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Abstract: The fuzzy C-means clustering (FCM) algorithm is used widely in medical image segmenta-
tion and suitable for segmenting brain tumors. Therefore, an intuitionistic fuzzy C-means algorithm
based on membership information transferring and similarity measurements (IFCM-MS) is proposed
to segment brain tumor magnetic resonance images (MRI) in this paper. The original FCM lacks
spatial information, which leads to a high noise sensitivity. To address this issue, the membership
information transfer model is adopted to the IFCM-MS. Specifically, neighborhood information and
the similarity of adjacent iterations are incorporated into the clustering process. Besides, FCM uses
simple distance measurements to calculate the membership degree, which causes an unsatisfactory
result. So, a similarity measurement method is designed in the IFCM-MS to improve the membership
calculation, in which gray information and distance information are fused adaptively. In addition, the
complex structure of the brain results in MRIs with uncertainty boundary tissues. To overcome this
problem, an intuitive fuzzy attribute is embedded into the IFCM-MS. Experiments performed on real
brain tumor images demonstrate that our IFCM-MS has low noise sensitivity and high segmentation
accuracy.

Keywords: image segmentation; information transferring; fuzzy C-means algorithm; similarity

1. Introduction

Recent years have witnessed the increasement of prevalence in glioma. The high
incidence and mortality of glioma have threatened human health seriously. In clinical
diagnosis, magnetic resonance technology provides an excellent assistance to medical
treatment, which has the ability to detect brain tumors [1]. Therefore, segmenting tumor
information in brain magnetic resonance images (MRI) by computer technology has become
a current hot research field.

Nowadays, a variety of image segmentation techniques have been proposed, such as
algorithms based on manual segmentation [2,3], boundary [4], atlas [5–7], kernel function [8–11],
region growing technology [12–16] and clustering [17–32]. For the effectiveness and accu-
racy, the clustering-based segmentation has become the most popular method to classify
different property elements. The algorithm based on clustering consists of two main types
of architectures, including the soft and hard clustering-based segmentation methods. The
information in an MRI has the characteristics of a complex structure and uneven gray dis-
tribution, which is difficult to segment. Conventional hard clustering-based segmentation
often loses small-sized information, whereas the soft clustering-based algorithm achieves
better properties in segmenting MRI information. Thus, in this paper, we will focus on
MRI segmentation based on soft clustering.

The fuzziness-based algorithms (FCM [23] and Intuitionistic Fuzzy C-means clustering
(IFCM) [24]) assume that a pixel belongs to multiple clusters with different membership
degrees [22]. All of them have the ability to achieve the soft segmentation of data and suit
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the complexity of medical images. For noise-free images, the FCM and IFCM can obtain
well-pleasing segmentation results. Nonetheless, these two algorithms fail to combine
neighborhood information, so that noise has a huge impact on their segmentation results.
Consequently, how to ensure a segmenting brain tumor MRI accurately while enhancing
the algorithm’s noise immunity has become a tough challenge.

Recently, existing improved FCM can be roughly classified into three classes as follows:
FCM improved by spatial constraint, kernel-based FCM and FCM based on neighborhood
information.

In the spatial constraint-based FCM, the spatial constraint is merged into the objective
function for robust clustering. For example, a conditional spatial fuzzy C-means clustering
algorithm for the segmentation of an MRI (csFCM) [25] was presented, which took spatial
constraint into the membership function. As a result, the robustness of the FCM to noise
was enhanced. Based on the csFCM, a gamma correction conditional FCM algorithm
with spatial information (GcsFCM) [26] was proposed, and the robustness was improved
further. However, both the csFCM and GcsFCM are still sensitive to salt-and-pepper noise.
Besides, an intuitionistic center-free FCM clustering for MR brain image segmentation
(ICFFCM) [27] was applied for removing the noise. Although the robustness to noise is
raised, the ICFFCM is more time-consuming because of its much-complicated calculation
process of space constraints.

To achieve image denoising, the kernel-based FCM [8–10] mainly focuses on replacing
the spatial distance information of the image by the kernel function. In the kernel-based
FCM, a clustering of incomplete data using the kernel-based fuzzy C-means algorithm
(KFCM) [8] was proposed to improve the robustness. Ulteriorly, the addition of the spatial
penalty item makes the KFCM more suitable for the intensity unevenness of the MRI [9].
To reveal the non-Euclidean structure of the image, a new kernel-induced distance measure
was combined with the FCM as the spatial constraints [10]. The authors considered a
new kernel-based measurement method to obtain a new objective function to enhance the
robustness further. However, the fuzzy clustering algorithm used for the brain MRI still
lacks robustness to noise and outliers.

