information remains an important unsolved problem.

Techniques based on the principle of fragment assembly1

have emerged as the leading class of methods to tackle this

problem, as evidenced by their performance in the CASP

experiments.2,3 However, their accuracy is known to

decrease for larger, more complex proteins.3 Typical

fragment-based prediction pipelines employ many inde-

pendent runs of a prediction technique (the random-restart

strategy) to arrive at a pool of structures, from which a sub-

set of promising predictions are chosen. Recent work has

seen the development of advanced sampling protocols that

move away from such a “brute-force” approach. However,

these methods seem unable to reliably match or exceed the

performance of pipelines based on a large number of

restarts. This is a disappointing situation, and it is unclear

whether this is due to inaccuracies in scoring functions,

poor-quality fragment libraries or ineffective search meth-

ods. Traditional measures of search performance cannot

readily disentangle the contributions of these three compo-

nents, and a detailed understanding of conformational

sampling performance remains elusive.

In general, fragment assembly techniques rely on the

fact that secondary and tertiary structure can be strongly

influenced by local amino acid sequence.1 These local
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propensities are taken into account and exploited during

model construction, by deriving fragments from known

protein structures and using them as building blocks

during the search. The search techniques employed are

heuristic optimization algorithms that start from an ini-

tial structure (e.g., a fully extended chain), and which

iteratively apply randomly selected fragment insertions to

generate novel candidate structures. An energy or scoring

function is used to determine whether a particular candi-

date structure should be accepted. A key assumption

behind the use of an optimization procedure is that

near-native structures correspond to at least a local opti-

mum in the energy landscape defined by this function.

The accuracy of fragment-based prediction typically

decreases for larger proteins and particularly those with

high contact order.3 Efforts to overcome this problem

have centered around the scoring functions employed,

and some deficiencies of knowledge-based scoring func-

tions have been highlighted.4–6 As a result, there has

been significant progress in improving scoring functions

for fragment assembly.7–9 In addition to scoring func-

tions, methods for generating high-quality fragment

libraries have also been developed,10–13 and the signifi-

cance of conformational sampling during the prediction

process has been studied.14–16

These key components of fragment-based methods

(scoring functions, fragment libraries, and sampling

methods) are highly interdependent. Effective conforma-

tional search strategies that are capable of traversing

multiple local optima become increasingly important

when scoring functions are highly multimodal. Similarly,

as fragment quality decreases, a smaller portion of the

available search space will correspond to near-native sol-

utions, and the explorative effectiveness of the search

protocol becomes more crucial. These interactions can

make it difficult to disentangle the contribution made by

the sampling method alone. This problem is exacerbated

by the way in which sampling protocols have commonly

been assessed. Evaluations based only on the accuracy of

the final structures returned by a prediction method are

inadequate, since they can confound search performance

with the accuracy of the scoring functions and the qual-

ity of the fragment libraries used. In other words, an

assessment of final structure quality does not provide

information about whether a good number of alternative

topologies were considered during a search trajectory.

We suggest that more transparent measures of search

performance need to monitor the extent to which differ-

ent methods explore a range of possible “protein-like”

conformations, by considering information about the

structures encountered during a search trajectory. In the

case of fragment-based prediction methods, these analy-

ses need to take into account the available search space,

as defined by the fragment library. We suggest that this

kind of analysis will lead to more concrete evidence

regarding the strengths and limitations of different con-

formational search protocols, and the reasons underlying

their continued lack of scalability to large proteins. A

more accurate understanding of current search dynamics

in fragment assembly is fundamental in order to enable

the development of improved sampling protocols.

In this article, we present: (i) a discussion of the limi-

tation of standard measures of performance in monitor-

ing the search performance of fragment assembly; (ii)

the description of a set of measures designed to provide

a more informative assessment of the performance of

search heuristics for this problem; and (iii) the use of

these techniques to compare Rosetta, a protocol based

on random restarts, and EdaFold, an example of a more

advanced sampling strategy; this comparison serves to

illustrate the use of our techniques, to shed light on per-

formance differences between these conceptually different

approaches, and to identify common limitations that

may point the way toward future developments.

Assessing conformational sampling

As we have discussed above, in protein structure pre-

diction, it is limiting to focus assessment on the quality

of the final structure alone. This is because typical energy

or scoring functions are not always aligned with the

“true” objective of finding near-native structures. Assess-

ments of search performance should therefore consider

the extent to which a range of alternative plausible struc-

tures are explored, by considering the trajectories of indi-

vidual prediction runs as they navigate conformational

space. Although one could employ measures such as the

root mean squared deviation (RMSD) or energy scores

to do this, these measures have limitations when used to

monitor search performance.

First, both measures are sensitive to relatively small

changes in protein structure, which makes it difficult to

interpret whether distinct conformational states are being

explored. Figure 1 illustrates the difficulty of assessing

search performance using RMSD from the native and

score values. The values of these measures can change

frequently as the search progresses, suggesting that the

sampling protocol is exploring diverse new conforma-

tions. This impression is deceptive, as the search has

actually stagnated: most moves in this run correspond to

flipping of a single terminal tail, and a meaningful explo-

ration of the search space is no longer taking place.

A second limitation of such measures (in a fragment

assembly context) is that they do not consider the avail-

able search space (as defined by the fragment library) as

a part of the analysis, although this places important

constraints on predictive accuracy: in scenarios where

high-quality fragment libraries cannot be reliably gener-

ated, it is essential that a good proportion of the com-

pact conformational space is explored. This increases

confidence in the prediction, and can more clearly point

to potential problems in fragment library generation.
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In this work, we propose a set of additional measures

that are designed to complement traditional measures of

prediction performance, with the aim of obtaining a

more complete picture of sampling. The proposed meas-

ures directly assess the quality of conformational explora-

tion, at a global (fold) and local (residue) level. The

design of three of these measures allows for their defini-

tion relative to the available search space, which makes

them particularly suited in the context of fragment-

assembly techniques, where the search space is con-

strained through the fragment library.

