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Aims To determine if remotely monitored physiological data from cardiac implantable electronic devices (CIEDs) can be
used to identify patients at high risk of mortality.

...................................................................................................................................................................................................
Methods
and results

This study evaluated whether a risk score based on CIED physiological data (Triage-Heart Failure Risk Status,
‘Triage-HFRS’, previously validated to predict heart failure (HF) events) can identify patients at high risk of death.
Four hundred and thirty-nine adults with CIEDs were prospectively enrolled. Primary observed outcome was all-
cause mortality (median follow-up: 702 days). Several physiological parameters [including heart rate profile, atrial fi-
brillation/tachycardia (AF/AT) burden, ventricular rate during AT/AF, physical activity, thoracic impedance, thera-
pies for ventricular tachycardia/fibrillation] were continuously monitored by CIEDs and dynamically combined to
produce a Triage-HFRS every 24 h. According to transmissions patients were categorized into ‘high-risk’ or ‘never
high-risk’ groups. During follow-up, 285 patients (65%) had a high-risk episode and 60 patients (14%) died (50 in
high-risk group; 10 in never high-risk group). Significantly more cardiovascular deaths were observed in the high-
risk group, with mortality rates across groups of high vs. never-high 10.3% vs. <4.0%; P = 0.03. Experiencing any
high-risk episode was associated with a substantially increased risk of death [odds ratio (OR): 3.07, 95% confidence
interval (CI): 1.57–6.58, P = 0.002]. Furthermore, each high-risk episode >_14 consecutive days was associated with
increased odds of death (OR: 1.26, 95% CI: 1.06–1.48; P = 0.006).

...................................................................................................................................................................................................
Conclusion Remote monitoring data from CIEDs can be used to identify patients at higher risk of all-cause mortality as well as

HF events. Distinct from other prognostic scores, this approach is automated and continuously updated.
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Introduction

Patients who have cardiac implantable electronic devices (CIEDs)
due to underlying heart disease are a heterogeneous cohort with
varying degrees of morbidity, mortality risk, and healthcare utilization.

Modern CIEDs have the benefit of remote monitoring capabilities
which enable detection of real-time physiological parameters of
patients in their own homes. The remotely captured data can help
identify episodes of decompensation as they occur and also help pre-
dict future adverse clinical events.1–4 Utilization of this rapidly
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advancing technology for ‘real-time’ risk stratification could provide a
paradigm shift in the management of cardiac patients, particularly
those with heart failure (HF).

Predicting mortality in an ambulatory CIED population is notori-
ously challenging for a variety of reasons. First, rhythm problems
rarely exist in isolation, especially in older patients who have varying
degrees of comorbidity and frailty. Second, a high proportion of
patients with CIEDs have HF, which classically follows a relapsing/re-
mitting course. Third, HF has multiple aetiologies which can give rise
to different risk profiles. Finally, existing risk prediction tools used in
patients with CIEDs and those with HF are limited in that they re-
quire knowledge of directly observed parameters (e.g. blood pres-
sure, height, weight, functional class, ejection fraction, creatinine and
medication) which are not always available.5–9 Therefore, the con-
cept of utilizing CIEDs for remote monitoring is ideal because several
parameters that correlate with heart function stability [e.g. thoracic
impedance, presence of tachycardia, atrial arrhythmias, percentage of
cardiac resynchronization therapy (CRT) pacing, activity levels etc.]
are measured automatically by the devices in real-time.

The validated ‘Triage Heart Failure Risk Status’ (Triage-HFRS) is a
risk prediction model, which uses the physiological parameters col-
lected from Medtronic CIEDs to risk-stratify patients as low-, me-
dium-, or high risk of HF events within 30 days.2 The risk status
algorithm considers a combination of up to nine parameters depend-
ing on the device features (atrial tachycardia ‘AF’ / atrial fibrillation
‘AF’ duration, ventricular rate during AT/AF, OptiVolTM fluid index,
patient activity, night heart rate, heart rate variability (HRV), percent-
age of CRT pacing, treated ventricular tachycardia/ventricular fibrilla-
tion, and defibrillator shocks). Triage-HFRS was originally designed to
predict HF hospitalization events, i.e. hospitalization due to HF de-
compensation. Prior studies have shown that Triage-HFRS has high
sensitivity for predicting worsening HF events, but no study has

prospectively explored whether it predicts all-cause mortality.2,3 This
is important, as anticipated life expectancy impacts upon clinical deci-
sion-making above and beyond short-term risk of disease instability.

The aim of this study was to investigate if device-derived physiolog-
ical data (summarized as sensor data used by the Triage-HFRS) can
predict risk of all-cause mortality. Secondly, we investigated if the ad-
dition of easily obtained demographic variables altered this
association.

