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Abstract: H9N2 avian influenza virus (AIV) has become endemic in many countries, causing great
economic losses when co-infected with other pathogens. So far, several live vaccines based on
Newcastle disease virus (NDV) vectors expressing influenza hemagglutinin (HA) have been de-
veloped. However, the thermostable recombinant NDV is rarely reported. In this study, using a
thermostable NDV rAHR09 strain as the vector, three recombinant NDVs expressing native HA,
chimeric HA ectodomain with transmembrane domain/C-terminal cytoplasmic tail domain from
fusion protein of NDV, and HA ectodomain were generated, designated rAHR09-HA, rAHR09-HAF,
and rAHR09-HAE. The MDT value of three recombinant NDVs was above 120 h, their ICPI value
was about 0.03, and the recombinant NDVs were still infectious when treated for 100 min under
56 ◦C, which demonstrated that the recombinant NDVs kept the lentogenic and thermostable na-
ture of rAHR09. The immunization data showed that rAHR09-HA and rAHR09-HAF induced a
higher HI antibody titer against H9N2 AIV and NDV. After being challenged with H9N2 AIV, the
rAHR09-HA and rAHR09-HAF could significantly reduce the virus shedding in cloacal and tracheal
swab samples. Our results suggest that rAHR09-HA and rAHR09-HAF might be vaccine candidates
against H9N2 AIV.

Keywords: Newcastle disease virus; thermostability; H9N2 avian influenza virus; HA protein;
transmembrane domain; recombinant virus

1. Introduction

H9N2 avian influenza virus (AIV) has low pathogenicity to chickens, only causing
mild clinical symptoms. However, when co-infected with other pathogens, it can cause a
synergistic pathogenic effect and lead to severe clinical symptoms and higher mortality [1,2].
To date, despite biosecurity measures, vaccination is still the main method used in the
control of H9N2 AIV [3–5]. There are several kinds of virus vectors that have been used for
the development of an AIV vaccine, such as fowlpox virus and Marek’s disease virus [6–8].
The virus vector-based vaccine can facilitate the immune procedure to reach the goal of
“one immunization, multiple protection”. Indeed, there have been several reports that
have showed that the NDV can be used to express the HA protein of AIV [9–12], and the
replacement of the transmembrane (TM)/C-terminal cytoplasmic tail domain (CTD) of
AIV HA protein with that of NDV F protein could improve the incorporation of the AIV
HA protein into NDV virus particles [13].
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NDV belongs to the genus Avulavirus, family Paramyxoviridae, with a nonsegmented,
negative-sense, single-stranded RNA genome [14]. NDV is the causative agent of Newcastle
disease (ND), which is a highly contagious and fatal viral disease. The thermostable NDV
strain can facilitate its storage and transport, especially for the attenuated vaccine strain.
Previously, one thermostable NDV was isolated in our lab, designated HR09, which could
remain infectious for more than 1 hour under 56 ◦C treatment [15]. Through exchanging
the proteins of thermostable HR09 and the La Sota strain, it was found that the residues
315 and 369 in the HN protein were responsible for the thermostability of HR09 [16]. The
thermostable HR09 strain, which belongs to genotype VIII, is a mesogenic NDV strain.
In order to use it as the vaccine vector, the prAHR09 plasmid that contained the HR09
full-length genome and the replaced cleavage site of the F gene from 112RRQKRF117 to
112GRQGRL117 were constructed in our lab. Finally, the attenuated NDV rAHR09 strain
was obtained by co-transfecting the prAHR09 plasmid with the three helper plasmids
pCI-NP, pCI-P, and pCI-L [15].

In this study, three thermostable recombinant NDVs that used the attenuated NDV
rAHR09 strain as the expression vector to express different forms of the HA gene from
H9N2 AIV were generated. Then, their thermostable characteristics, growth kinetics,
virulence, and immunogenic of recombinant NDVs were evaluated. The results showed
that all three recombinant NDVs showed a similar growth kinetics in CEF cells, had good
thermostability, and induced a high level of NDV- and AIV-specific hemagglutination
inhibition (HI) antibody titers. Among the three recombinant NDVs, the rAHR09-HA and
rAHR09-HAF strains induced a higher antibody titer against H9N2 AIV and significantly
reduced the level of H9N2 AIV virus shedding in both cloacal and tracheal swab samples.

