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Whether flowers, mosquitoes, or humans, all organisms tend to interact and
reproduce with others of their ilk who are close by. In principle, that means that
their genetics can reveal not only their ancestry but also their geography. Taking
advantage of this simple insight, evolutionary geneticists recently showed that it
was possible to create models, based on scanning thousands of genomes from
mosquitoes to elephants to humans (Fig. 1), that match individual genomes to
spatial locations and therefore predict where a given individual animal was born
(1, 2). The approach has practical import: It could be applied in the context of
ecology and conservation by, for example, tracing the origins of elephant tusks
and rare woods.

It’s one of a variety of new machine learning methods that are finding applica-
tions in the field, shedding light on longstanding questions about the forces that
shape genomes, such as selection and genetic drift. These approaches have
already demonstrated the potential to deal with the messiness of real data in
ways that formal population genetic theory cannot. In the early 2000s, research-
ers who were “thinking a little bit ahead,” says evolutionary geneticist Andrew
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Kern at the University of Oregon in Eugene, “saw that there
was going to be this collision happening, where we have
this giant corpus of mathematical theory, and all of a sud-
den reality was going to intrude on our models in the form
of all the genomic data that we’re about to collect.” What
the field needed, he adds, were “more ways to bridge that
gap between theory and biology.” Evolutionary biologists
are starting to do exactly that.

Testing Theory with Simulation

When it comes to evolution, researchers can typically
observe the result of evolutionary processes but not the
inputs or processes themselves. Those results include the
fossil record, the diversity of living species, and the amount
of genetic variation in the genomes of a population. But
ideally, researchers could infer details about the processes
that generated these patterns. Machine learning algo-
rithms can serve as the map between input and output.

Machine learning algorithms are typically trained on
datasets where inputs and outputs are both known. For
instance, training an algorithm to recognize images that
include cats might require presenting pictures, some of
which have cats. With enough feedback on correct and
incorrect guesses, the algorithm would eventually become
adept at recognizing cats. In population genetics, research-
ers would like to have the equivalent of cat pictures to
train machine learning algorithms to recognize the

signatures of selection, drift, and migration in the genomes
of real populations.

But there’s a problem. Typically, the researchers don’t
have labeled data (the equivalent of “cat pictures”) to train
the algorithms. “In evolution, we never really have ground
truth data,” explains Jeff Spence, a geneticist and postdoc-
toral fellow at Stanford University, CA. A given evolutionary
process, he notes, happened only once, in the past.

So researchers started to create so-called “synthetic
genomes.” Using powerful computers, they can create a
fictional population of genomes, simulate the processes of
selection or drift, and observe the resulting pattern of
genetic diversity after many generations. By doing so, they
have in hand both the process and the resulting pattern of
genetic diversity—in other words, they have the tools nec-
essary to train the machine learning algorithm.

As with the cat pictures, the algorithm needs a lot of
training data to hone its accuracy. But once an algorithm
has been trained on synthetic data, it can, in principle, be
used to make an inference about past selection, drift, or
migration from the observed genetic diversity in a real
population.

Attempts at explicating how modern populations took
shape over time bring the power of the machine learning
approach into full view. South American populations,
for example, have three ancestral populations: the Native
American, the European colonists, and the enslaved
people brought from Sub-Saharan Africa. Most previous

Fig. 1. In one example of how deep learning can be applied to evolutionary genetics, researchers used the known locations of individuals in the
Human Genome Diversity Project to train a deep learning algorithm that matches genomes to geographic location. Then they used the algorithm
to predict the geographic origin of test genomes. The colored circles represent the magnitude of error in the predictions. Reprinted from ref. 2,
which is licensed under CC BY 4.0.
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models of admixture assumed random mixing. In fact,
populations tend to be somewhat stratified, meaning that
there is some assortative mating—individuals from the
same group are more likely to mate with each other. There
can also be sex bias (e.g., males from one group are more
likely to mate with females of another group, or vice versa).
Models that assume random admixture will predict that mix-
ing happens faster than it actually does and therefore may
do a poor job estimating the timing of admixture events.

To understand admixture in South American populations,
evolutionary geneticist Alex Mas-Sandoval, a postdoc at
Imperial College London, UK, simulated various admixture
scenarios by varying the degree of assortative mating and
sex-bias, thus producing populations of simulated genomes.
He then trained a machine learning algorithm to match the
populations of the simulated genomes to the parameters
that generated them. The final step entailed using the
trained algorithm to infer the amount of stratification and
sex-bias in real data from admixed South American popula-
tions. Among his findings: Males of European ancestry were
more likely to mate with females with lower proportions of
European ancestry, and males with lower proportions of
Native American ancestry were more likely to mate with
females with higher proportion of Native American ancestry.