Methods

Study design, setting, and participants
This study was a prospective, single-site observational study undertaken
in accordance with the STROBE statement for reporting observational
studies.10

The Manchester Heart Centre (MHC) is a tertiary referral centre for
CIED implantation and follow-up that serves a local population of
213 000 and the wider conurbation of Greater Manchester. This study in-
cluded all adult patients (aged >_ 18 years) with Triage-HFRS-enabled
Medtronic CIEDs (defined as any CIED capable of measuring OptiVolTM

2.0 fluid-index) under follow-up between 21 June 2016 and 21
September 2018. The types of CIEDs we included were cardiac resynch-
ronization therapy [CRT-D (with defibrillator), CRT-P (with pace-
maker)], implantable cardioverter-defibrillators (ICDs) and pacemakers.

Ethics
We applied to the United Kingdom (UK) Health Research Authority’s
Confidentiality Advisory Group (CAG) to obtain a confidentiality waiver
(Section 251) in the National Health Service Act to facilitate data linkage
of specified patient-related data with Office of National Statistics (ONS)
data from patients with a Triage-HFRS compatible CIED who were under
follow-up at our institute between 21 June 2016 and 21 September 2018.
This application was fully supported and in view of this a favourable opin-
ion from the CAG was issued in May 2019 (19/CAG/0055). This study
complies with the Declaration of Helsinki.

Data sources and collection
Data for this study were acquired from three sources: hospital-based
electronic health records at site (screening, demographic, and transmis-
sion data), Medtronic ‘CareLink’ network (transmission data), and NHS
Digital (outcome data). CareLink is a Medtronic hosted cloud service that
collates all Medtronic device transmissions globally (including hospital-
based and home-based downloads). Local care providers access
CareLink transmission data using the One Hospital Clinical Service portal,
a medical care quality improvement platform which conforms to the prin-
ciples outlined in the Declaration of Helsinki.

Linked mortality data were provided from NHS Digital (the national
provider for NHS data collection), which collates data from all NHS pro-
viders in the UK to provide reliable and consistent information on hospi-
tal admissions and mortality. NHS Digital acquires its mortality data from
the Office of National Statistics using information derived from death cer-
tificates. Given that registration of death is mandated in the UK, we regard
such mortality outcome data to be robust and ensures that mortality data
was available for all patients. The provided data included date of death
and the leading cause-of-death.

A 6-digit patient pin was used to link pseudonymized outcomes data
returned from NHS digital with Carelink and demographic data.

What’s new?

• Modern cardiac implantable electronic devices (CIEDs) include
multiple sensors which facilitate continuous data collection of
monitored physiological parameters. These parameters can
then be dynamically combined to produce prognostic metrics,
for example the validated Triage-Heart Failure Risk Status
‘Triage HFRS’.

• This is the first prospective study to report that HFRS data,
derived from remotely monitored CIED data and originally
developed to identify patients at increased risk of heart failure
hospitalization, can be used to predict all-cause mortality.

• Routinely monitored data, automatically collected on a daily
basis can help discriminate between ambulatory patients at
high and low risk of death, i.e. stratify risk remotely.

• This study reports a three-fold increased odds of mortality for
patients who spent at least 1 day in a high HFRS status, and a
26% increase in odds of mortality for patients who had 14
consecutive days or more in a high-risk status.

• Higher percentages of time spent in a ‘high’ risk status, and less
time in a ‘low’ risk status, were associated with increased risk
of death.
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CIED remote monitoring
Physiological parameter data were collected continuously by the device,
and feeds into the Triage-HFRS algorithm (described elsewhere).2

Parameters vary slightly by type of device, as outlined in Table 1. The
Triage-HFRS is calculated using the maximum measures from the previ-
ous 30 days, although daily risk is available using only the physiological
data recorded in the preceding 24 h. The daily data are stored within the
device until a transmission occurs [either an automated transmission trig-
gered by detection of new AF, ventricular arrhythmia, high OptiVolTM (if
activated), or a routine scheduled transmission undertaken every
3 months for most patients as per guideline recommendations].11 When
a transmission is triggered, parameters for each day of recording are
uploaded to the CareLink cloud where the HFRS is assigned. The classifi-
cation of low-, medium-, or high-risk statuses is evaluated using the sum
of the physiological parameters, across the relevant time window (30
days or daily, as relevant).

Outcomes
The observational primary endpoint of mortality was evaluated for all
cases from the date of first transmission (on or after 18 April 2015), until
either death occurred or the end of the evaluation period 06 November
2019. Causes of death were reviewed and categorized by two clinicians
(F.Z.A. and J.K.T.).

Statistical analysis
As exploratory analysis, we summarized temporal changes through daily
low-, medium-, and high-risk statuses by considering the number of times
each patient visited each status and the length of time they remained in
that status before transitioning to a different status. To visualize the longi-
tudinal time series data, we simulated hypothetical patient profiles of risk
statuses through time, based on the observed data (see Supplementary
material online, Methods for details).