2. Materials and Methods
2.1. Cells and Viruses

BSR-T7/5 cells, a selective cell line from BHK cells, which can express the T7 RNA
polymerase, were generously provided by Dr. Zhigao Bu from the Harbin Veterinary
Research Institute (HVRI), Chinese Academy of Agricultural Sciences (CAAS). Specific
pathogen-free (SPF) embryonated chicken eggs were purchased from Boehringer Ingel-
heim Vital Biotechnology Co., Ltd. (Beijing, China). CEF was generated from 10-day-old
embryonated chicken eggs. Cells were cultured with Dulbecco’s modified Eagle medium
(Hyclone, Logan, UT, USA), supplemented with 10% fetal bovine serum (Hyclone) and 1%
penicillin-streptomycin (ThermoFisher scientific, MA, USA) at 37 ◦C in a 5% CO2 incubator.
The H9N2 AIV A/Chicken/Jiangsu/YZ1406/2014 strain (MZ424691) and the thermostable
NDV HR09 strain (MF285077.1) were used in this study.

2.2. Antibodies and Reagents

The chicken anti-H9N2 AIV HA protein polyclonal antibody was generated in our
lab. Rabbit anti-actin, horseradish peroxidase (HRP)-conjugated goat anti-chicken IgY, and
HRP-conjugated goat anti-rabbit IgG were supplied by Merck (Darmstadt, Germany).

2.3. Plasmid Construction

The plasmid including Pme I restriction enzyme cutting site, prAHR09-Pme I, was
constructed using overlapping PCR. The GFP or HA genes fused with gene-end (GE) and
gene-start (GS) sequences of NDV, and Kozak sequences were amplified using overlapping
PCR and ligated with the Pme I digested prAHR09-Pme I using the Seamless Cloning Kit
(Vazyme, Nanjing, China). Finally, the plasmids contained the full-length NDV genome,
and exogenous genes were constructed, designated prAHR09-HA, prAHR09-HAF, and
prAHR09-HAE. All primer sequences used in the study are available upon request.

2.4. Rescue of Recombinant Virus

The recombinant NDVs were rescued as described previously [17]. Taking rAHR09-
GFP as example, the main procedures are as shown below: firstly, the full-length NDV
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plasmid which contained the GFP expression cassette, designated prAHR09-GFP, was
co-transfected with pCI-NP, pCI-P, and pCI-L using a Lipofectamine 3000 reagent (Thermo
Fisher Scientific) in accordance with the manufacturer’s instructions, and 10% allantoic
fluid from the SPF embryonated chicken eggs was separately added directly to the culture
medium at 12 h and 36 h post-transfection. Whole-cell lysates were collected at 72 h post-
transfection. After three freeze/thaw cycles, cell lysates were inoculated into 10-day-old
SPF embryonated chicken eggs for 96 h, allantoic fluids were collected, and the titers of
NDV were identified by HA assay.

2.5. RT-PCR and QRT-PCR

CEF cells were infected with different passages of recombinant NDVs for 72 h, and
total RNAs were extracted using TRIzol (Merck, Darmstadt, Germany) and then reverse-
transcribed to cDNA using the PrimeScript™ 1st Strand cDNA Synthesis Kit (Takara,
Beijing, China). The full-length HA gene was amplified using the sense primer 5′-ATG
GAG ACA GTA TCA CTA ATA ACT ATA C-3′ and the antisense primer 5′- GGG GGT TAT
ATA CAA ATG TTG CAT CTG C-3′. The transmembrane replacement and deletion of HA
genes were amplified using the same sense primer as the full-length HA gene, and with the
antisense primer 5′-GGT CAT GTT CTT GTG GTG GCT C-3′ and 5′- GGG ATT TTG TAA
GTT CCT TCA GAT TC-3′. The levels of virus shedding of H9N2 AIV were quantified via
quantitative real-time RT-PCR using a Life Technology instrument. Briefly, cloacal swab
and tracheal swab samples were collected at 3, 6, and 9 days post-challenge (dpc), then
the RNA was extracted and reverse-transcribed to cDNA. The mRNA levels of AIV were
determined using real-time RT-PCR assay as previously described [18].