The method itself, Mas-Sandoval says, is perhaps more
important than these results. “Until now, most of the stud-
ies analyzing admixture in the Americas were assuming
random mating, which is not obviously the case, because
all the populations of the cities of the Americas are strat-
ified,” he says.

Careful Assumptions

Although very powerful, these simulation-based machine
learning approaches do share important caveats with
other computational methods for evolutionary inference—
not to mention traditional population genetic approaches.
All these methods hinge on investigators’ assumptions
about the evolutionary process, including factors such
as population size, the frequency of mutations, and the
strength of selection. The approaches “rely on prior beliefs
about models and their parameterizations,” explains
Kern’s former postdoc Dan Schrider, who is now an
assistant professor at University of North Carolina, Chapel
Hill.

To make a reliable inference with machine learning
methods, the training data have to be very similar to the
real data about which researchers want to make an infer-
ence. “It’s very difficult to create realistic simulated data,”
explained Sara Mathieson, a computer scientist at Haver-
ford College, PA, in a talk at the Society for the Study of
Evolution virtual meeting last June. “And if the data used to
train the model [are] not a good fit for the real data, then
we can’t really be confident of the [inference] results on
the real data.”

To solve this problem, Mathieson has been using some-
thing called generative adversarial networks (GANs)—the
same types of algorithms that are used to make deep fake
images of human faces or voices. The GAN algorithms
work by pitting a data generator (the population simulator)
against a discriminator. In an iterative process, the

generator simulates genomes, and the discriminator tries
to tell the fake from the real. As the generator and discrim-
inator try to outdo each other, the generator starts to pro-
duce simulated genomes that are increasingly similar to
the real population of genomes. Eventually, explains
Mathieson, the algorithm homes in on the specific pro-
cesses and parameter values—such as the degree of mix-
ing, migration, or selection—that produced the real
genomes.

Flora Jay, a geneticist at Paris-Saclay University, France,
and her colleagues have also been using GANs to create
simulated genomes, but with a different aim. Simulated
genomes can capture the useful statistical features of the
genomes of special populations without risking any loss of
privacy—a growing concern with real human data. Indeed,
while some populations are well represented in public
genome databases, other populations are not; this can
lead to biases in analyses. To illustrate this issue, Jay and
her colleagues created simulated genomes from samples
in an Estonian biobank dataset that was not publicly avail-
able (3). The genomes they created with the GAN method
successfully captured the statistical features of the Esto-
nian biobank population—which the team confirmed by
collaborating with researchers from Tartu University, Esto-
nia, who have special permission to access the actual bio-
bank data. She argues that these simulated genomes
could help augment public genome databases without
risking the loss of privacy of individuals in that biobank.

Detecting Subtle Signals

One of the strengths of machine learning approaches is
that they can pick up signals of selection that are too sub-
tle for traditional methods to detect. For example, Schrider
and Kern used machine learning to distinguish between
two different varieties of selection in human genomes: soft
and hard selective sweeps. Hard selective sweeps occur
when a new mutation arises and confers an advantage, so
it spreads rapidly through the population. Soft selective
sweeps occur when a change in the environment suddenly
makes a preexisting mutation advantageous, enabling that
preexisting mutation to spread throughout the population.
Soft selective sweeps often mean adaptation happens
more quickly, because the population doesn’t have to wait
for a mutation to arise.

Schrider and Kern simulated hard and soft selective
sweeps and then trained a machine learning algorithm to
distinguish simulated genomes that resulted. They then
applied the trained algorithm to examine hard and soft
sweeps in real human genomes. Because human popula-
tion size was quite small historically, “there’s not a lot of
genetic diversity, and under those conditions, you expect
hard sweeps to be more common,” Schrider notes. “But
that’s not what we found. We found that while there were
a number of strong clear signals of hard sweeps, there
were also many more signatures of soft selective sweeps,”
he says (4–6).

“The classic population genetic approaches for detecting
selection can be quite underpowered,” explains David Enard,
a population geneticist at the University of Arizona, Tucson,
who studies how the selection pressure from ancient
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epidemics, occurring 20,000 to 50,000 years ago, shaped
human genomes (7, 8). Machine learning approaches allow
researchers to detect events farther back in time, picking up
subtle signals that wouldn’t be captured by conventional
methods, he says. Enard is now using these approaches to
reanalyze data studied via conventional methods, trying to
detect more subtle signals of selection from ancient viruses
on human genomes, signals that he may have missed.

Ultimately, these new approaches should help inform
longstanding debates about the various forces, such as
drift or selection, that have shaped real human genomes.
“There’s still a lot that we need to do as a field to bring all
of these evolutionary forces together,” says Brown Univer-
sity (Providence, RI) population geneticist Sohini Rama-
chandran, “to understand what has truly shaped our
genomes.”
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