For the purposes of the main analysis, we categorized patients into
groups of either ‘high’ or ‘never-high’ based on their entire HFRS trajec-
tory of daily statuses. Specifically, any patient evaluated to be at high risk
at any point in their follow-up was categorized into the ‘high’ group, with
all other patients forming the ‘never-high’ group. We chose this binary
delineation a priori based on the clinical judgement and current percep-
tions that a medium status has so far not been shown to confer meaning-
ful actionable information.

To investigate the association between patients with a high HFRS and
mortality, we compared the mortality proportion of those in the ‘high’
group compared to the ‘never-high’ group using logistic regression.
Similarly, we used logistic regression to evaluate the association between
all daily risk status trajectory data and all-cause mortality. We describe
the association using odds ratios (ORs) with corresponding 95% confi-
dence intervals (CIs), where an OR >1 implies increased odds of mortal-
ity. Additionally, we compared time-to-death using Kaplan–Meier plots
and log-rank tests across groups of ‘high’ or ‘never-high’; such groups
were defined based on landmark times of 30, 90, 180, 365 days after study
entry, where we condition on survival up-to the landmark time and define
patients to the high group if they had at least one high HFRS prior to the
landmark time.

Finally, we evaluated the predictive performance (in terms of calibra-
tion and discrimination) of the daily HFRS using established methods to
quantify how well it performs at predicting mortality.12,13 Additionally,
we considered model updating methods to revise the daily HFRS ac-
counting for additional predictors that were not included in the original
model (i.e. patient demographic data) to see if we could improve predic-
tive performance.14,15 See Supplementary material online, Methods for
details.

All analyses were performed using R version 3.6.1.16

Results

Study population
There were 439 patients under MHC follow-up during the study pe-
riod (16 June 2016 to 21 September 2018). Of these, 167 (38%) had
a CRT-D, 36 an ICD (8.2%), 172 (39.2%) a CRT-P, and 64 (14.6%) a
pacemaker. Overall, 318 (73.3%) had a documented history of heart
failure with reduced ejection fraction, and 243 (56.1%) had a last
recorded left ventricular ejection fraction (LVEF) of <_35%. Baseline
clinical characteristics according to risk group are summarized in
Table 2. Transmission data were available from 18 April 2015 (data
stored on the device for up to 14 months prior to download).

Risk status
CareLink data for 11 092 risk status periods were available. Of the 11
092 episodes, 4394 (39.6%) were low-, 5528 (49.8%) were medium-,
and 1170 (10.5%) were high-risk statuses. The median number of
days of transmitted data per patient during the 27-month follow-up
was 703 days [interquartile range (IQR): 388–841].

The number of days spent in each low-, medium-, or high-risk sta-
tus was recorded for each transmission. Figure 1 demonstrates the
empirical probabilities of daily transitions between risk status based
on observed data, with example simulated risk profiles described in
Supplementary material online. The average total number of days
spent in each status is shown in Table 3. Overall, most time was spent
in low-risk, followed by medium- and then high-risk. On average, a
patient would spend 49 consecutive days in low-risk before transi-
tioning to another risk status. Patients in the ‘never recorded high’
group spent between 68.4% and 90.5% of their follow-up in a low-
risk status, and between 8.8% and 28.5% of their follow-up in a
medium-risk status. Patients in the ‘high’ group who survived spent
between 29.9% and 70.6% of their follow-up in a low-risk status, be-
tween 21.7% and 55.1% of their follow-up in medium-risk status, and
between 1.3% and 10.2% of their follow-up in high-risk status (Table
3). In contrast, patients in the ‘high’ group who died spent a lower
proportion of the evaluation period in a low-risk status compared to

.................................................................................................

Table 1 Heart Failure Risk Status (HFRS) parame-
ters by device type

HFRS parameter CRT-D CRT-P PPM

OptiVolTM (intrathoracic impedance) � � �

Physical activity � � �

Night ventricular rate � � �

Heart rate variability � � �

AF/atrial tachycardia (AT) burden � � �

Ventricular rate during AF/AT � � �

% CRT pacing � �

Treated VT/VF �

Shocks �

AF, atrial fibrillation; CRT, cardiac resynchronization therapy; VT/VF, ventricular
tachycardia/fibrillation.
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the other two groups, and a higher proportion of follow-up in a high-
risk status. After 1 year of being monitored, over 50% of patients had
entered high risk or been censored (Supplementary material online,
Figure S1).