Many experiments [28–32] show that combining the neighborhood information is
beneficial to improving the robustness. To obtain a robust clustering, Bai et al. merged
the spatial information into the objective function [28], but it suffered defeat when clas-
sifying normal brain tissue. Using the neighborhood information, Lei et al. presented
two FCM-based algorithms: one was a fast fuzzy C-means clustering algorithm based on
superpixels [29], and the other was the improved FCM algorithm based on membership
function filtering (FRFCM) [30]. In [29], the images were presegmented into several large
patches, leading to a loss of the original details. Although the superpixel can adapt to
the irregular image boundaries of a brain tumor MRI with effect [29], the images are pre-
segmented in several large patches, leading to a loss of the original details. As a result, the
superpixel-based FCM algorithm cannot segment brain tumor images as expected. Using
the neighborhood information, the FRFCM enhanced the robustness to salt-and-pepper
noise. However, it is less effective at detecting small-sized tumors. At the same time,
an improved intuitionistic fuzzy C-means clustering algorithm that combines the local
information for brain image segmentation (IIFCM) [31] was invented, but the segmentation
accuracy was frustrating. Accordingly, how to improve the accuracy and robustness of the
pixel-based FCM algorithm for a brain MRI has become a key issue for current research.

In this paper, to overcome the defects of the algorithms as mentioned, we propose
an intuitionistic fuzzy C-means algorithm based on membership filtering and similarity
measurements, named the IFCM-MS. Without any preprocessing or postprocessing, the
IFCM-MS achieves a low sensitivity to salt-and-pepper noise, as well as provides a high
segmentation accuracy. Our main contributions can be summarized as follows:

• A membership information transfer model is proposed to fuse the information be-
tween the membership matrix generated by two adjacent iterations. In addition, the
local neighborhood information is also considered during each iteration.
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• We apply a similarity measurement method between pixels and cluster centers instead
of simple distance measurements into the proposed IFCM-MS to modify the member-
ship matrix. The local gray information and Euclidean distance information are both
taken into consideration to integrate the location information and gray information.
This property achieves a good enhancement of the segmentation ability.

• The intuitionistic fuzziness is embedded into the calculation process of similarity
between the pixel and cluster centers, which achieves more accurate segmentation in
the organization boundary.

The rest of this paper is organized as follows: In Section 2, we provide the materials
for our algorithm. The method is described in Section 3. The experimental results are
shown in Section 4, which also contains the discussion. Finally, we present our conclusion
and future plans in Section 5.

2. Materials
2.1. Intuitionistic Fuzzy Set

In Zadeh’s fuzzy set theory [33], the value of membership is defined as the degree of
elements belonging to each cluster center. Every element in the fuzzy set has a grade of
membership in [0,1]. Mathematically, the fuzzy set F is expressed as

F = {(x, µF(x))|x ∈ E} (1)

where µF(x) represents the membership of each element x belonging to the full set E. For
each x, the value of µF(x) is in [0,1].

Atanassov extended the fuzzy set and proposed the Intuitionistic Fuzzy Set (IFS) [34].
By adding uncertainty to the elements, IFS enhances the fuzziness of the description of
objective things. The nonmembership of the original fuzzy set is a complement of the
membership, but the nonmembership of the IFS is determined by the membership and
hesitation of the element to the cluster. The mathematical expression of the IFS is

IFS = {(µIFS(x), νIFS(x), πIFS(x))|x ∈ E} (2)

where µIFS(x) and νIFS(x) represent the fuzzy membership and nonmembership degree of
the element belonging to the clusters, respectively. πIFS(x) denotes the uncertainty of the
element to the clusters. To each x ∈ E, the range of µIFS(x), νIFS(x) and πIFS(x) is [0,1];
moreover, µIFS(x) + νIFS + πIFS(x) = 1.

The introduction of an intuitionistic fuzzy set adds an abundant uncertainty in the
clustering process. Using this information, the algorithm will adequately accommodate the
brain MRI segmentation.

2.2. Fuzzy C-Means Clustering Algorithm

The traditional FCM divides the pixels in the image into c numbers of clusters. Cluster
centers and the membership of each element will be updated in each iteration, so as to
minimize the objective function. By minimizing the objective function, the feature vectors
are classified into different clusters.

The objective function of the FCM is defined as

J f (U, V; X) = ∑a
i=1 ∑n

k=1 (uik)
mdis2(xk, ci) (3)

Equation (3) minimizes the objective function J f by updating the membership matrix
U and the cluster center V, where xk is the k-th pixel in the image and ci is the i-th cluster
center. uik is the membership value, which can be calculated by evaluating the degree of
membership between xk and ci: ∑a

i=1 uik= 1. The update method of uik and ci is shown in
Equations (4) and (5). dis(xk, ci) is the Euclidean distance of xk with respect to the cluster
center ci.
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ci =
∑n

k=1 (xkum
ik)

∑n
k=1 um

ik
(4)

uik =
‖xk − ci‖−2/(m−1)

∑a
j=1 (‖xk − cj‖)−2/(m−1)

(5)

Although the FCM is widely used in medical image segmentation, Equation (3) shows
that there is no neighborhood information in clustering processing. Besides, the lack of
local spatial information results in an unsatisfactory robustness to noise, which leads to a
poor outcome.