Our “local” measures monitor sampling on a per-

residue basis. We determine (i) the frequency with which

insertions are accepted in different sections of the protein

chain during the search, and (ii) the extent to which the

set of available structural parameters (as defined by the

fragment library) is utilized for each position in the pro-

tein chain. These analyses provide a residue-specific pic-

ture of sampling performance, and allow us to identify

sampling biases, e.g. related to the over- or under-

sampling of different parts of the chain or different types

of secondary structures.

We also define “global” measures which monitor the

extent to which structurally diverse conformations are

sampled in single trajectories. We quantify differences

between structures sampled in a trajectory, based on

differences in contact patterns. We use clustering and

Markov state model construction, together with a mea-

sure based on Shannon entropy17 to estimate the extent

to which the trajectory is exploring the search space.

This quantitative measure of search performance is com-

plemented by a visual representation of a search trajec-

tory moving through the available conformational space.

Because the contact-based dissimilarities are high-

dimensional, classical multidimensional scaling (MDS) is

employed for the purpose of visualizing the movement

of a search trajectory through the conformational space

defined by the set of reference structures.

In the following, we illustrate the use of our techni-

ques on a set of representative fragment-assembly meth-

ods. While many such techniques have been described

(e.g., Refs. 18–20), we select the popular prediction

method Rosetta,1,21 as well as the recently developed

EdaFold program.22,23 These methods make use of

identical fragment libraries and scoring functions, ena-

bling us to make useful comparisons between their sam-

pling strategies. These methods were also chosen to

contrast an example of a restart-based strategy (Rosetta)

with an approach that employs a more advanced optimi-

zation strategy (EdaFold). In the case of Rosetta, we also

examine two different running modes: the more com-

monly employed strategy of running many short runs,

and single, longer runs. We compare these strategies

since it has been observed empirically that a large set of

relatively short runs is more likely to produce high-

accuracy predictions than a single, longer run that uses

the same total number of insertion attempts.

METHODS

Local measures of sampling

As mentioned previously, we define local measures as

those that operate on a per-residue basis. We consider

two such measures:

Number of successful angle changes per residue

For each residue in the polypeptide chain, we count

the number of times that a move changing the corre-

sponding backbone torsion angle triplet (u, w, and x) is

accepted. This allows us to explore differences in frag-

ment insertion acceptance rates in different areas of the

Figure 1
Changes in (a) the score (energy), and (b) RMSD values of the structure during stage 3 of the low-resolution search phase of Rosetta, for one run

with fibronectin domain (PDB ID 1fna). Score values are in Rosetta Energy Units (REU). The values of these two measures vary considerably dur-
ing the search, which may be misinterpreted as resulting from good conformational exploration.
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chain, for example, different secondary structural ele-

ments. Changes are counted following each accepted

move.

Proportion of available parameter space used

Using the fragment libraries for a given protein, we

determine the number of unique backbone torsion angle

triplets that are available for each position in the chain,

by collecting information about every fragment insertion

that can modify that position. We then assess the pro-

portion of these unique triplets that are used at least

once during the search, by considering every accepted

fragment insertion. This analysis provides a first indica-

tion of an algorithm’s ability to explore the parameter

space available, although it does not consider combina-

tions of angles in different positions.

Global measures of sampling

We additionally derive global measures of sampling, to

study fold-level exploration in the search trajectories.

These measures operate on a search trajectory (or a sub-

set of structures sampled during a trajectory), and evalu-

ates search ability relative to a sample of a the available

search space, as estimated by a large decoy data set. We

complement this analysis using a low-dimensional visual-

ization of the search trajectory, with the aim of providing

an intuitive understanding of this measure, and more

detailed insight regarding the dynamics of the search.

Note that, by design, this analysis uses a trajectory as

well as a reference set of low-resolution decoys. For this

reason, inferences about sampling quality can be made

relative to the conformational space represented by the

“background” of decoys. Thus, good search performance

of a given sampling protocol may be detected independ-

ent of fragment quality, even in cases where the entire

conformational space is non-native (i.e., when there

exists no combination of fragments in the library com-

patible with the native topology).

Visualization of trajectory progress using multidimen-
sional scaling (MDS)

Data from folding trajectories is high-dimensional, as

proteins have variable numbers of residues, and each res-

idue has structural parameters associated with it. Using

dimensionality reduction techniques, it is possible to rep-

resent dissimilarities in high-dimensional data on a 2D

or 3D scatterplot. Such a technique would enable us to

visually compare the relationship between a set of struc-

tures sampled during a single run of a prediction

method, against a larger set of decoy structures. This

allows us to investigate the degree to which different

structural states are visited during a single run. In other

words, we can track the movement of a single prediction

run through the space of accessible conformations.

Ideally, individual trajectories would visit a good

proportion of the available space before “settling” in a

localized region. These methods require the assessment

of differences between alternative structures for a target,

and we require measures that capture fold-level differen-

ces between structures, while reducing the importance

given to more fine-grained differences. We express global

fold information using binary contact maps, generated

using a distance cutoff of 8 Å between Ca atoms in any

structure. The dissimilarity between such contact maps

can be expressed as the Hamming distance,24 which

counts the number of corresponding contacts in two

maps that are in different states. This provides an intui-

tive and descriptive measure of conformational differ-

ence, which focuses on genuine variation in residue–

residue contacts, and allows us to evaluate the extent to

which different folds and contact patterns are explored.

Measures such as RMSD cannot capture this information

in the same way (see Supporting Information for an

example).

The choice of dimensionality reduction technique is

primarily motivated by our distance measure. For exam-

ple, principal component analysis (PCA) does not allow

us to use a non-Euclidean distance metric between data

points. In our study, we employed classical Multidimen-

sional scaling (MDS),25 which allows us to start from a

pairwise distance matrix generated using any metric

measure. This approach has been previously used by

Sims et al. 26 to construct a global map of the confor-

mational space available for short peptides. We opted to

use this method over nonlinear or nonmetric methods

for multidimensional scaling (e.g., Sammon mapping),

due to the reduced computational requirements of classi-

cal scaling for datasets of the size we needed to handle,

and due to the fact that the Hamming distance is a met-

ric (i.e., satisfies the triangle inequality).