Mortality
In total, 60 patients died during follow-up. The maximum recorded
risk status before death was either medium (n = 10) or high (n = 50),
meaning that no patients whose risk status remained low for the

duration died. There was often a missing period of HFRS data leading
up to death, hence it may be that patients with a medium maximum
recorded risk experienced a high-risk status in the lead up to death
but it was not transmitted (e.g. hospitalization resulting in loss of
transmission of HFRS data to CareLink). The median time between
the last transmitted HFRS and death was 111 days (IQR: 57–226) and
the median time from the last maximum recorded risk and death was
233 days (IQR: 91–390). Of those that died, 53 had a CRT device (26
had a CRT-D, 27 CRT-P) and 7 had non-CRT devices.

....................................................................................................................................................................................................................

Table 2 Summary of patient demographics as a full cohort, and across groups of either never recorded high risk vs.
at least one recorded high risk in follow-up

Demographics Never recorded

high (n 5 154)

High (n 5 285) Total (n 5 439) P-value

Male, n (%) 96 (62.3%) 182 (63.9%) 278 (63.3%) 0.752

Age, mean (SD) 63.3 (15.6) 67.7 (15.2) 66.1 (15.5) 0.004

Index of multiple deprivation, median (IQR) 4 (2–7) 4 (1–7) 4 (2–7) 0.458

Known to HF team, n (%) 55 (35.7%) 117 (41.0%) 172 (39.2%) 0.274

History of atrial fibrillation/flutter, n (%) 58 (38.2%) Missing: 2 131 (46.1%) Missing: 1 189 (43.3%) Missing: 3 0.110

HF with reduced ejection fraction (HFrEF),a n (%) 105 (68.6%) Missing: 1 213 (75.8%) Missing: 4 318 (73.3%) Missing: 5 0.108

Left ventricular ejection fraction <35%, n (%) 72 (47.4%) Missing: 2 171 (60.9%) Missing: 4 243 (56.1%) Missing: 6 0.007

Left ventricular ejection fraction <35% and

known to HF team, n (%)

39 (54.1%) 91 (53.2%) 130 (53.5%) 0.892

Ischaemic heart disease, n (%) 82 (54.7%) Missing: 4 156 (55.9%) Missing: 6 238 (55.5%) Missing: 10 0.804

Adult congenital heart disease, n (%) 20 (13.2%) Missing: 3 19 (6.7%) Missing: 2 39 (9.0%) Missing: 5 0.026

Prior ablation,b n (%) 15 (9.9%) Missing: 3 56 (19.9%) Missing: 4 71 (16.4%) Missing: 7 0.009

Prior myocardial infarction (MI), n (%) 55 (37.2%) Missing: 6 90 (32.6%) Missing: 9 141 (34.1%) Missing: 15 0.346

Chronic obstructive pulmonary disease (COPD), n (%) 14 (9.6%) Missing: 8 41 (14.9%) Missing: 9 55 (13.0%) Missing: 17 0.129

Diabetes, n (%) 28 (19.2%) Missing: 8 75 (27.3%) Missing: 10 103 (24.5%) Missing: 18 0.067

Chronic kidney disease stage (CKD) >_3, n (%) 43 (27.9%) 92 (32.7%) Missing: 4 135 (31.0%) Missing: 4 0.299

Duration of follow-up (days), median (IQR) 538 (304–828) 765 (478–842) 702 (387–840) <0.001

Device type, n (%) 0.378

CRT-D 58 (37.7%) 109 (38.2%) 167 (38.0%)

CRT-P 53 (34.4%) 119 (41.8%) 172 (39.2%)

ICD 18 (11.7%) 18 (6.3%) 36 (8.2%)

PPM 25 (16.2%) 39 (13.7%) 64 (14.6%)

NYHA Class, n (%) 0.003

No heart failure 30 (19.5%) 32 (11.2%) 62 (14.1%)

1 27 (17.5%) 29 (10.2%) 56 (12.8%)

2 51 (33.1%) 100 (35.1%) 151 (34.4%)

3 or 4c 39 (25.3%) 108 (37.9%) 147 (33.5%)

Not available (missing) 7 (4.5%) 16 (5.6%) 23 (5.2%)

Medications, n (%)

Beta blockers 108 (77.1%) Missing: 14 212 (80.9%) Missing: 23 320 (79.6%) Missing: 37 0.485

Ace-i/ARB/ARNI 99 (70.7%) Missing: 14 175 (67.3 %) Missing: 25 274 (68.5%) Missing: 39 0.557

MRA 40 (28.8%) Missing: 15 109 (41.9%) Missing: 25 149 (37.3%) Missing: 40 0.013

Diuretic 53 (38.1%) Missing: 15 153 (58.6%) Missing: 24 206 (51.5%) Missing: 39 <0.001