2.3. Cluster–Center-Free Reformulation of the FCM

To reduce the noise sensitivity of the FCM, the cluster–center-free reformulation of
the FCM takes advantage of hierarchical clustering [35] and aims to measure the location
similarity between the pixels and clusters. The objective function of the reformulated FCM
is given in Equation (6):

JFCM_CenterFree(U, V; X) = ∑c
i=1 ∑n

k=1 (uik)
m

(
1

(ρik)
2

)
(6)

ρik =
∑n

j=1 (uij)
mwkj

∑n
j=1 (uij)

m (7)

wkj = exp

− (
dis(xk, xj)

)2

α2 ∗max2
∀k,∀j

(
dis(xk, xj)

)
 (8)

where c is the number of clusters, n is the number of pixels in the image and dis(xk, xj)
represents the space distance between two pixels. In particular, ρik is the similarity between
xk and the i-th cluster. wkj is the comparability between every two pixels, and α is the
parameter, α > 0.

Usually, the Lagrange method is adopted to minimize the objective function in the
FCM system. So, Equation (6) can be minimized under the conditions of ∑c

i=1 uik = 1, and
the value in Equation (6) can be obtained as:

uik =
(ρik)

2/(m−1)

∑c
i=1(ρik)

2/(m−1)
(9)

According to Equation (9), the cluster centers are not updated in the cluster–center-free
FCM, but the positional similarity between the pixel and clusters is adopted instead of
the Euclidean distance, which improves the robustness of the algorithm. However, the
cluster–center-free FCM only focuses on the spatial location information of the pixels; the
gray information between the pixels and clusters is ignored, leading to the failure to use
the local spatial information. As a consequence, cluster–center-free FCM cannot obtain
excellent results when the medical images are segmented with serious noise pollution.

2.4. Fast-Guided Filter

The fast-guided filter is an upgrade of the guided filter, which was wildly applied in
real products long ago. The guided filter can be driven as a linear model as follows:

qi = ak Ii + bk, ∀i ∈ windowsk (10)

ak =

1
|win|∑i∈wink

Ii pi − µk pk

σ2
k + ε

(11)



Sensors 2021, 21, 696 5 of 18

bk = pk − akµk (12)

where the guidance image, filtering input image and filtering output image are expressed
as I, p and q, respectively; i is the current pixel and k is the index of a local window win
with a radius r. For suppressing the error between p and q, ak and bk are two parameters
that can be calculated as Equations (11) and (12). µk and σk are the mean and variance of
image I in window k; additionally, ε is a parameter controlling the smoothing degree. The
output image is computed by Equation (13):

qi = ai Ii + bi (13)

where ai and bi are the average of a and b, respectively, on the wini centered at i. The major
computation is for ai and bi. The fast-guided filter enhances the guided filter; firstly, the
input p and guidance I are subsampled (nearest-neighbor or bilinear) by the ratio s. Then,
ai and bi can be calculated, respectively, by Equations (11) and (12). Finally, the output
image qi will be produced in accordance with Equation (13), which is up-sampled for s
times to contain the same size as the original image.

3. Method
3.1. Overview

In order to overcome the shortcoming that conventional FCM is sensitive to noise, we
proposed the IFCM-MS. The specific process of IFCM-MS is shown in Figure 1.
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In Figure 1, the membership matrixes generated by each iteration are represented as
the grids, and the number of iterations are marked below the grids. Figure 1a stands for
the similarity measurement method, while Figure 1b,c are the membership information
transfer model. In Figure 1a,b, different clusters are expressed as different color systems,
and the intensity of the color represents the degree of membership to the clustering center.
Based on Figure 1, the overall process of the IFCM-MS can be generalized as follows:

• Membership information transfer model
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There is no correlation between two iterations in the original FCM. As a result, the
FCM is sensitive to noise. To address this problem, we introduce the membership in-
formation transfer model into the FCM. In the clustering process of the IFCM-MS, the
membership information transfer model is inserted into the neighboring membership
matrixes for transmitting information after each iteration, eliminating the influence of noise
and protecting the detailed features of medical images.

• Similarity measurement method

We apply the similarity measurement method to calculate the membership matrix, so
that the segmentation ability and robustness of the IFCM-MS are both improved. Specifi-
cally, the simple Euclidean distance between the pixel and cluster centers is replaced by the
grayscale similarity and the degree of distance proximity.

• Clustering

To obtain a more accurate segmentation result, the IFCM-MS embeds the intuitive
fuzzy attribute into the clustering process. Moreover, the IFCM-MS achieves a robust
segmentation of noisy images without any preprocessing or postprocessing.