We now briefly describe the procedure for generating

an MDS plot. Given a set of N conformations of interest,

an N 3 N dissimilarity matrix is computed using the

Hamming distance measure. Classical MDS (as imple-

mented in R version 3.1.027) is then used to obtain a

mapping of this dissimilarity matrix onto two dimen-

sions. The points on the MDS plot correspond to the

individual conformations, with more similar conforma-

tions plotted closer together. Individual search trajecto-

ries are visualized on a “background” of low-resolution

decoys. These low-resolution decoys are the results of a

large number of runs of the Rosetta low-resolution pro-

tocol and will span a portion of the available conforma-

tional space. The MDS plot then provides a visual

representation of the extent to which a single search tra-

jectory explores this available space. Furthermore, assum-

ing a native structure is available, MDS allows us to

track the progress of individual runs or sets of runs to

evaluate how well native-like conformations are sampled,
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by including the native structure in the pool of structures

used to generate the plot.

The MDS plots give us a way of visualizing the move-

ment of search trajectories through conformational

space. However, in our plots, the first two principal coor-

dinates capture no more than 36.17% of the total varia-

tion in the data (the median is 12.46%). Values for each

individual MDS plot are given in the Data Supplement

accompanying this manuscript. The low percentage of

variance captured appears to be primarily due to the way

that structures in each pool are distributed in the high-

dimensional space of contact patterns. Because the

amount of variance captured in the MDS plots is fairly

small, we recommend that these plots should be used for

indicative purposes only. Other methods of dimensional-

ity reduction for protein folding trajectories have been

described (e.g., Ref. 28), and we plan to explore alterna-

tive ways of achieving good low-dimensional projections

in a more scalable manner in the future. For now, our

method has the advantages of being relatively easy to

understand, and can be easily replicated using existing

“off-the-shelf” methods.

Quantifying explorative diversity using Markov state mod-
els and weighted Shannon entropy

Next, we develop a complementary method that

allows us to quantify the exploration of a trajectory

in terms of the original high-dimensional dissimilarity

data (thus avoiding the limitations of the MDS plot,

discussed above). To do this, we employ Partitioning

Around Medoids (PAM) clustering29 followed by the

construction of a Markov State Model (MSM) to

describe the progress of individual trajectories through

conformational space. MSM-based methods have been

used to study molecular dynamics trajectories,30–32 typ-

ically using k-means clustering with RMSD as the dis-

tance measure. In our study, we used PAM clustering to

represent the idea that each cluster center (medoid)

should correspond to one of the supplied data points,

since calculating an “average” structure could lead to

physically impossible configurations (e.g., with a large

number of atomic clashes). For the distance measure, we

used the Hamming distance between binary contact

maps, consistent with the approach taken for the MDS-

based visualization.

The procedure for this analysis is illustrated in Figure 2.

Briefly, data from a small set of trajectories and large num-

ber of low-resolution decoys are clustered using PAM. This

sets up a system of clusters that should correspond to dif-

ferent structural features. Because the temporal ordering

of the structures in individual trajectories is known, the

cluster assignments for individual structures from each

trajectory gives us the order in which the various clusters

have been visited during the run. In this way, we can con-

struct a “route map” of the trajectories moving through

different regions of conformational space, sampling differ-

ent structural features as they proceed.

Following this, we construct a Markov state model of

the trajectories moving through the defined clusters. A

state model shows us which clusters are most frequently

visited, and it also allows for quantitative analysis of

transition frequencies between different clusters, through

the use of measures such as Shannon entropy.17 Shan-

non entropy quantifies the amount of disorder in a sys-

tem that can exist in one of many states. In our case,

this corresponds to the polypeptide chain undergoing a

particular transition between two states (clusters) that

correspond to distinct contact patterns. The entropic

contribution from a given transition is weighted by the

structural difference introduced by that transition,47 and

normalization is performed using the theoretical

Figure 2
Steps in the construction of Markov State Models (MSMs) for multiple trajectories. The pairwise distances in step 2 can be calculated using differ-
ent metrics.
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maximum possible entropy for the given number of clus-

ters and set of weights (see Supporting Information for

details).

The resulting entropy values take a maximum value of

1 (high uncertainty) and a minimum value of 0 (low

uncertainty). A trajectory that effectively samples confor-

mational space will undergo many different transitions,

resulting in a high value of normalized entropy, while

low entropy indicates that the trajectory is following

deterministic paths through conformational space

(“going round in circles”), or that the trajectory is con-

fined to a localized area of conformational space.

Prediction methods

We briefly summarize key aspects of the fragment-

based prediction methods studied in this work. Both

Rosetta and EdaFold consist of low-resolution and all-

atom phases. The former phase is designed to enable

rapid conformational exploration to derive a plausible

topology for the given target protein, while the latter is

designed to perform detailed local refinement of the

structure by detailed optimization of backbone and side-

chain geometry. For our analyses, we focus on the low-

resolution phase only, as this is where fragment-based

conformational searching takes place. The low-resolution

phase of each method is divided into a number stages

(Fig. 3), employing different fragment libraries, scoring

functions, and in the case of EdaFold, different search

algorithms.