Boldface values indicate statistical significance at a glance.
Ace-i, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor-neprilysin inhibitor; CRT-D, cardiac resynchronization therapy
with defibrillator; CRT-P, cardiac resynchronization therapy with pacemaker; HF, heart failure; ICD, implantable cardioverter-defibrillator; IQR, interquartile range; MRA, miner-
alocorticoid-receptor antagonists; NYHA, New York Heart Association; PPM, pacemaker; SD, standard deviation.
aRecorded in electronic patient records.
bIncludes any history of documented cardiac ablation for AT/AF or atrial flutter.
cIncludes <5 patients with NYHA class 4 functional status.
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Of the 60 deaths, 35 were cardiovascular deaths. Causes of death
included (in descending order of frequency): cardiovascular disease
(n = 35, of which HF accounted for 6 deaths), respiratory disease
(n = 7), cancer (n = 6), renal failure (n < 5), falls (n < 5), diabetes
(n < 5), and dementia (n < 5). In 5 cases the cause of death was miss-
ing. There were significantly more cardiovascular deaths in the high
group, compared to the never-high group (10.3% vs. <4.0%;
P = 0.03).

The odds of all-cause mortality were significantly higher in patients
with at least one high-HFRS, irrespective of the duration of said high,
compared to patients who were not recorded as having a high-HFRS
during their follow-up (OR: 3.07, 95% CI: 1.57–6.58, P = 0.002).
Similar findings were observed for time-to-death; survival was signifi-
cantly worse in the ‘high’ group compared with the ‘never-high’
group, across all landmark times considered (see Methods and
Figure 2).

In patients that experienced at least one high, the time spent in
high-risk status was, on average, 42.6 days longer for those that died
compared to those who survived (P = 0.002). The percentage of the
follow-up that was spent in high was also shown to be associated
with death (Supplementary material online, Table S2), after adjusting
for the length of follow-up and proportion of time spent in low risk.

The corresponding predicted risks are shown in Figure 3. In addition,
when we considered only the high-risk episodes which lasted at least
14 consecutive days as a predictor, we found that each of these was
associated with increased odds of death (OR: 1.26, 95% CI: 1.06–
1.48; P = 0.006). Sensitivity analyses using an HF sub-population [CRT
device or New York Heart Association (NYHA) 2þ or LVEF < 35]
demonstrated that the odds ratio remained statistically significant and
was similar for the high HFRS (OR: 2.33, 95% CI: 1.15–5.13, P¼
0.026) (Supplementary material online, Table S3). Similar findings
were found when we adjusted for NYHA and CRT device
(Supplementary material online, Table S4).

Predicted risk of mortality after
adjusting for time spent in each state
An increased number of days spent in a high-risk state was associated
with significantly increased mortality (OR: 1.00, 95% CI: 1.00–1.02,
per day; P = 0.015). Similarly, a decreased number of days spent in a
low-risk state was associated with significantly increased mortality
(OR: 1.00, 95% CI: 0.99–1.00, per day; P < 0.001), after adjusting for
recorded time spent in each state (Supplementary material online,
Table S1). The predicted risk of mortality after adjusting for time
spent in each state is outlined in Figure 4.

Figure 1 Empirical probabilities for (A) daily transitions, (B) transitions given that a change of status occurred, and (C) remaining in a risk status for
30 consecutive days. Arrows without probabilities have probabilities less than 0.005. (D) Simulated risk profiles over 2 years from entry, using empiri-
cal transition probabilities from each patient group.
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Improving identification of patients at
increased risk of death
To explore if the addition of demographic factors to the daily HFRS
could improve prediction of risk of death, we added Age, Gender,
LVEF <_ 35 and chronic kidney disease (CKD) stage >_ 3 into the daily
HFRS (only these were considered due to the small number of
events), as shown in Table 4. Including these additional predictors sig-
nificantly improved the predictive performance of the model, increas-
ing the optimism-adjusted area under the curve (AUC) from 0.61
(95% CI: 0.56–0.66) for the original HFRS model to 0.72 (95% CI:
0.67–0.78) for the updated HFRS model. Furthermore, the

optimism-adjusted calibration of the updated HFRS model was supe-
rior to that of the original HFRS model (Supplementary material on-
line, Table S5).

Discussion

This study reports that HFRS data can be used to predict all-cause
mortality in patients with a full range of CIEDs and differing indica-
tions. Specifically, routinely monitored data, which is automatically
collected on a daily basis as part of the Medtronic Triage-HFRS

....................................................................................................................................................................................................................

Table 4 Multivariable Logistic regression and lasso logistic regression model coefficients (n 5 431), with the per-
centage of times a predictor was selected using the lasso procedure in the bootstrap internal validation procedure
(N 5 1000)

Predictor Logistic regression

odds ratio

95% CI P-value Lasso regression

odds ratio

% occurrences

Intercept 0.00 0.00–0.01 <0.001 0.00 100

Age 1.05 1.02–1.08 <0.001 1.05 100

Male 1.39 0.74– 2.67 0.311 1.32 72.4

CKD >_stage 3 2.08 1.14–3.81 0.017 1.91 96.4

High >_1 2.43 1.20–5.33 0.018 2.19 98.7

LVEF < 35 1.58 0.83–3.14 0.174 1.56 88.6

Boldface values indicate statistical significance at a glance.
See Supplementary material online, Methods for details.
CI, confidence interval; CKD, chronic kidney disease; LVEF, left ventricular ejection fraction.