3.2. Membership Information Transfer Model

Generally, the addition of local information is effective in eliminating the influence
of noise. However, the underutilization of the neighborhood information does not obtain
satisfactory results. Therefore, in this paper, the membership information transfer model
is inserted between the next two iterations, which reduces the impact of noise, as well as
exploits the local spatial information.

Since the fast guided filter has a satisfactory effect on restoring the image edge and
detail information, the median filter is also adept at smoothing noise; hence, the advantages
of these two filters are fully integrated into the IFCM-MS. Different from directly filtering
the image, the presented membership information transfer model will be adapted into the
iterative process for restoring the membership matrix. According to Equations (11)–(13),
the membership information transfer is considered as

Uq = aiUi + bi (14)

ai =

1
|win|∑k∈wini

UpreUk − µiUi

σ2
i + ε

, Ui = med{Upre} (15)

bi = Ui − aiµi (16)

where Ui, Uk and Uq denote the guidance matrix, filtering input matrix and filtering output
matrix, respectively, and Upre is the membership matrix produced by the last iteration.
Operation med{} represents the median filtering. Other variables have the same meaning as
the fast-guided filter.

The traditional fast-guided filter requires a guidance image to repair the image. Usu-
ally, the guidance image is the same as the input, which results in the residue of noise.
To address this problem, we took advantage of the present membership matrix as the
input matrix. After median filtering, the matrix generated in the last iteration is embedded
into the current processing as the guiding matrix. The successive transfer of information
between two adjacent membership matrixes repairs the clustering results layer-by-layer.

3.3. Similarity Measurements

Based on the Euclidean distance, the traditional FCM integrates the distance informa-
tion of a pixel with respect to the cluster centers into the clustering process, thus realizing
the soft segmentation. However, the lack of gray information makes the FCM poor for
noise-contaminated image segmentation. In Section 3.2, we combine the neighborhood
information of each pixel while contacting the adjacent iteration information, but the infor-
mation of the single pixels is not fully utilized. Therefore, to improve the segmentation
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accuracy and reduce the noise sensitivity of the IFCM-MS, we further combine the gray
information of the pixel, thereby proposing a similarity measurement method.

In the IFCM-MS, the similarity of the gray and distance between the pixel and cluster
center are both considered in our method. In the calculation of the membership matrix
for each pixel, we design two adaptive parameters so that the weight of the distance
information and gray information can be adjusted automatically. As the noise is expressed
as regional extreme points, when updating the membership matrix, the noise points with
high-grayscale similarity but low-distance similarity from the cluster center will not be
classified into the same category. The similarity measurement method is defined as follows:

Sim‖xk, ci‖ = wd(xk, ci) ∗ wg(xk, ci) (17)

where Sim‖xk, ci‖ is the similarity between pixel xk and cluster center ci, and wd and
wg denote the distance similarity and gray similarity, respectively. By introducing two
adaptive parameters, D and G, we obtain wd and wg as follows:

wd = exp
(
−dis2(xk, ci)

D

)
(18)

wg = exp

(
−
(

g(xk)− g(ci)

G

)2
)

(19)

where dis2(xk, ci) is the Euclidean distance between xk and ci, and g represents the gray of
pixel.

Since the mean deviation could reflect the distribution of the data, in Equations (18)
and (19), D and G are designed to be:

D =
1
n∑n

i=1

(
dis(xk, ci)−

1
n∑n

i=1 dis(xk, ci)

)
(20)

G =
1
n∑n

i=1

(
[g(xk)− g(ci)]

2 − 1
n∑n

i=1[g(xk)− g(ci)]
2
)

(21)

With the decrease of the spatial distance between the pixel and cluster center, the
contribution of wd would increase, which means the pixel adjacent to the cluster center has
a larger weight. Meanwhile, if a pixel is not only near to a cluster center but also owns a
smaller gray variance (a larger wg), the value of Sim‖xk, ci‖ would be larger as well. As a
result, the pixel would be considered as a member of the cluster.

By the similarity measurement method, the gray information and spatial relation are
both adopted into the membership matrix calculation. Ulteriorly, the segmentation ability
and robustness of the IFCM-MS is upgraded. Additionally, the overall calculation of the
IFCM-MS will be discussed in Section 3.4.

3.4. Clustering

The intuitionistic fuzzy set is proven suitable for medical image segmentation. There-
fore, aiming to deal with the complex structure of brain medical images, the intuitionistic
fuzzy attribute is adopted into the clustering process of the IFCM-MS.

From the perspective of the objective function, the embedding of the IFS is manifested
as the addition of intuitionistic fuzzy entropy (∑a

i=1 π′ ie1−π′ i , π′ i = (1/n)∑n
k=1 πik, k ∈

[1,n]). The intuitionistic fuzzy entropy will calculate the hesitation, which exploits more
information. It is clear that the IFS is more appropriate for segmenting the medical images
with complex distributions and fuzzy edges.