2.6. Western Blot Analysis

The expression of the HA protein was detected using Western blot analysis. Briefly,
CEF cells infected with different passages of recombinant NDVs were prepared in a 2×SDS
lysis buffer and subjected to SDS–PAGE, then transferred to a polyvinylidene difluoride
(PVDF) membrane (Pall Corporation, NY, USA) under 200 mA for 1.5 h. The membranes
were blocked with 3% bovine serum albumin (BSA) in phosphate-buffered saline with 0.5%
Tween-20 (PBST) for 4 h at 4 ◦C and then incubated with the primary antibody overnight
at 4 ◦C; after washing with PBST 3 times, the membranes were incubated with a secondary
antibody for 6 h at 4 ◦C. The specific bands were captured using an enhanced ECL reagent
(Thermo Fisher Scientific, Waltham, USA).

2.7. Viral Growth Curve

The growth kinetics of different recombinant NDVs were measured using the TCID50
method. Briefly, monolayer CEF cells infected with different NDVs (0.1 MOI) were har-
vested at 24, 48, 72, and 96 h post-infection (hpi). The TCID50 of each sample was deter-
mined in CEF cells, and the results were calculated using the Reed and Muench method as
described previously [19].

2.8. Thermostability Test

Each virus with 108 HA titer at 1.0 mL per vial was submerged into a water bath and
incubated at 56 ◦C for 30, 40, 50, 60, 80, 100, and 120 min. Then, the virus was transferred
to an ice-cold water bath to stop heat treatment. The virus titer of each vial was measured
using the HA method.

2.9. Virulence Determination

The virulence of each virus was assessed by applying the mean death time (MDT)
test in 10-day-old SPF embryonated chicken eggs as described previously [20]. Briefly, the
collected allantoic fluid from each recombinant NDV strain infected embryonated chicken
eggs was diluted from 10−5 to 10−12 in 10-fold series, then 10-day-old SPF embryonated
chicken eggs, 5 per group, were incubated with 100 µL of each dilution. Then, the chal-
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lenged embryonated chicken eggs were incubated at 37 ◦C and candled every 12 h for
7 days, the death of each embryonated chicken eggs was recorded, and the MDT values
were calculated. In addition, the intracerebral pathogenicity index (ICPI) of each virus was
measured as described previously [21,22].

2.10. Chicken Immunization and Challenge

Eighty 7-day-old SPF chickens were randomly divided into four groups, and the SPF
chickens per group were inoculated with 106 EID50 of each recombinant NDV strain in
100 µL DMEM via the oculonasal route. In the control group, chickens were inoculated with
100 µL DMEM. The serum of chickens was harvested 7, 14, and 21 days post-immunization
(dpi). At 21 dpi, the chickens in each group were challenged with the 108EID50 H9N2
AIV YZ1406 strain. Clinical signs of the immunized and challenged chickens were mon-
itored every day. Cloacal and tracheal swab samples were collected 3, 6, and 9 days
post-challenge (dpc).

2.11. Virus Titer and Serum Antibody Titer Determination

The titer of recombinant NDVs was measured using a hemagglutination (HA) experi-
ment, and the serum antibody titers against H9N2 AIV and NDV were determined via the
hemagglutination inhibition (HI) method as described previously [23,24]. In addition, the
virus titer was also measured using EID50 methods in 10-day-old embryonated chicken
eggs as described preciously [19].

2.12. Ethics Statement

The operation and treatment of the animals were approved by the Institutional Animal
Care and Use Committee of Yangzhou University (No. YZUDWLL-201802-012; Date: 12
February 2018).

2.13. Statistical Analysis

All experiments were performed at least three times. Data are shown as means ±
standard deviations. The statistical significance between different groups was analyzed via
Student’s t-test method in GraphPad Prism 7.0 (La Jolla, CA, USA).

3. Results
3.1. NDV rAHR09-GFP Recombinant Virus Constructed as the Basal Virus Vector

In order to construct a basal NDV vector to express the exogenous gene, we inserted
a Pme I restriction enzyme cutting site between P and M genes on the prAHR09 plasmid.
After prAHR09-Pme I was cut with Pme I, a seamless cloning method was used to insert
the GFP expression cassette, which contained the GE, GS, and Kozak sequence ahead
of the GFP gene. The schematics of the construction of prAHR09-GFP are shown in
Figure 1A, and the verification of Pme I insertion into prAHR09 is shown in Figure 1B.
Finally, the prAHR09-GFP plasmid was co-transfected with the three helper plasmids, and
the fluorescence of the recombinant NDV rAHR09-GFP strain is shown in Figure 1C.