Rosetta

In Rosetta’s low-resolution search, bond lengths and

angles are initially set to ideal values and amino acid side

chains (except glycine) are approximated by centroid

atoms connected to the Cb atom. Starting from a linear

configuration, progressive folding of the protein is

achieved through successive fragment insertions, or

“moves.” A Monte Carlo sampling scheme is used, with

a fixed value of the Metropolis temperature parameter

kT 5 2. If the search appears to stagnate (specifically, if

no move has been accepted for 150 iterations), the tem-

perature parameter is temporarily increased, and reset to

its initial value once a move has been accepted. The

rationale for using such a scheme is that it should allow

the search to identify and escape shallow local minima in

the energy landscape, by temporarily allowing the energy

value to increase. These default parameter settings are

chosen as a result of extensive benchmarking. Evaluation

of the Metropolis criterion requires the calculation of

energy differences between successive conformations, and

the energy of a given conformation is evaluated using a

knowledge-based energy function.1,33

The low-resolution protocol of Rosetta comprises four

stages (Fig. 3), which differ in the length of the fragments

and the energy functions used. The first three stages

employ 9-residue fragments (9-mers), while the fourth

stage uses 3-residue fragments (3-mers). The search uses

the best 25 and 200 fragments per insertion window for

the two fragment libraries, respectively.21 Fragments are

Figure 3
Stages in one iteration of the EdaFold sample_and_minimize procedure, with the comparable stages of Rosetta’s low-resolution protocol. Note that
while EdaFold uses multiple rounds of the whole 5-stage procedure in each run, Rosetta uses only a single pass through its stages per run. Each

stage consists of a fragment library, a conformational sampling procedure, and one or more scoring functions. In some stages of EdaFold, the con-

formational sampling procedure involves multiple, sequential steps. The “short” simulated annealing procedure uses half the number of attempts as
the regular simulated annealing procedure, while the “extensive” version involves two rounds of the regular simulated annealing procedure. Follow-

ing stage 5 of the sample_and_minimize procedure, a FastRelax all-atom refinement step is used to derive energy values.
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ranked and chosen based primarily on local PSI-BLAST34

profile similarity to proteins of known structure, together

with other similarity metrics such as agreement with pre-

dicted secondary structure.10,21

The low-resolution Rosetta scoring function consists of

a linear weighted sum of ten scoring terms.21 The terms

include descriptions of steric repulsion and compactness,

as well as statistical potentials for interactions between

specific elements of secondary structure. The weights of

the terms in the energy function are gradually increased

to their final values as Rosetta proceeds through the low-

resolution stages, and these different weight settings are

denoted score0 through score5 (Fig. 3). Through the use

of the different weight settings, the scoring functions

become increasingly selective as to the acceptance of vari-

ous fragment insertions as the search proceeds. In stage 3,

two scoring functions are used in alternation with a view

to reward certain structural features. A more detailed

description of Rosetta is available in Ref. 21.

EdaFold

EdaFold22,23 makes use of the Rosetta framework for

fragment libraries, scoring functions and low-resolution

representation of the protein chain. In contrast to typical

Rosetta pipelines however, EdaFold uses multiple barrier-

synchronized trajectories running in parallel, sharing

information about which fragment insertions lead to

lower energy values. In this way, the algorithm seeks to

make an informed choice of a conformational subspace

within which to focus its search. Because this subspace is

defined using low-energy structures, the expectation is

that this will correspond to native-like conformations,

and thus that the method will sample native-like struc-

tures with greater frequency.

This narrowing down of the conformational space to

search is carried out using an estimation of distribution

algorithm (EDA)35 that defines a probability distribution

over the fragment library. The algorithm starts by defining

a uniform probability distribution over all fragments, and

conformational sampling is implemented through multiple

simulated annealing steps that employ the Rosetta low-

resolution energy functions, together with iterated hill-

climbing steps that successively perturb and refine the

structure in a coarse manner. By default, each simulated

annealing step starts from a temperature parameter value

of kT 5 3.5 and ends at kT 5 0.5. The iterated hill-climbing

steps encourage broader exploration by allowing the search

to accept a few fragment insertions without considering the

change in energy introduced. Following this, a regime of

greedy minimization is used, whereby only moves that

reduce the energy of the system are accepted. This combi-

nation of perturbation and greedy minimization is

repeated a set number of times. The simulated annealing

and iterated local search steps are carried out by EdaFold’s

sample_and_minimize function, which can be divided into

5 stages. The first 4 stages employ 9-mer fragments,

whereas the final stage uses 3-mer fragments. Figure 3 sum-

marizes the steps that the algorithm follows.

Following each call to the sample_and_minimize func-

tion, fragments found to be associated with energetically

favorable structures are given a higher probability of get-

ting inserted relative to those that produce less favorable

conformations. In the more recent version of EdaFold,

called EdaFoldAA,23 energy values are obtained follow-

ing an all-atom refinement step using Rosetta’s FastRelax

method.36 In both versions of EdaFold, the program col-

lects information about which fragments are present in

the structure (fragment keys) following stage 4 (9-mer

fragment insertions). The subsequent steps of the

sample_and_minimize procedure, including the FastRelax

step, are used to refine the structure and reach a local

minimum and get the final energy value. Once the frag-

ment keys and energy values have been collected for a set

of structures, a probability distribution is derived over

the fragments present in a subset of decoys with the

most favorable energy values. Further rounds of the

entire sample_and_minimize procedure can be carried

out using the updated probability distribution, and this

Table I
Parameters for Rosetta and EdaFoldAA

Method Parameter name Purpose Value

Rosetta -nstruct Number of output structures 1
-abinitio:increase_cycles Multiplier for default number of move attempts

in each stage
10 or 100

-out:pdb Output pdb files
EdaFoldAA –nbThreads Total number of structures to generate across all

iterations of sample_and_minimize
1000

–nbTotIter Total iterations of sample_and_minimize procedure per trajectory 4
–ILSmaxIter Maximum number of iterations for iterated local search 3
–frag3MaxIter Maximum number of iterations for iterated local

search with 3-mer fragments
2

–TopPopRate Fraction of decoys in each iteration used when
calculating probability distributions

0.3

All other parameters were left set to their default values.
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process can be repeated as many times as desired, updat-

ing the probability distribution each time. We will refer

to one repetition of the sample_and_minimize procedure,

together with one round of the EDA procedure, as one

“iteration” of EdaFold.