According to Equations (3) and (6), the objective function of the IFCM-MS is:

J(U, V; ξ) = ∑a
i=1 ∑n

k=1 (u
′
ik)

m
(

1
S2

ik

)
+ ∑a

i=1 π′ ie1−π′ i , m = 2 (22)
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Sik =
∑n

k=1 (u
′
ik)

mSim‖xk, ci‖
∑n

k=1 (u′ ik)
m , m = 2 (23)

where u′ ik is the intuitionistic fuzzy membership value of pixel xk to cluster center ci:
u′ ik = uik + πik. Moreover, when the membership degree generated is calculated again
in the next iteration for transferring the information, the current u′ ik will be utilized as a
member of the guided matrix to the next iteration.

The LaGrange multiplier method can be applied to minimize the objective function
under constraint condition ∑a

i=1 u′ ik = 1:

J̃ = ∑a
i=1 ∑n

k=1 (u
′
ik)

m
(

1
S2

ik

)
+ ∑a

i=1 π′ ie1−π′ i + λ
(
∑a

i=1 u′ ik − 1
)

(24)

We calculate the minimum value of the partial differential equation by using the
partial derivative of u′ ik and vi:

∂ J̃
∂u′ ik

=
∂
[
∑a

i=1 ∑n
k=1 (u

′
ik)

m(1/S2
ik
)
+ ∑a

i=1 π′ ie1−π′ i
]

∂u′ ik
+ λ (25)

Then, let
∂ J̃

∂u′ ik
= ∑a

i=1 ∑n
k=1 m(u′ ik)

m−1
(

1/S2
ik

)
+ λ = 0 (26)

∂ J̃
∂λ

= ∑a
i=1 u′ ik − 1 = 0 (27)

Solving Equation (26), we get u′ ik:

u′ ik = −
λ1/(m−1)

m∑a
i=1 (1/S2

ik)
1/(m−1)

(28)

Substituting Equation (28) into Equation (26), we get

λ = −2m(1/S2
ik) (29)

So, the membership update formula is:

u′ ik =
(1/S2

ik)
−1/(m−1)

∑a
i=1 (1/S2

ik)
−1/(m−1)

(30)

According to Equation (4), the cluster center update formula is obtained as

vi =
∑n

k=1 u′ ikxk

∑n
k=1 u′ ik

(31)

With the u′ ik in Equation (31), the objective function J could be minimized. According
to Equations (14)–(31), the steps of the IFCM-MS can be summarized in Algorithm 1.
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Algorithm 1: Flow of the proposed algorithm. IFCM-MS: intuitionistic fuzzy C-means algorithm
based on membership information transferring and similarity measurements

Input: Noise image
Output: Segmented tumor image
Set parameters: the number of clustering center n, the number of pixels N, iteration parameter m,
the maximum number of iterations a and the minimums error value of the objective function η.

1:

Initialize: generate the initial membership matrix U randomly, xk represents pixel, ϕ is
clustering center calculated currently, wd and wg are the distance similarity and gray
similarity respectively, D and G are two adaptive parameters based on location and grat
difference, variable Sim‖xk, ci‖ is the similarity, ai and bi are two parameters that guide the
membership matrix Uq.

2: for j = 1 to a do
3: for k = 1 to N do
4: for i = 1 to n do
5: Calculate D and G by Equations (20) and (21)
6: Calculate wd and wg by Equations (18) and (19)
7: Sim‖xk, ci‖ = wd(xk, ci) ∗ wg(xk, ci)

8: Sik = ∑n
k=1 (u

′
ik)

mSim‖xk ,ci‖
∑n

k=1 (u′ ik)
m

9: u′ ik =
(1/S2

ik)
−1/(m−1)

∑a
i=1 (1/S2

ik)
−1/(m−1)

10: vi =
(
∑n

k=1 u′ ikxk
)
/
(
∑n

k=1 u′ ik
)

11: end for
12: end for
13: Uq = aiUi + bi
14: if {Uq −Ui ≤ η} then break
15: end if
16: end for

4. Results and Discussion
4.1. Environment Settings and Evaluation Index

To estimate the effectiveness and robustness of the IFCM-MS, the real brain tumor
MRI of 25 patients in the BRATS 2012 dataset were tested in our experiments. All the
images were detected through the FLAIR modality. In order to prove the nonspeculative
nature of the algorithm for each individual, one to two images adjacent or similar to each
patient were selected. The weighting exponent was the same as the IFCM: m = 2, η = 10−5.
Five state-of-the-art clustering algorithms: FCM, IFCM, sFCM, csFCM and FRFCM were
employed in these experiments to compare with the IFCM-MS. These algorithms have
different advantages: FCM, IFCM and FRFCM have high accuracy, while sFCM, csFCM
and FRFCM have a strong capability of noise removal.