3.2. Construction and Verification of Recombinant NDVs by Replacing the GFP Gene with the
H9N2 AIV HA Gene

To construct the recombinant NDVs that express the HA of H9N2 AIV, the transmem-
brane domain of the H9N2 AIV HA protein and NDV F protein was analyzed (Figure 2A,B).
Then, three HA protein forms were designed to replace the GFP gene in the prAHR09-GFP
plasmid (Figure 2C). The first one is the full-length HA gene, designated prAHR09-HA.
The second one is the chimeric HA ectodomain (1–524 aa) fused with the C-terminal
transmembrane domain (503–525 aa) and cytoplasmic tail domain (526–552 aa) from the F
protein of NDV, designated prAHR09-HAF. The last one is HA ectodomain, designated
prAHR09-HAE. After the plasmids were constructed, each of them was transfected with
the three helper plasmids in BSR-T7/5 cells for 72 h. Then, the cell lysates were harvested
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and incubated in 10-day-old SPF embryonated chicken eggs for 4 days. The existence of
recombinant NDVs in harvested allantoic fluids was checked using the HA test, and the
results showed that all three recombinant NDVs were HA positive, which indicated that
the three recombinant NDVs were rescued successfully.
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To assess the stability of the recombinant NDVs, the recombinant NDVs were prop-
agated in embryonated chicken eggs for 20 passages. Firstly, passages 1, 5, 10, 15, and
20 were chosen to check the existence of the HA gene using the PCR method. The re-
sults showed that rAHR09-HA (Figure 3A), rAHR09-HAF (Figure 3B), and rAHR09-HAE
(Figure 3C) contained the HA gene in all passages. In addition, passages 5, 10, 15, and
20 were chosen and propagated in CEF cells to check the expression of the HA gene using
the WB method, and the results showed that all the passages of the three recombinant
rAHR09-HA (Figure 3D), rAHR09-HAF (Figure 3E), and rAHR09-HAE (Figure 3F) could
express the HA protein, which indicated that the three recombinant NDVs could stably
express the HA gene.
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H9N2 AIV HA protein and NDV HR09 F protein (http://www.cbs.dtu.dk/services/TMHMM/, accessed on 24 June 2017).
(C) The schematics for the construction of the different forms of HA that replace the GFP gene in prAHR09-GFP plasmid.
The plasmid containing the full-length HA was designated prAHR09-HA. The plasmid with the chimeric HA ectodomain
fused with the transmembrane domain and C-terminal cytoplasmic tail domain from F protein of NDV was designated
prAHR09-HAF. The plasmid with HA ectodomain was designated prAHR09-HAE.
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Figure 3. The recombinant NDVs were stable upon 20 passages in embryonated chicken eggs. The three plasmids prAHR09-
HA, prAHR09-HAF, and prAHR09-HAE were transfected with the helper plasmids as shown in Figure 1C. The recombinant
NDVs were obtained and designated rAHR09-HA, rAHR09-HAF, and rAHR09-HAE. Then, the recombinant NDVs were
propagated in embryonated chicken eggs for 20 passages. (A–C) The RNA of passages 1, 5, 10, 15, and 20 was extracted and
reverse-transcribed into cDNA, then PCR was performed to check for the existence of the HA gene. (D–F) The recombinant
NDVs were propagated in CEF cells, and the whole-cell lysates of passages 5, 10, 15, and 20 were harvested and subjected
to Western blot to check the expression of the HA protein.
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3.3. The Recombinant NDVs Kept a Similar Growth Kinetic and Thermostability with Their
Parental Strain rAHR09

To check whether the insertion of the HA gene influenced the biological characteristics
of its parental strain NDV rAHR09, we measured their growth curves. The results showed
that compared to rAHR09-HA and rAHR09-HAE, the rAHR09-HAF strain had similar
growth kinetics with the parental strain rAHR09 in terms of replication cycles. At 48 and
72 hpi, the rAHR09-HA and rAHR09-HAE strains had a higher virus titer than the other
two strains. What is more, all three recombinant NDVs and their parental strain had a
similar virus titer at 96 hpi (Figure 4A).
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harvested at 24, 48, 72, and 96 hpi, then the virus titer was determined using the TCID50 method in CEF cells. (B) Each NDV
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treated recombinant NDVs was measured.