Experimental setup

We used the AbinitioRelax application from

Rosetta version 3.4, and EdaFoldAA obtained from the

webpage of the Structural Bioinformatics team at RIKEN

(http://www.riken.jp/zhangiru/software.html). Running

parameters are summarized in Table I. We modified the

source code of Rosetta and EdaFoldAA to output infor-

mation during the prediction process, including torsion

state along the chain, the current stage of the low-

resolution protocol and the number of torsion changes

for each position, as well as a PDB structure file every

100 accepted moves. In the case of EdaFold, the iterated

local search steps were made to output a PDB structure

each time a local minimum was reached at the end of a

greedy minimization step. The structure files were used

in our MDS and clustering procedures, together with a

decoy set of 1000 low-resolution decoys. These decoys

are intended to give an indication of the available com-

pact structural states for each target.

To demonstrate the use of our measures to evaluate

the effect of parameter settings on search quality, we

considered two values of the increase_cycles
parameter in Rosetta (Table I). This parameter is a mul-

tiplier for the default number of fragment insertion

attempts in each low-resolution stage, and so controls

the length of the optimization procedure.

For the longer Rosetta runs, the increase_cycles
parameter was set to 100. The trajectory from each such

run was then compared with a set of 10 shorter runs

(using increase_cycles 10), to ensure an approxi-

mately similar number of insertion attempts. We ran 20

replicates of each running mode. In the case of EdaFold,

an equivalent number of runs in each replicate would

result in too few structures being used to determine the

probability distribution at each iteration. Therefore, we

used an increased value of 0.3 for the TopPopRate
parameter (Table I) and a pool of 250 structures to

determine probability distributions in each iteration. We

then used data from only a subset of the parallel runs,

corresponding to a similar number of insertion attempts

as used with Rosetta. This gave us a set of 10 trajectories

from each run of EdaFold. While these running parame-

ters are significantly lower than those used by Simoncini

et al. in their papers, the purpose of our study is funda-

mentally different. Rather than attempting high-accuracy

prediction, we wish to study the explorative behavior of

the sampling algorithms used. In addition, we were pre-

vented from using a large number of replicate runs for

our analyses due to computational costs introduced by

large additional data files and the use of large pairwise

distance matrices for the clustering and MDS procedures.

Thus, we used a set of 8 replicate runs for the global

analyses, and all 20 replicates for all other analyses.

Targets and fragment libraries

Analysis was conducted on a set of 59 proteins from
the PDB, which were used in a previous study.37 We
illustrate key results on three targets (Table II) in this
manuscript. Information and results for all 59 targets can
be found in the supplementary materials accompanying
this article. We excluded homologues when generating
fragment libraries for these targets, using a local installa-
tion of the Rosetta fragment picker. Secondary structure
predictions were generated using PSIPRED38 version 3.3.
We used information from these secondary structure pre-
dictions when plotting results for our local measures (as
opposed to DSSP39,40 assignments of the native struc-
ture), since the PSIPRED prediction is used during the
fragment generation process. Identical fragment libraries
were supplied to all running protocols.

Statistical analysis for entropy calculations

We analyzed the statistical significance of the differen-

ces in median entropy values between the three running

protocols considered here, as well as when comparing

successive iterations of EdaFold. Our data forms a com-

plete block design with eight replicates per treatment-

block combination. In our case, the blocks correspond to

different target proteins, and the “treatment” factor levels

correspond to the different running protocols (or itera-

tions of EdaFold). This allows us to compare different

protocols or iterations of EdaFold while controlling for

variation between different proteins. We used the Mack-

Skillings test (described in Ref. 41, and sections 7.9 and

7.10 in Ref. 42). This provides a non-parametric test of

general alternatives for a replicated block design, and

provides a post-hoc multiple comparisons method to

determine which differences between treatments are

Table II
The Three Reference Targets Used, With Secondary Structure Types and Length

PDB ID SS class Length (residues) Brief description and source organism

1enh All-a 54 Engrailed homeodomain (D. melanogaster)
1acf a 1 b 125 Profilin IB (A. castelanii)
1fna All-b 91 Cell adhesion module of Fibronectin (H. sapiens)
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significant. More details on the statistical procedures are

given in the Supporting Information.

RESULTS

We apply our measures of sampling performance to

the low-resolution phases of three fragment-based proto-

cols: (1) sets of short Rosetta runs, corresponding to the

commonly used random-restart strategy; (2) single long

Rosetta runs, each of which uses the same computational

budget as a set of short runs; and (3) EdaFold, an exam-

ple of a more advanced sampling strategy. We are inter-

ested in whether these strategies show differences in the

way they navigate the given search space (defined by the

fragment libraries). Exact running parameters for the

three protocols are given in the Methods and Table I.

For brevity, we will illustrate some of our results using

just three targets, with PDB identifiers 1acf, 1enh and

1fna (Table II). We chose these targets based on difficulty

in prediction when using 1000 unbiased short Rosetta

runs: 1enh is an all-a target for which prediction is easy,

whereas structures for the a 1 b target 1acf and the all-b
target 1fna are more difficult to predict. This allows us

to illustrate the differences in our measures when study-

ing easy- and hard-to-predict targets. Complete results

for all 59 targets in our dataset can be found in the sup-

plementary materials accompanying this article, including

information about typical predictive accuracy obtained

when using Rosetta and EdaFold.