All the experimental methods in this paper were performed using MATLAB R2018a
installed on the 64-bit Windows 10 operating system (Intel®Core i5-8300H), and the CPU
was equipped with a 2.30 GHz processor and 8 GB RAM.

In this paper, four performance measures: accuracy, precision, specificity and re-
call were used to evaluate the segmentation quantitatively. Accuracy is one of the most
commonly used evaluation indicators in the field of segmentation and detection, which
indicates the degree of overlap between the segmentation result and ground truth. A
larger accuracy value expresses a more accurate segmentation result. Precision assesses
the proportion of pixels in the results classified correctly, which means the number of true
positives (TP). The greater the number of TP, the higher the value of precision. Specificity
evaluates the proportion of pixels in the results classified falsely, which means the number
of false positives (FP). A higher FP number will result in a low specificity value. Recall is
the ratio of TP to all positive values (the sum of the TP and false negatives (FN) [36,37]).
The specific calculation methods of the four indicators are as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(32)
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precision =
TP

TP + FP
(33)

recall =
TP

TP + FN
(34)

speci f icity =
TN

TN + FP
(35)

where TN represents the quantity of pixels belonging to the background area in the seg-
mentation results and ground truth. FN represents the number of pixels in the tumor area
of the segmentation results that do not belong to the region of interest in the ground truth.

4.2. Ablation Study

Image segmentation plays a crucial role in medical diagnosis. It is always challenging
to segment a medical image because of its complexities, such as noise, blur and intensity
nonuniformity. To demonstrate the superiority of the IFCM-MS, the brain tumor medical
images are utilized as test images in this section.

To exhibit the gradual improvement process of the algorithm, the ablation experiment
is applied into our assignment to verify the effectiveness of the algorithm.

The IFCM-MS mainly enhances the FCM through three levels:

• Neighborhood Information:

The membership information transfer model not only combines the neighborhood
information of pixels into the clustering process but also completes the information transfer
between two adjacent iterations.

• Spatial Information:

The original FCM only combines the Euclidean distance information, which leads to
poor segmentation results in noisy image segmentation. Based on the Euclidean distance,
the similarity measurements take the gray difference between the pixel and cluster center
into account, which further upgrades the robustness of the IFCM-MS.

• Adaptive Evolution:

The embedding of the intuitionistic fuzzy attribute improves the adaptability of the
IFCM-MS to the brain medical images.

This section will add the above three levels sequentially on the basis of the original
FCM, and experimental data is provided, respectively, to reveal the improvement process
of the IFCM-MS.

Figure 2 provides the results generated by each step of the evolution from the conven-
tional FCM to the IFCM-MS. In Figure 2b, the tumor is classified as normal brain tissue,
and the result is heavily affected by noise. After the addition of the IFS, as Figure 2c shows,
the misclassified area is adjusted, but the influence of noise is not eliminated. On the basis
of Figure 2c, Figure 2d is embedded with the membership information transfer model,
which ensures the correct classification of pixels while overcoming the noise. However, the
scattered points due to misclassification still exist in Figure 2d. Figure 2e not only reduces
the noise sensitivity but also eliminates the scattered points and improves the accuracy of
the segmentation. According to the above analysis, it can be seen that our methods are
valid in the process of improving the original FCM.
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In order to quantifiably discuss the improvement process of the FCM, the objective
data analysis of each improvement result is listed in Tables 1 and 2. What’s more, the best
score has been marked.

Table 1. Dates of the ablation experiments.

Improvement Results Accuracy Precision Recall Specificity

Figure 2b 0.8659 0.8695 0.8624 0.9880

Figure 2c 0.8872 0.8627 0.9019 0.9914

Figure 2d 0.9616 0.9729 0.9412 0.9949

Figure 2e 0.9623 0.9829 0.9519 0.9950

Table 2. Average values of the ablation experiments (mean ± standard deviation). FCM Fuzzy C-means algorithm and IFS:
intuitionistic fuzzy set.

Improvement Results Accuracy Precision Recall Specificity

Original FCM 0.8115 ± 0.0486 0.8112 ± 0.0583 0.8170 ± 0.0748 0.9874 ± 0.0063

FCM + IFS 0.8330 ± 0.0378 0.8108 ± 0.0542 0.8613 ± 0.0672 0.9903 ± 0.0062

FCM + IFS + Membership information transferring 0.9260 ± 0.0292 0.9341 ± 0.0558 0.9125 ± 0.0692 0.9929 ± 0.0055

FCM + IFS + Membership information transferring
+ Similarity measure 0.9274 ± 0.0286 0.9595 ± 0.0213 0.9202 ± 0.0601 0.9937 ± 0.0056

Table 1 exhibits the ablation experiment results of Figure 2 under the salt-and-pepper
noise with 0.02 intensity. To eliminate the speculative nature of the ablation experiments,
under the same conditions, the average values of all the experimental results are listed in
Table 2.