....................................................................................................................................................................................................................

Table 3 Average time spent in each status for patients with at least one transmitted HFRS in that status

Low Medium High No record (between first

and last recorded risk)

Never recorded high (N = 154)

Total days 465.5 88.5 – 185.9

Number of consecutive days to change 72.0 13.5 – 124.5

IQR Proportion of Follow-up 68.4–90.5% 8.8–28.5% – 0.0–0.0%

High, survived

(N = 236)

Total days 367.6 259.4 54.5 135.1

Number of consecutive days to change 37.9 25.3 13.6 123.7

IQR proportion of follow-up 29.9–70.6% 21.7–55.1% 1.3–10.2% 0.0–0.0%

High, died

(N = 50)

Total days 190.2 271.6 97.1 167.0

Number of consecutive days to change 25.7 35.2 23.7 83.5

IQR proportion of follow-up 1.9–51.0% 33.7–66.0% 5.3–25.6% 0.0–0.0%

All

(N = 440)

Total days 384.1 201.1 61.9 147.2

Number of consecutive days to change 48.8 22.3 15.4 122.8

IQR proportion of follow-up 33.7–82.3% 15.1–51.1% 0.0–7.2% 0.0–0.0%

IQR, interquartile range.
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clinical tool, helped discriminate patients both at high and low risk of
death. Moreover, there was a three-fold increased odds for patients
who spent at least one day in the high HFRS, with a 26% increase in
odds of mortality for patients who had 14 consecutive days or more
in a high-risk status. Patients who experienced a high HFRS and died
spent significantly higher percentages of time in a high-risk status, and
less time in a low-risk status, compared to those that did not die. On
the other hand, being in a persistent low-risk status throughout the
follow-up period resulted in no deaths.

This study is part of a larger body of work looking at how remotely
monitored CIED physiological data and the HFRS can be used to pre-
dict adverse outcomes, and risk stratify at an individual patient level
to guide monitoring programmes.

All-cause mortality
In the current analysis, the CRT population had the highest propor-
tion of deaths and high HFRS events. In view of this, we conducted a
sensitivity analysis adjusting for device type in the HF population. This
analysis reported a consistent estimated odds ratio for a high HFRS
event across both the HF and unselected population.

It was theorized that physiological parameters from CIED data
would predict all-cause mortality. Individual parameters such as heart
rate, rhythm and physical activity are all known to confer prognostic
information for patients with and without HF.1,17–21 The cohort of
patients in this study are diverse—ranging from young patients with
primary prevention ICDs, to older multimorbid HF cases. Causes of
death were also diverse, but cardiovascular death was the most com-
mon mode of death. Although there were only a small number of
cardiovascular deaths, significantly more were observed in the high
group, with mortality rates across groups of high vs. never-high 10.3%
vs. <4.0%; P = 0.03. We were unable to investigate predictive perfor-
mance for estimating cardiovascular-related mortality due to the
small number of cardiovascular deaths, as a consequence of the sam-
ple size. With respect to non-cardiovascular deaths, it would also be
reasonable to expect heart rate and thoracic impedance be altered in
any patient with severe respiratory illness or advanced systemic dis-
ease with end-stage cardiopulmonary complications. Rapid changes
in physiological parameters may also indicate disease instability—this
would require further investigation. Furthermore, although the cur-
rent study examined the utility of the HFRS for the remote identifica-
tion of patients at high risk of mortality, it should be noted that
primary use of this technology is for the early detection of individuals
at increased risk of HFH, alerting patient care teams to the potential
risk of deterioration. We have previously reported the utility of the
rich physiological data provided by components of the risk score to
complement phone-call based consultations and guide interven-
tions.4 However, further work is needed to understand the specific
pathophysiology during high-risk states and what interventions, if any,
can mitigate patient clinical deterioration or support end-of-life
management.

Prognostic risk scores in clinical practice
Estimation of prognostic outlook in patients with CIEDs is important
for a number of reasons, for example to guide discussions of appro-
priateness of therapies and decisions around clinical care and escala-
tion. Despite this, use of prognostic risk scores in clinical practice is
limited.5

Several prognostic scores have been developed or adapted for use
in patients with CIEDs. Many of these scores such as MADIT-II,
FADES, PACE, SHOCKED, CHADS2, and CHADSVASC5 have lim-
ited use in practice for several reasons.6,7,21 First, for the most part,
these scores have not been externally validated in large-scale studies.
Second, some of the scores were developed for use in highly selec-
tive device populations (CRT or ICD recipients), limiting their scope
of use to the wider CIED cohort. Third, calculation of scores and de-
termination of risk can be labour intensive for use in routine clinical
practice with lack of automation. Fourth, the dynamic nature of im-
portant variables such as renal function or brain natriuretic peptide
are not considered across the clinical time-course and finally, none of
these scores utilize the rich real-time physiological data made avail-
able by the CIED.