Consistency of sampling across different
protein regions

General findings

Figures 4 and 5 illustrate the results obtained when

using our local measures of sampling on a small set of

Figure 4
Plots of move acceptance frequency per residue for three targets, for each of the three sampling protocols considered. Median values are plotted for
the different stages of the low-resolution protocol for Rosetta and EdaFold: stage 1 (blue), stage 2 (orange), stage 3 (red), stage 4 (green) and stage

5 (purple, EdaFold only). The shaded regions represent the interquartile range (n 5 20). At the bottom of each plot is a representation of the sec-
ondary structure elements along the target sequence. Helical regions are in blue, and b-strands are in orange. In general, moves tend to be accepted

with greater frequency in helical regions and disordered termini in Rosetta, though the former is less pronounced in the case of EdaFold. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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runs of Rosetta and EdaFold, for three targets. We find

that, for all three sampling protocols, the relative fre-

quency of accepted moves is higher in a-helical and ter-

minal regions, though this effect is less pronounced in

the case of EdaFold. This is perhaps unsurprising: since

fragments for a-helical stretches will likely derive from

helices in the templates (which will mostly be similar), it

is energetically much more favorable to accept moves in

these regions than others. Similarly, disordered termini

tend to have much greater freedom of movement, and

thus moves in these regions are easy to accept without

incurring large energy penalties.

The effect is particularly striking for the all-b domain

of fibronectin (1fna), for which the large majority of

moves accepted in stages 2, 3, and 4 correspond to frag-

ment insertions affecting approximately the last fifteen

residues of the protein only. In general, the results (also

data supplement for results across all 59 targets) indicate

that the discrepancies observed between the acceptance

of moves in different protein regions increase for large

proteins and those containing b-sheets. This clearly

points to deficiencies of the sampling protocols consid-

ered: most fragment insertions in a-helical regions and

termini contribute little to a genuine exploration of the

conformational search space for a target. Other features,

such as disordered loop regions, are arguably more

important in determining the spatial arrangement of sec-

ondary structural elements and thus the overall fold.

Additionally, such replacements are still considered

accepted moves within the Monte Carlo sampling frame-

work, and may thus prevent the search protocol (or a

human decision-maker monitoring energy or RMSD

scores) from detecting when the search is stagnating.

Limitations in the sampling of loop regions are further

confirmed through the analysis of the proportion of the

available torsion space explored per residue (Fig. 5).

Figure 5
Plots of torsion space usage for three targets. For each residue, the proportion of unique backbone torsion angle triplets used is evaluated, and
median values are plotted for each stage, using the same representations as in Figure 4. The single long runs of Rosetta explore a reduced fraction

of the available torsion space per residue, as compared with sets of short Rosetta runs, or EdaFold. Stage 1 of EdaFold explores a very high fraction
of the available torsion space per residue, but this may not correspond to selective evaluation of protein-like features (see main text). [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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This, again, highlights discrepancies between the utiliza-

tion of the available parameter space, with significantly

better coverage across a-helical regions.

In addition to these common trends, we also identify

pronounced differences between the three search

protocols.

Short versus long rosetta runs

Anecdotally, we expect an improved exploration behav-

ior in sets of short Rosetta restarts (compared with long

Rosetta runs), and some of the reasons behind this are

highlighted by our analysis: if we consider the proportion

of available torsion space explored per residue (Fig. 5), we

see that, throughout all stages, sets of short Rosetta runs

are able to explore a higher fraction of the available back-

bone torsion space, compared to individual long Rosetta

runs. Particularly interesting is the increased proportion of

torsion space explored in loop regions and b-strands, sug-

gesting that individual short runs in a set are able to

explore different arrangements of secondary structure ele-

ments, and probably distinct folds. The fact that long runs

are unable to achieve the same amount of exploration in

loop regions points to one of the persisting limitations of

fragment assembly techniques: current methods quickly

converge to a compact structure and are then unable to

escape this local optimum. It would appear that this under-

lies the current dominance of restart-based approaches, as

short runs benefit from the structural “randomization,”

notably in loop regions, that arises from restarts from a

fully extended configuration. Further, once a structure has

collapsed into a compact conformation, moves or sequen-

ces of moves that cause large structural change, for exam-

ple, a rearrangement of b-strands, would face a very high

energy penalty and would not be accepted in the Monte

Carlo framework. However, such moves are necessary to

realize good fold-level exploration, and they are indirectly

provided by using a set of restarts.

For stage 3, a comparison of acceptance frequencies

highlights another facet to this finding: when comparing

the two running modes in Rosetta, we see that single

long runs accept far fewer moves in stage 3 (red lines).

Rosetta employs a convergence checking mechanism

which terminates stage 3 if the structure does not change

by 3 Å RMSD relative to a chosen point in the trajectory,

every 100 accepted moves. The convergence checker was

activated in all our long runs, suggesting that the struc-

tures converged to local optima. This is also why the

long runs display decreased move acceptance in stage 3.

This use of the convergence checker in stage 3 (described

above) can be seen as a way of improving efficiency

when using a set of restarts, as it avoids redundant local

exploration within a trajectory (even in long runs) that

does not alter the structure significantly. However, the

convergence check uses RMSD to make its decision and

it may thus miss convergence: as discussed previously,

the use of RMSD alone can be misleading if only certain

features of the structure are being altered, with terminal

regions being particularly prone to this effect. Further-

more, Rosetta does not incorporate any direct mecha-

nisms to react to the early convergence and restart the

search in a different local optimum.

Rosetta versus EdaFold

In comparison to Rosetta, EdaFold trajectories explore

a higher fraction of the available torsion space, in all of

its stages. In general, the fraction of torsion space

explored is comparable or higher than that explored by

sets of short Rosetta runs. An improved performance is

particularly noticeable in loop regions, thus pointing to

an increased diversity in terms of the structures sampled.

This is in line with the fact that a single EdaFold “run”

is actually a set of trajectories running in parallel, sharing

information among themselves at certain points in the

search. Furthermore, the iterated local search procedures

embedded in each of EdaFold’s sample_and_minimize

steps allow the search to forcibly accept moves without

attention to their impact on score values, and this has

the potential to allow the search to escape local minima

in the energy landscape.