Except for showing the evaluation index scores of the results in each step, the best
scores were marked in Tables 1 and 2. It can be seen from Tables 1 and 2 that, in any evalu-
ation index, our method achieves the upgrade of segmentation accuracy and robustness in
every step of the evolution.

4.3. Subjective Evaluation of Experimental Results

The FCM and IFCM are able to segment a brain tumor MRI with a good result, but
the local spatial information is neglected. Therefore, the FCM and IFCM are powerless to
resist noise-polluted images. In our work, a membership information transfer model is
proposed in the IFCM-MS to fuse adjacent iteration information and matrix neighborhood
information; gray difference and distance information are both used in the similarity
measurements to introduce the local spatial information; moreover, the design of two
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adaptive parameters makes the measurement method more flexible, and the intuitive fuzzy
attribute is employed for enhancing the algorithm’s ability to segment medical images.

To verify the segmentation performance of the IFCM-MS further, we added 2% of
salt-and-pepper to the images. Moreover, the proposed algorithm is compared with the
other algorithms described above. Figure 3 shows the segmentation results of the tumor
produced by the different algorithms mentioned above. In Figure 3, the results are marked
by red squares; for facilitating observations, the marked area was enlarged and placed
below the original image. It is clear that our algorithm shows excellent performance in
tumor detection. As the images of Figure 3b,c indicate, the FCM and IFCM do not overcome
its sensitivity to noise, which leads to poor segmentation results. More than that, the tumor
is clustered into normal brain tissue. Though the csFCM combines the spatial neighborhood
information, it is unable to segment the tumor efficiently. In addition, the results from the
csFCM segment the normal brain tissue inaccurately (red squares of column (e)). Just like
the red squares show, for Image (2), there are many misclassifications of the tumor area
in Image (2b–f), whereas the IFCM-MS provides good segmentation results (Image (2g)).
Compared with the FCM and IFCM, the results from the IFCM-MS and FRFCM eliminated
the noise. However, it is obvious that the results from the IFCM-MS provide unambiguous
internal organization and maximum robustness, which signifies the best effect for tumor
segmentation.

To test the ability of the IFCM-MS in small-sized tumor detection, Figure 3 lists the
segmentation results of Image (1). From a subjective judgment, we can see that many
misclassifications exist in Image (1b,c); although the tumor is located in Image (1d,e), it is
greatly affected by noise and suffers a defeat in classifying the normal brain tissue. Image
(1f) shows that the FRFCM fails to detect a small-sized tumor. In contrast, the IFCM-MS
still provides a better effect in the detection of the small-sized tumor.

The IFCM-MS provides better segmentation results than other algorithms due to the
introduction of the membership information transfer model and similarity measurement
method. After three-dimensional (3D) reconstruction technology, the segmentation results
can estimate the shape and volume of the tumor, by which doctors can make an appropriate
medical plan.

In order to verify the excellent performance of the IFCM-MS from all aspects, ex-
periments on robustness were also added to our assignment: we used the IFCM-MS to
segment the tumor area in the noisy images with different intensities, as shown in Figure 4.
Figure 4b–e is the tumor information extracted when the noise intensity is 0, 0.005, 0.01
and 0.02. Figure 4f is the ground truth. Compared with ground truth, the IFCM-MS is
equipped to obtain good segmentation results under different noise intensities and shows
a strong robustness to salt-and-pepper noise. Moreover, to verify the effective performance
of the IFCM-MS, the objective discussions of the segmentation results corresponding to
each method on the BRATS 2012 dataset will be reported in Section 4.4.
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4.4. Objective Discussion on Robustness and Accuracy

In the cases of 0% and 2% noise intensities, the average and STD values of accuracy,
precision, specificity and recall on BRATS 2012 are given in Table 3, and the optimal values
for each noise intensity are marked respectively (0: bold and italics, 0.02: bold). After
comparing the results of each algorithm with the ground truth, it can be found that the
IFCM-MS consistently performed well in accuracy, specificity and recall. However, there
are morphological operations in FRFCM such as preprocessing; moreover, postprocessing
is consistent in sFCM and csFCM. As a result, the precision of the IFCM-MS is slightly
lower than the other comparison algorithms.

Table 3. Average values of the comparisons and the IFCM-MS (mean ± standard deviation). sFCM: spatial fuzzy C-means
clustering algorithm, csFCM: conditional spatial fuzzy C-means clustering algorithm and FRFCM: FCM algorithm based on
membership function filtering.