As the rAHR09 strain was a thermostable NDV strain, we also checked whether the
insertion of the HA gene could affect its thermostability. Each recombinant NDV with the
8log2 HA titer was treated for 30, 40, 50, 60, 80, 100, and 120 min under 56 ◦C. The HA
experiment data showed that the HA titer of heat-treated recombinant NDVs showed no
change when treated for 40 min, and recombinant NDVs could remain infectious as long
as 100 min. As a negative control, the thermolabile NDV La Sota strain was not infectious
when it was just treated for 30 min under 56 ◦C (Figure 4B). These data indicate that the
recombinant NDVs still maintained good thermostability.

In addition, the virulence of the parental strain rAHR09 and the recombinant NDVs
was evaluated by MDT and ICPI tests, and the results showed that the MDT value of
all recombinant NDVs was longer than 120 h. The ICPI values of rAHR09, rAHR09-HA,
rAHR09-HAF, and rAHR09-HAE were 0.032, 0.032, 0.029, and 0.027, respectively. These
data indicate that all three recombinant NDVs belonged to lentogenic strains, and the
insertion of H9N2 AIV HA gene did not increase their virulence compared to that of their
parental rAHR09 strain.

3.4. Immunization with Recombinant NDVs Induced a High HI Antibody Titer against H9N2
AIV and NDV

Serum antibody titer is one of the most important criteria for evaluating the protective
efficiency of the recombinant NDVs. In this study, to check whether recombinant NDVs
could induce antibodies against H9N2 AIV and NDV, 7-day-old SPF chickens were sepa-
rately immunized with 106EID50 rAHR09-HA, rAHR09-HAF, and rAHR09-HAE through
the oculonasal route. The serum was collected at 7, 14, and 21 dpi, and the serum antibody
titer against AIV and NDV was measured using the HI method. The data showed that
all of the three recombinant NDVs could induce the H9N2 AIV-specific antibody, and the
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antibody titer was increased from 7 to 21 dpi (Figure 5A). The same trend was observed
for the antibody titer against NDV (Figure 5B). Among the three recombinant NDVs, the
rAHR09-HA and rAHR09-HAF strains induced a higher HI titer against both NDV and
H9N2 AIV.
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Figure 5. Serum antibody titer induced by recombinant NDVs in SPF chickens. Seven-day-old SPF
chickens were separately immunized with 106EID50 rAHR09-HA, rAHR09-HAF, and rAHR09-HAE.
The serum was collected at 7, 14, and 21 dpi. (A) HI antibody titer against H9N2 AIV. (B) HI antibody
titer against NDV. Values are shown as mean values± standard deviation (mean± SD) in each group
(* p < 0.05, ** p < 0.01, *** p < 0.001).

Additionally, all three groups immunized with the recombinant NDVs did not show
any clinical signs of NDV, which further demonstrated that the recombinant NDVs be-
longed to the lentogenic strain. These data demonstrated that the three recombinant NDVs
could efficiently induce a high level of HI antibody titers against both H9N2 AIV and NDV.

3.5. Reduction of Virus Shedding after the Immunized Chickens Were Challenged with H9N2 AIV

H9N2 AIV belongs to low pathogenic AIV, so it is hard to evaluate the protective
efficiency of the recombinant NDVs against the H9N2 AIV from the clinical signs. Reduc-
tion of virus shedding in vaccinated chickens after the AIV challenge was a commonly
used criterion for evaluating the efficiency of the H9N2 AIV vaccine. To check whether the
recombinant NDVs could protect vaccinated chickens against the challenge of H9N2 AIV,
chickens were challenged with the 108EID50 H9N2 AIV YZ1406 strain at 21 dpi. Cloacal
and tracheal swab samples were collected at 3, 6, and 9 dpc, and then, H9N2 AIV viral
RNA was quantitated via QRT-PCR. The results showed that all chickens remained healthy
without any clinical signs after they were challenged with H9N2 AIV. In the control group,
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the levels of virus shedding in the cloacal swab samples were increased from 3 to 6 dpc, and
then decreased from 6 to 9 dpc. Compared with the control group, all the three recombinant
NDVs could significantly reduce the shedding of H9N2 AIV in cloacal swab samples at 3,
6, and 9 dpc, and the rAHR09-HAF strain immunized group showed the highest reduction
level but no statistical differences with the rAHR09-HA group (Figure 6A). In the control
group, the levels of virus shedding in tracheal swab samples were decreased from 3 to
6 dpc, and at 9 dpc, the AIV viral RNA could not be detected any more. The same results
were achieved in the tracheal swab samples, where the levels of virus shedding were
decreased in recombinant NDV-immunized groups, especially in the rAHR09-HA and
rAHR09-HAF groups (Figure 6B).