The data in Figures 4 and 5 show pronounced differen-

ces between the protocols in stage 1, where EdaFold tends

to accept a much larger number of moves and explore a

higher fraction of the available torsion space, compared

with Rosetta in either of its running modes. This is prob-

ably due to differences in the convergence criteria as

Rosetta performs fragment insertions until a move has

been accepted at least once in every residue,21 while Eda-

Fold uses a set number of attempts. Because the scoring

function in stage 1 (score0) consists of only the van der

Waals (vdw) term of the Rosetta low-resolution scoring

function,21,37 this stage does not make use of any of the

statistical potential terms of the energy function and

mostly accepts moves that avoid self-intersecting confor-

mations. Hence, while EdaFold’s increased exploration in

this stage may act as an advantageous “randomization”

step for the initial phases of separate trajectories, the over-

all impact of this exploration may be limited, as there is no

selection for protein-like features at this stage (and genu-

ine local minima are therefore unlikely to be accessed).

Exploration of structurally diverse
conformations

General findings

Our global analysis of sampling indicates that the

reduced degree of acceptance in loops (see above) leads

to limitations in fold-level exploration. Figure 6 com-

pares the MDS visualizations obtained for 3 targets using

sets of short Rosetta runs, single long Rosetta runs and

EdaFold trajectories. For all three protocols, it can be
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seen that for 1enh, an easy target, individual runs sample

a good proportion of the conformational space corre-

sponding to low-resolution decoys. Each MDS plot in

this work consists of four subplots in principal coordi-

nate space, each containing one trajectory plotted as

colored points, with deeper colors toward the end of the

run. In the case of sets of short Rosetta runs and

EdaFold, each individual trajectory in a replicate is col-

ored individually. Thus, deeper colors correspond to the

final stages of each individual trajectory in a replicate;

this allows us to identify whether individual trajectories

are following similar or dissimilar paths through confor-

mational space. The native structure is highlighted as a

single point whose position does not vary between plots

Figure 6
MDS plots for targets 1acf, 1enh and 1fna using the contact map representation, for trajectories generated by sets of short Rosetta runs, single long

Rosetta runs, and EdaFold. Data are plotted for four trajectories per target and sampling protocol, and points are generated every 100 accepted
moves. The trajectories are plotted against a “background” set of 1000 low-resolution Rosetta decoys. Structures from stage 1 of each iteration are

excluded while plotting points for EdaFold runs. Dispersed sets of points for 1enh indicate that for all three methods, broad conformational sam-

pling is achieved. In the case of 1acf and 1fna, single long runs of Rosetta quickly descend into local minima and are unable to escape, whereas the
other two sampling protocols realize greater conformational diversity, clearly indicating the benefits of these running strategies.
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for a given protein and prediction method. A second

highlighted point represents the last structure in a trajec-

tory or set of trajectories; the location of this point varies

between plots generated for each target and protocol.

Trajectories are plotted against a “background” of gray

points representing low-resolution decoys, as discussed in

the Methods. In the case of EdaFold, we excluded data

points from stage 1 of each iteration and run, as this

part of the trajectory was thought to be far away from

any local optima (see above).

Figure 7(a) compares median entropy values obtained

for each running protocol, for 58 targets (entropy values

for one target, 1ail, could not be calculated for short

Rosetta runs due to the very large size of that dataset).

Additionally, we calculated entropy values for every itera-

tion of each EdaFold run [Fig. 7(b)], to compare the

change in the degree of exploration as the search pro-

ceeds. All trends of entropy discussed here are statistically

significant at the a 5 0.05 level, after corrections for mul-

tiple testing (see Supporting information).

Short versus long rosetta runs

For the hard targets (1acf and 1fna), the MDS plots

show that individual long runs remain tightly confined

to localized areas of conformational space, which corre-

spond to local energy minima (Fig. 6). This is consistent

with the results from the previous sub-section, also con-

firming the rapid convergence to local optima seen for

these targets. Sets of short runs, on the other hand, are

able to explore a greater variety of structure types, even

though individual runs are confined to localized areas.

These results are further confirmed by entropy calcula-

tions on the associated trajectories [Fig. 7(a)]. Sets of

short Rosetta runs are typically associated with higher

median entropy values, as compared to single long runs.

Overall, this highlights why running sets of short runs

continues to be a preferred way of running Rosetta:

between them, short runs are able to provide a good

degree of fold-level exploration, while longer runs tend

to get stuck in a single local minimum.

Detailed analysis of EdaFold across iterations

Given the iterative design of EdaFold, it is interesting

to consider the progress of the search through its itera-

tions. Using our entropy measure, we are able to detect

two distinct effects of the use of probability distributions

during EdaFold runs, which are not obvious from look-

ing at RMSD or energy values alone. We used four itera-

tions of the sample_and_minimize procedure.

Figure 7
Pairwise scatterplots comparing median entropy values for (a) all three sampling protocols considered, over complete runs, and (b) individual iter-
ations of EdaFold. In each plot, a dashed line of unit slope is drawn to aid interpretation. Higher entropy values correspond to an improved degree

of conformational exploration. Sets of short Rosetta runs exhibit higher median entropy values as compared with single long runs. EdaFold exhibits
higher entropy overall, as compared with both running modes of Rosetta. Within EdaFold runs, entropy values increase from iteration 1–2, and

then gradually decrease in successive iterations. This suggests that the EDA procedure has two distinct effects on sampling behavior (see Detailed

Analysis of EdaFold Across Iterations section).
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Within EdaFold runs [Fig. 7(b)], we see that in most

cases, entropy increases going from iteration 1 to 2, fol-

lowed by a gradual decrease in entropy going through

the remaining iterations. The gradual decrease in entropy

may be expected, as it is in line with the basic aims of

an EDA: it indicates that the EDA is successively refining

and narrowing down the extent of the search space

explored, by identifying fragments that lead to lower all-

atom energy values.