Various multivariable risk scores for the prediction of mortality in
HF, where use of CIEDs is commonplace, have also been produced.
However, the routine use of these risk tools (such as Seattle Heart
Failure Model and MAGGIC Risk Score) in clinical practice is not
commonplace.8,9 Again, key to ensuring optimum performance is
foreknowledge of numerous clinical variables, many of which vary
over time and are not routinely measured or recorded in an ambula-
tory device population (e.g. uric acid, cholesterol levels, sodium, med-
ication doses, current smoking status, body mass index), making
these risk scores cumbersome for use within the constraints of usual
clinical practice.8,9,21

Triage-HFRS differs from previous scores in this respect and is
unique in that it leverages remote monitoring data, routinely col-
lected by sensors within the implanted device, for prognostic pur-
poses. The system is fully automated to compute a personalized risk
of a future event; this goes beyond its original use case scenario of
identifying patients at risk of a HFH within 30 days.1,2 This novel auto-
mated approach to data collection has distinct advantages over the
limitations of existing scores.

Triage-HFRS is weighted by the OptiVolTM index. Previous studies
have demonstrated links between both OptiVolTM crossing and ab-
solute impedance and mortality in patients with devices that are capa-
ble of remote monitoring.22,23 Subsequent to this multiple studies
have demonstrated the incremental value of multi-sensor algorithms
over single parameter monitoring.1,2 However, for the most part
these studies have been limited to predicting risk of HFH. In this eval-
uation, we have shown that an easy to use Triage-HF risk-stratifica-
tion tool also had good predictive value for mortality. Future studies
should compare the performance of these different prognostic classi-
fications to determine which has the best association with mortality.
Consistent with our findings, a recent large retrospective analysis of
US Healthcare claims data reported that a high risk status was associ-
ated with a 4-year all-cause mortality risk of 38%.24

In the current analysis, we report that the predictive performance
of the ‘high’ Triage-HFRS to identify patients at increased odds of
mortality can be augmented by knowledge of age, gender, and CKD
status. Interestingly, removing LVEF <_35% from the model did not al-
ter the AUC (0.72). Since age and gender are a known entity, and the
high-risk status is provided by the device, the only additional clinical
data required to utilize this improved model is knowledge of whether
estimated glomerular filtration rate is <60 mL/min. Hence, this makes
the updated model universally easy to adopt into clinical practice.
Furthermore, with an AUC of 0.72 the augmented Triage-HFRS is at
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the very least, comparable with existing clinical risk scores used to
predict mortality in patients with HF—but less labour-intensive, with
lower risk of having missing data points.21 It should be noted that the
HFRS examined in the current manuscript is only available for com-
patible Medtronic devices and therefore application of this technol-
ogy is limited to these populations. However, other manufacturers
have developed their own HF management tools. Future studies ex-
amining the performance of these risk tools and solutions which ad-
dress the issue of hosting multivendor platforms are desirable.

Implication for clinical practice
The Triage-HFRS is available for clinicians to use as part of standard
practice since reporting is a standard output within the clinical man-
agement report (Figure 5). The combined Triage HFRS algorithm was
designed to predict impending decompensated HF episodes, and
thus in its current format is designed to monitor HF stability.
Previous studies have reported the utility of the HFRS to identify
patients at increased risk of HFH, and have restricted the scope of re-
search to just those patients with CRT-D or high power devices. The
current study expands on this and examines the relationship between
the HFRS and mortality. Our study opens up avenues for monitoring

patient’s medium- to long-term mortality risk based on their
remote monitoring data. This may focus the practitioner’s attention
to ensuring that the patient is in receipt of guideline-directed thera-
pies designed to improve long-term prognosis rather than avert
an immediate crisis. In addition—given association with all-cause
mortality—this may trigger the practitioner to take a more holistic
approach to their assessment. Personalized information may also
help clinicians make decisions regarding frequency of monitoring, for
example there may be justification in reducing surveillance for low-
risk individuals. These areas of clinical application require further
research.

Finally, our study also highlights that routine remote monitoring of
patients with CIEDs could act as a failsafe: minimizing the risk of
patients with significant cardiac disease being lost to follow-up. For
example, in the current study, it was found that almost half of all
patients with a high HFRS and LVEF <35% were not known to the
HF team for regular follow-up.

Limitations
Patients who had opted out of the national data collection scheme
(required to access NHS Digital mortality data) were not included in

Figure 2 Kaplan–Meier survival curves with landmarks at 30, 90, 180, and 365 days determining ‘baseline’ group assignment to ‘Never recorded
high’ or ‘High’.
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Figure 3 Overall predicted risk of death after adjusting for the proportion of time recorded in each status from the logistic regression model de-
scribed in Table 4.