Viruses 2021, 13, x FOR PEER REVIEW 9 of 13 
 

 

3.5. Reduction of Virus Shedding after the Immunized Chickens Were Challenged with H9N2 
AIV 

H9N2 AIV belongs to low pathogenic AIV, so it is hard to evaluate the protective 
efficiency of the recombinant NDVs against the H9N2 AIV from the clinical signs. Reduc-
tion of virus shedding in vaccinated chickens after the AIV challenge was a commonly 
used criterion for evaluating the efficiency of the H9N2 AIV vaccine. To check whether 
the recombinant NDVs could protect vaccinated chickens against the challenge of H9N2 
AIV, chickens were challenged with the 108EID50 H9N2 AIV YZ1406 strain at 21 dpi. Clo-
acal and tracheal swab samples were collected at 3, 6, and 9 dpc, and then, H9N2 AIV viral 
RNA was quantitated via QRT-PCR. The results showed that all chickens remained 
healthy without any clinical signs after they were challenged with H9N2 AIV. In the con-
trol group, the levels of virus shedding in the cloacal swab samples were increased from 
3 to 6 dpc, and then decreased from 6 to 9 dpc. Compared with the control group, all the 
three recombinant NDVs could significantly reduce the shedding of H9N2 AIV in cloacal 
swab samples at 3, 6, and 9 dpc, and the rAHR09-HAF strain immunized group showed 
the highest reduction level but no statistical differences with the rAHR09-HA group (Fig-
ure 6A). In the control group, the levels of virus shedding in tracheal swab samples were 
decreased from 3 to 6 dpc, and at 9 dpc, the AIV viral RNA could not be detected any 
more. The same results were achieved in the tracheal swab samples, where the levels of 
virus shedding were decreased in recombinant NDV-immunized groups, especially in the 
rAHR09-HA and rAHR09-HAF groups (Figure 6B). 

 
Figure 6. QRT-PCR quantitation of H9N2 AIV viral shedding in challenged chickens. The chickens were challenged with 
the 108EID50 H9N2 AIV YZ1406 strain at 21 days post-immunization. Cloacal swab samples (A) and tracheal swab samples 
(B) were collected 3, 6, 9 days post-challenge, and the levels of H9N2 AIV viral RNA were quantitated via QRT-PCR. 
Values are shown as mean values ± standard deviation (mean ± SD) in each group (* p < 0.05, ** p < 0.01, *** p < 0.001). 

4. Discussion 
Despite the fact that the mortality caused by H9N2 AIV was no more than 20%, which 

usually leads to slight respiratory and egg-drop symptoms, H9N2 AIV was found to result 
in a secondary infection or generate a synergistic pathogenicity effect when the chickens 
were co-infected H9N2 AIV with other pathogens [25–27]. For example, it was reported 
that co-infection of H9N2 AIV with Salmonella enteritidis could lead to synergistic patho-
genicity [28]. In addition, co-infection with infectious bronchitis virus with H9N2 AIV in 
commercial broiler chickens could cause serious clinical signs and high mortality [29]. All 
these reports showed that H9N2 AIV is an important disease that needs to be controlled 
in the poultry industry. 