In contrast, the initial increase in entropy (from itera-

tion 1 to iteration 2) is unexpected: for iteration 2 to

exhibit higher median entropy values than iteration 1,

the search must explore more widely as compared with

iteration 1, which uses a uniform probability distribution

over the fragments. This finding may point to redun-

dancy in the fragment library, which could explain this

counter-intuitive effect: for example, consider a case

where 20% of the fragment set for a region corresponds

to an a-helix, and the remaining 80% corresponds to a

b-strand. During iteration 1, the chances of inserting

fragments of each secondary structure type in the rele-

vant region will be close to these initial percentages (due

to the use of a uniform distribution). If the probability

distribution determined after iteration 1 then favors the

under-represented secondary structure type (in this case

an a-helix), this would lead to a relative increase in the

frequency of its insertion in iteration 2. This would

translate to more diverse sampling at a global level, as

the folding process would move between these structural

states more frequently.

Rosetta versus EdaFold

In the case of EdaFold, the MDS plots reveal a pro-

nounced difference in the sampling of harder targets:

here, individual runs within a replicate exhibit much

greater diversity in their sampling, compared with

Rosetta runs. This difference is likely due to the restarts

EdaFold performs after each iteration, as well as the iter-

ated local search steps in its sample_and_minimize proce-

dure. This finding is further confirmed by the results

from the entropy measure: comparing Rosetta and Eda-

Fold over complete runs, we see that EdaFold typically

exhibits a higher median entropy as compared with sets

of short Rosetta runs. Even though the two methods

employ a similar number of scoring function evaluations,

EdaFold is clearly able to realize a greater degree of con-

formational exploration. Importantly, EdaFold already

achieves this improved sampling performance in its first

iteration, when the core EDA mechanism (the guidance

of fragment selection through a probability distribution)

has not yet kicked in.

Overall, the EDA appears to provide some effective

mechanisms toward controlling the tradeoff between

exploration and exploitation in the low-resolution

search, but some of these have been given little empha-

sis in its original description. Beyond the basic mecha-

nism of the EDA, it appears that key design aspects that

contribute to improved conformational exploration may

be the use of simulated annealing steps starting at an

elevated temperature (compared to Rosetta), and, most

importantly, the use of iterated hill-climbing steps that

introduce forced structural perturbation during the

search (Quantifying Explorative Diversity Using Markov

State Models and Weighted Shannon Entropy section).

This allows the search in EdaFold to perform more

detailed exploration of the available conformational

space, and in doing so, enables EdaFold to make more

informed choices of local subspaces within which to

conduct more detailed sampling. A good balance

between exploration and exploitation may be a key rea-

son why EdaFold is able to achieve improved distribu-

tions of predictive accuracy for some targets (see Data

Supplement), though this improvement is not seen

consistently.

CONCLUSIONS

In recent years, many new protocols seeking to

improve the quality of conformational exploration have

emerged, with a view to move beyond the use of many

short runs of structure prediction methods. By making

use of the structural diversity encountered during the

search, these methods guide conformational exploration

toward the native state; EdaFold is just one example of

such a technique. Other recent innovations include tree-

based search structures43 that take both the energy val-

ues as well as structural diversity into account when

deciding on new search directions, and population-based

evolutionary algorithms44 employing structure-based

crossover operators between promising structures

encountered during the search. There has also been work

describing the use of fragment-derived structural infor-

mation to bias folding trajectories employing molecular

dynamics (MD),45,46 with the authors reporting compa-

rable or improved results as compared with using MD

simulation alone. However, whether the use of such pro-

tocols enables better conformational exploration is not

always clear from the empirical evaluation presented in

these and other studies.

Here, we suggest that, using typical measures of pre-

dictive performance alone, it can be difficult to assess

the extent to which the available conformational space

in a fragment-based prediction run is explored. A better

understanding of conformational search is important,

since good conformational sampling remains a key lim-

iting factor in the ability to predict the structures of

larger targets.14 We have therefore developed a set of

dedicated techniques that monitor sampling in more

detail and are intended to complement traditional

assessment techniques. We have illustrated their use in
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the context of analyzing search trajectories from Rosetta

and EdaFold.

Our local measures demonstrate that for both methods,

certain structural features in the target proteins are easier

to sample, and moves in these regions tend to be accepted

with greater frequency. This reflects the relative ease of

movement of some parts of the protein chain (such as ter-

mini), whereas other parts such as a-helices are easy to

sample because of their relative structural invariability.

This effect means that other parts of the chain (loop

regions and b-strands) are less likely to experience struc-

tural variation during the search. Our global measures

indicate that this translates into individual search trajecto-

ries rapidly getting stuck in local minima in the energy

landscape; no more than a few distinct structural states are

explored during any run. This behavior is very likely to

contribute to the poor performance of fragment-based

techniques in de novo prediction of larger targets.

In the case of Rosetta, we find that the commonly-

employed strategy of a larger number of short prediction

runs is beneficial because of the improved degree of con-

formational exploration it effectively affords, using a

given amount of computational effort. Our methods can

be used in a similar manner to evaluate the effects of dif-

ferent settings of other parameters on the quality of con-

formational sampling.

In the case of EdaFold, we find that the use of proba-

bility distributions during the search has two distinct but

related effects: realizing more balanced sampling between

structurally distinct states, followed by an increasingly

focused search in low-energy conformational subspaces.

Drawing a distinction between these effects would not be

possible using conventional measures of prediction

performance.

Diagnosing the weaknesses of current methods of con-

formational sampling in fragment assembly is, of course,

only a first step toward addressing the problem. Our

analysis highlights possible avenues toward the improve-

ment of low-resolution search, in particular the need to

develop protocols that focus conformational search on

key degrees of freedom such as loop regions of the pro-

teins. Designed correctly, such methods should be able to

more systematically explore a diverse set of “protein-like”

conformations in a single search trajectory. Sampling

approaches that are capable of improved conformational

exploration are necessary if fragment-based methods are

to scale to larger targets, and our methods can be used

to support their design and assessment, as they support

the identification of deficiencies, the quantification of

exploration, and an objective analysis of the impact of

parameter settings and algorithm redesigns.
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