Figure 4 Predicted risk of mortality after adjusting for time in each risk status. The predicted risk of mortality after adjusting for time spent in each
state suggests that a patient who spent 26 weeks in ‘low’, 52 weeks in ‘medium’ (dark grey line), and approximately 2 weeks in ‘high’ had the same pre-
dicted risk of death as a patient that spent 52 weeks in ‘low’, 12 weeks in ‘medium’ (light blue line), and approximately 34 weeks in ‘high’, with a risk of
37%. Similarly, a patient that spent 12 weeks in ‘low’, 12 weeks in ‘medium’ (mid-green line), and 15 weeks in ‘high’ (x-axis) had the same risk of death
as a patient that spent 12 weeks in ‘low’, 26 weeks in ‘medium’ (red line), and 21 weeks in ‘high’ (x-axis), with a risk of 40% (y-axis).
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the current analysis. However, on the basis that nationally very few
patients opt out of this scheme we envisage this to have had minimal
impact on the current analysis.

The current manuscript examines the utility of the device-derived
Triage-HFRS as a stand-alone tool to risk-stratify at a population level
and identify individuals at high risk of death. Although the current
study did not consider any downstream human interaction out with
usual standard of care, various service improvement projects were
taking place during the study period. Individuals in the current analysis
had been included in the previous Triage-HF Plus evaluation.4 When
all cases are considered, this represents at most 90/11 092 (0.8%) epi-
sodes examined in the current study, which is unlikely to have impact
on the outcomes observed in this study.

Triage HFRS is available across CRT and non-CRT devices. In view
of this, the parameters which feed into the HFRS may differ, not only
according to device type but also between patients; for example, as-
sessment of ventricular tachycardia therapies for high power devices,
those with and without AF (HRV vs. No HRV data), or those with or

without an atrial lead (differential reporting on AF parameters).
However, since this is the first publication to examine Triage HFRS
across the full spectrum of devices (CRT and non-CRT) there is as
yet no published data on the differential performance of the HFRS
between device types and populations—but this is area on ongoing
future work.

Periods without transmitted data are encountered in clinical prac-
tice, as was observed in 36 patients within the current evaluation
(episodes: 45; median length: 65 days). They are often attributable to
just a few key reasons. First, if a patient fails to record a transmission
within a 425 days window, data will be lost. Second, post-implant
there is a run-in period of 65 days where CareLink withholds the HF
risk status (34 days to allow for pocket maturation for OptiVol im-
pedance and a further 30 days to collect impedance data for the HF
risk algorithm). Third, if the device is permanently unpaired from the
CareLink monitor (e.g. patients who die in hospital or are discharged
to accommodation without their home monitor), no data are trans-
mitted hence missing transmission data are common in the lead up to

Figure 5 Clinical management report derived from the CIED. Individual physiological data (comprised of OptiVolTM 2.0 fluid-index, thoracic im-
pedance, activity, daily AF burden, etc.) are updated daily and combined to compute the Triage-HFRS. Individual parameters significantly contributing
to the current Triage-HFRS are indicated by the checked boxes (top). (A) Corresponding with a fall in thoracic impedance and a rise in the
OptiVolTM 2.0 fluid-index, this 90-day zoom depicts the HFRS transitioning from Low-, to Medium-, and then ultimately High-risk status. Each vertical
line in the HFRS (90-day zoom) depicts 1 day. Of note, the Medium-risk status appear to be a transitionary risk state from which the patient moves
up to High, or down to a Low risk status. (B) A 90-day zoom report showing a High HFRS in January/February, with subsequent transition to a
Medium-risk status. (C) 14-month trended data for the same patient presented in B.
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death. Of relevance, in the current analysis, ten patients who died
never recorded a high-risk status. A proportion of these patients died
in hospital (median length of stay 24 days). Therefore, although the
highest/last transmitted risk status prior to death recorded by
CareLink was ‘medium’ it is entirely feasible that a higher risk status
could have been recorded during the period of hospitalization. The
impact of missing data from patients hospitalized close to death is
unclear. Finally, the current analysis utilized the primary leading cause
of death. Whether a cardiovascular condition contributed to the
death was not examined. A repeat analysis examining cardiovascular
deaths as the main outcome is recommended, but the current study
was not powered to examine this. Therefore, we propose further
work, in larger populations, that aims to specifically explore the pre-
dictive ability of the HFRS on risk of cardiovascular death.

Conclusions

Remote monitoring data from CIEDs can identify patients at high risk
of all-cause mortality, which is important, as anticipated life expec-
tancy impacts upon clinical decision-making.

Supplementary material

Supplementary material is available at Europace online.
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