With the help of a reverse genetic system, NDV has been well studied not only as 
regards its pathogenesis and biological characteristics, but also its usage as a virus vector 
to express exogenous genes of other pathogens. For example, using NDV as the vector to 
express the human immunodeficiency virus type 1 (HIV-1), the gp160 envelope glycopro-
tein induced strong mucosal and serum antibody responses in guinea pigs [30]. When 

Figure 6. QRT-PCR quantitation of H9N2 AIV viral shedding in challenged chickens. The chickens were challenged with
the 108EID50 H9N2 AIV YZ1406 strain at 21 days post-immunization. Cloacal swab samples (A) and tracheal swab samples
(B) were collected 3, 6, 9 days post-challenge, and the levels of H9N2 AIV viral RNA were quantitated via QRT-PCR. Values
are shown as mean values ± standard deviation (mean ± SD) in each group (* p < 0.05, ** p < 0.01, *** p < 0.001).

4. Discussion

Despite the fact that the mortality caused by H9N2 AIV was no more than 20%,
which usually leads to slight respiratory and egg-drop symptoms, H9N2 AIV was found
to result in a secondary infection or generate a synergistic pathogenicity effect when the
chickens were co-infected H9N2 AIV with other pathogens [25–27]. For example, it was
reported that co-infection of H9N2 AIV with Salmonella enteritidis could lead to synergistic
pathogenicity [28]. In addition, co-infection with infectious bronchitis virus with H9N2 AIV
in commercial broiler chickens could cause serious clinical signs and high mortality [29].
All these reports showed that H9N2 AIV is an important disease that needs to be controlled
in the poultry industry.

With the help of a reverse genetic system, NDV has been well studied not only
as regards its pathogenesis and biological characteristics, but also its usage as a virus
vector to express exogenous genes of other pathogens. For example, using NDV as the
vector to express the human immunodeficiency virus type 1 (HIV-1), the gp160 envelope
glycoprotein induced strong mucosal and serum antibody responses in guinea pigs [30].
When expressed in the NDV vector, ASFV p72 protein induced a high antibody titer of
p72 specific IgG, and recombinant NDV-p72 virus also elicited T-cell proliferation and the
secretion of IFN-γ [31]. All these studies showed that NDV could activate both humoral
immunity and cellular immunity. In addition, there are several studies which used NDV as
a virus vector to express the HA gene of H9N2 AIV, and recombinant viruses showed good
protection against the challenge of NDV and H9N2 AIV at the same time [32]. In these
studies, the backbone virus vectors were usually thermolabile NDV strains, such as La Sota
strain, NDV Clone 30, or Herts/33 strain [32–34]. However, the thermostable NDV-based
recombinant AIV vaccine candidate has rarely been studied.

Compared to other kinds of virus vectors, such as Marek’s disease virus or adenovirus,
NDV has a small genomic RNA, which just encodes six proteins (NP-P-M-F-HN-L), so there



Viruses 2021, 13, 1606 10 of 13

will be little influence on the expression and immunization of the exogenous protein [35–37].
In theory, foreign genes can be inserted into the sequences between any two genes of NDV.
However, because of the polar gradient transcription of NDV genome RNA, foreign genes
are ideally inserted closely to the 3′ end of the NDV genome in order to be expressed at a
high level [38,39]. With more and more studies focusing on the study of NDV recombinant
virus, the site between the P and M genes has been considered an optimal selection for
the insertion of foreign genes [40]. In this study, a thermostable attenuated NDV rAHR09
strain was used as the backbone to generate the recombinant NDV, and the three forms of
the HA gene were inserted into the sites between the P and M genes (Figure 2B). After the
recombinant NDVs were rescued, we also checked their stability and growth curves. The
results showed that after 20 passages in embryonated chicken eggs, all three recombinant
NDVs could stably express the HA protein (Figure 3D–F). The growth kinetic analysis
showed that insertion of the HA gene had little influence on the growth of NDV, especially
the rAHR09-HAF strain (Figure 4A), which might be due to the replacement of the HA
transmembrane domain/C-terminal cytoplasmic tail domain with that of the NDV HR09
strain F protein.

For clinical usage, attenuated live NDV vaccine can be immunized via drinking water
or the direct spray method, so it is favorable to maintain the infectivity of the NDV vaccine
as long as possible. To achieve this goal, a thermostable NDV strain is necessary. Previously,
a thermostable NDV HR09 strain, which could stay infectious for more than 100 min under
56 ◦C, was attenuated using a reverse genetic system in our lab [15,16,41]. Compared with
the widely used La Sota strain, the attenuated rAHR09 strain could efficiently reduce the
NDV virus shedding and provide full protection against the challenge of NDV [15]. Using
this attenuated rAHR09 strain as the basal virus vector, three recombinant NDVs were
constructed and treated for 30, 40, 50, 60, 80, 100, and 120 min under 56 ◦C. The results
showed that all three recombinant NDVs could remain infectious for more than 100 min. By
contrast, the thermolabile NDV La Sota strain could stay infectious for no more than 30 min
(Figure 4B). These results demonstrated that the three recombinant NDVs still maintained
good thermostability, which will relieve the cold chain transport bottlenecks.