Algorithm Intensity Accuracy Precision Recall Specificity

FCM [23]
0 0.9031 ± 0.0308 0.9707 ± 0.0302 0.8484 ± 0.0674 0.9894 ± 0.0061

0.02 0.8115 ± 0.0486 0.8112 ± 0.0583 0.8170 ± 0.0748 0.9874 ± 0.0063

IFCM [24]
0 0.9097 ± 0.0295 0.9710 ± 0.0283 0.9005 ± 0.0599 0.9927 ± 0.0060

0.02 0.8332 ± 0.0378 0.8108 ± 0.0542 0.8613 ± 0.0672 0.9903 ± 0.0062

sFCM [28]
0 0.9085 ± 0.0326 0.9694 ± 0.0350 0.8596 ± 0.0724 0.9893 ± 0.0069

0.02 0.8352 ± 0.0493 0.8515 ± 0.0783 0.8279 ± 0.0785 0.9870 ± 0.0072

csFCM [25]
0 0.9043 ± 0.0325 0.9721 ± 0.0305 0.8499 ± 0.0714 0.9896 ± 0.006

0.02 0.8924 ± 0.0362 0.9378 ± 0.0448 0.8545 ± 0.0610 0.9887 ± 0.0056

FRFCM [30]
0 0.9114 ± 0.0334 0.9733 ± 0.0304 0.8617 ± 0.0729 0.9908 ± 0.0052

0.02 0.9105 ± 0.0328 0.9734 ± 0.0307 0.8601 ± 0.0729 0.9904 ± 0.0065

IFCM-MS
0 0.9279 ± 0.0283 0.9458 ± 0.0219 0.9172 ± 0.0583 0.9934 ± 0.0055

0.02 0.9274 ± 0.0286 0.9595 ± 0.0213 0.9202 ± 0.0601 0.9937 ± 0.0056
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In addition, salt-and-pepper noise was added with intensities of 0, 0.005, 0.01 and 0.02
to the test images. The evaluation indicators of the IFCM-MS and comparison algorithms
were calculated. The statistical results are shown in Figure 5.
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Figure 5a–d represents the fluctuation range of the evaluation indicators accuracy,
precision, recall and specificity, respectively. The vertical axis represents the average
evaluation value of all the experimental results, and the horizontal axis expresses the
different noise intensities. As shown in Figure 5, compared with the FCM, IFCM, sFCM,
csFCM and FRFCM, not only the accuracy, recall and specificity of IFCM-MS are closer to
1 but, also, the fold line fluctuation range is the lowest. Therefore, it is obvious that the
IFCM-MS is much more robust and competent than the other algorithms.

There is no preprocessing (e.g., direct filtering and morphological operation) and
postprocessing in the IFCM-MS; as a result, the precision index of the IFCM-MS is slightly
lower than the csFCM and FRFCM. However, the csFCM does not overcome its sensitivity
to noise, and the FRFCM obtains a poor segmentation result with small-sized tumors. The
variation range of the IFCM-MS is still more stable than the other algorithms. Moreover,
the most critical accuracy is much higher than the other algorithms.

From the experiments and discussion above, the IFCM-MS has the capacity to provide
good results for brain tumor medical images. Simultaneously, it has a better performance
than the other algorithms, especially for accuracy, recall and specificity. The main reason is
that the proposed IFCM-MS takes full advantage of local spatial information and adopts
the intuitive fuzzy attribute to enhance the segmentation ability.

Consequently, the IFCM-MS is superior in both noise-immunity and segmentation-
accuracy while ensuring the segmentation performance of the brain MRI.
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5. Conclusions

Aiming at the brain tumor MRI segmentation, an intuitionistic fuzzy C-means algo-
rithm based on membership information transferring and similarity measurements was
proposed, namely the IFCM-MS. By introducing the membership information transfer
model, the neighborhood information and adjacent membership matrixes information
were both exploited in clustering. Since the robustness of the IFCM-MS can be enhanced
by combining these two types of information, it is easy to achieve detail preservation and
noise elimination simultaneously. Moreover, the IFCM-MS employed a similarity measure-
ment method to improve the segmentation accuracy. Except for considering the Euclidean
distance, this new mixed measurement fused the gray information adaptively. Further-
more, we embedded an intuitive fuzzy attribute into the clustering process, which can
adapt to the fuzziness in medical images perfectly. In addition, by the ablation experiment,
we demonstrated that our method enhanced the FCM both the robustness and accuracy
aspects. To verify the effectiveness of the proposed algorithm, we compared the IFCM-MS
with five other advanced algorithms on the BRATS 2012 real brain tumor image dataset.
Moreover, the results based on subjective evaluation and objective discussion indicated
that the IFCM-MS outperformed the other fuzziness-based algorithms and provided an
appreciable effect on the brain medical image segmentation.

The IFCM-MS was designed mainly based on spatial information, whereas the inte-
gration of a specific mathematical theory can also overcome the shortcomings of the FCM.
Therefore, we will continue the following works from this aspect. Moreover, the IFCM-MS
was only centered on brain tumor MRI segmentation without processing the normal brain
image. Further research can also be carried out on this type of medical image.
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