To check whether the insertion of the H9N2 AIV HA gene affected the pathogenicity
of the recombinant NDVs, the MDT and ICPI values of recombinant NDVs were mea-
sured. The data showed that the MDT values of rAHR09, rAHR09-HA, rAHR09-HAF,
and rAHR09-HAE were all longer than 120 h, and their ICPI values were 0.032, 0.032,
0.029, and 0.027, respectively. These data demonstrated that all three recombinant NDVs
belonged to lentogenic NDV, and insertion of the HA gene did not affect the pathogenicity
of recombinant NDVs. By contrast, the MDT and ICPI values of commercial vaccine NDV
La Sota strain were 115 h and 0.1, which indicates that the three recombinant NDVs were
safe enough to be used as a vaccine on chickens [42].

The immune response induced by the vaccine is an important factor to be considered
in vaccine development. In this study, chickens were immunized with each of the three
recombinant NDVs, and the antibody titer was measured using the HI method. The data
showed that all three recombinant NDVs could induce strong immune responses against
both NDV and H9N2 AIV. Among these three recombinant NDVs, the rAHR09-HAF strain
induced the highest HI antibody titer against both NDV and H9N2 AIV (Figure 5A,B). We
also challenged the immunized chickens with H9N2 AIV, and the results showed that all
three recombinant NDVs could reduce the shedding of the AIV in cloacal and tracheal
swab samples, and the rAHR09-HAF strain produced results which were a little better
than those of the other two recombinant NDVs (Figure 6A,B). These data demonstrated
that the three recombinant NDVs could provide good protection against the challenge of
H9N2 AIV. At present, the inactivated H9N2 vaccine is widely used and provides good
protection against H9N2 AIV. However, the inactivated H9N2 vaccine can only induce the
humoral immunity response, while the NDV-based recombinant virus can induce not only
a humoral immunity response but also a cellular immunity response and even mucosal
immunity response, so the vaccine developed in our study is a good supplement for the
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H9N2 inactivated vaccine [43,44]. For further clinical usage of this NDV-based recombinant
H9N2 vaccine, we think a suitable method would be to use it as the prime immunization
and then combine it with an inactivated H9N2 vaccine as the booster immunization, which
will induce the humoral immunity response, cellular immunity response, and mucosal
immunity response at the same time. We will perform studies to explore the further clinical
use of this NDV-based H9N2 vaccine.

In summary, this study used a thermostable NDV rAHR09 strain as a vaccine vector
to express three forms of the HA gene of H9N2 AIV. All three recombinant NDVs showed
good stability in expressing the HA gene and maintained good thermostability. Among
these three recombinant NDVs, the rAHR09-HA and rAHR09-HAF strains induced a
higher HI antibody titer against NDV and H9N2 AIV, and they reduced the shedding of
H9N2 AIV more efficiently compared to rAHR09-HAE. To summarize, the recombinant
rAHR09-HA and rAHR09-HAF strains might be promising vaccine candidates for chickens
against H9N2 AIV.

5. Conclusions

Three recombinant NDVs that contained different forms of the HA protein of H9N2
AIV were constructed using a reverse genetic system based on the thermostable attenuated
NDV rAHR09 strain. All three recombinant NDVs were stable in expressing the HA gene
upon 20 passages in embryonated chicken eggs, and virulence assay showed that all three
recombinant NDVs belonged to lentogenic NDV. The immunization assay showed that
both the rAHR09-HA and rAHR09-HAF strains induced a higher HI titer against NDV and
H9N2 AIV, and they could efficiently reduce the shedding of AIV in cloacal and tracheal
swab samples among the three recombinant NDVs. Together, this study demonstrated that
the recombinant rAHR09-HA and rAHR09-HAF strains might be potential thermostable
vaccine candidates to protect chickens against H9N2 AIV.
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