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Humans differ in the amount of time they direct their
gaze toward different types of stimuli. Individuals’
preferences are known to be reliable and can predict
various cognitive and affective processes. However, it
remains unclear whether humans are aware of their
visual gaze preferences and are able to report it. In this
study, across three different tasks and without prior
warning, participants were asked to estimate the
amount of time they had looked at a certain visual
content (e.g., faces or texts) at the end of each
experiment. The findings show that people can report
accurately their visual gaze preferences. The
implications are discussed in the context of visual
perception, metacognition, and the development of
applied diagnostic tools based on eye tracking.

Introduction

Given the distribution of photoreceptors in the
retina, most visual information is extracted from a
small area around the center of gaze (Osterberg,
1935). Thus, people’s gaze position determines which
visual information is processed with high acuity
and strongly affects the nature of visual experience
(Findlay et al., 2003). Although evidence has been
recently accumulating that individuals differ in where

they direct their gaze (Guy et al., 2019; Haas et al.,
2019; Mehoudar et al., 2014), it is still unknown
whether people have knowledge about their own
visual preferences (i.e., which visual contents tend
to attract their gaze compared to others). The
goal of the current study is to shed light on this
matter.

Visual preferences have been typically assessed by
attentional bias paradigms. Early methods included the
dot probe task in which participants are required to
respond to the appearance of a dot. Importantly, the
dot appears in the location of a previously presented
stimulus. Thus, response time to the dot was considered
to reflect the amount of attention that was directed
to the previously displayed stimulus (MacLeod et al.,
1986; i.e., faster reaction times reflect more attention to
the stimulus). However, criticism of the reliability of
the dot probe task (Chapman et al., 2019; Schmukle,
2005) prompted more recent studies to use eye tracking
to quantify attentional bias by examining where
participants look when multiple distinct images appear
simultaneously or when a complex image, which
includes various types of items, is displayed. In this
setup, visual preference is operationally defined as the
duration of time gaze is directed at certain contents out
of the overall duration of time gaze is directed at the
stimuli (e.g., Sears et al., 2018).
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The empirical literature on the eye tracking–based
attentional bias paradigm has revealed tendencies to
look at social images (from infancy [see Peltola et al.,
2018] to adulthood [see Eizenman et al., 2003]) and to
look more at positive content (Pool et al., 2015). Recent
studies have generalized the controlled attentional bias
task to more complex environments such as scene
viewing and reported findings similar to those observed
on the controlled attentional bias task (Flechsenhar et
al., 2018; Leder et al., 2010). For example, in Leder et
al. (2010), participants showed a tendency to look more
at attractive faces than less attractive faces, similar
to that found in attentional bias tasks (Valuch et al.,
2015).

However, it remains unclear whether all individuals
manifest the same tendencies. Recent studies have found
high variability between individuals in gaze preference
paradigms, including attentional bias (Lazarov et al.,
2018; Sears et al., 2018) and scene viewing (Guy et al.,
2019; Haas et al., 2019). Individual differences in gaze
preferences were shown to be stable over time (Guy
et al., 2019; Haas et al., 2019; Lazarov et al., 2018),
suggesting that these preferences may be perceptual
traits. Moreover, some gaze preferences were found to
be related to other traits and skills (Dechant et al., 2017;
Haas et al., 2019; Lazarov et al., 2018). For example,
preference to look at faces was positively correlated
with individuals’ face recognition skills (Haas et al.,
2019).

Even though people rely heavily on vision, they
are not necessarily aware of their gaze behavior
characteristics (e.g., scanning pattern and visual
preferences). Examining whether individuals are aware
of their gaze characteristics will not only contribute to
the state of the art on visual metacognition processes
but may also suggest possible ways to influence (or
perhaps enhance) gaze behavior through metacognitive
processes. Although no studies have examined the
metacognition of visual preferences, several studies
have explored whether individuals can recognize their
own scanning patterns. Whereas participants were able
to distinguish between their own scanning patterns and
random ones (Foulsham & Kingstone, 2013), there is
mixed evidence as to participants’ ability to differentiate
between their own scanning patterns and others’
(Clarke et al., 2017; Foulsham & Kingstone, 2013;
van Wermeskerken et al., 2018; Võ et al., 2016). For
example, in one study (Foulsham & Kingstone, 2013),
participants memorized complex scenes. Then, the
previously displayed scenes were displayed together with
two overlaid scanning patterns, one of which was their
own and the other was that of another observer or a
random sequence. Participants were able to discriminate
between their own pattern and the patterns of others.
By contrast, in Võ et al. (2016), after viewing several
images, participants were asked to mark 12 locations
they thought they had just looked at, as well as 12

other locations where they thought another person had
looked. The overlap between their own fixations and
their reported locations was not significantly different
from the overlap with the locations reported for others.
Regardless of whether participants are capable or not
of identifying their own scanning patterns compared to
others, studies concur that the ability to identify one’s
own fixation locations as compared to others is partial
at best (e.g., Võ et al., 2016). Importantly, examining
the ability to recognize one’s own fixations refers to
specific and detailed information about eye movements,
but it does not capture the ability to estimate and
aggregate information throughout the experiment,
which might be more strongly linked to metacognitive
awareness.

Most humans (unlike trained vision researchers)
typically do not think about where they fixate their gaze
but rather what objects or people they are looking at,
which may explain variations in ability to distinguish
one’s fixations from others’ by remembering the objects
they looked at (Foulsham & Kingstone, 2013; Võ
et al., 2016). Thus, even though individuals cannot
recognize their own scanning patterns, it is still possible
that individuals are able to report more general visual
behavior, such as their gaze preferences (i.e., the content
they tend to look at). To shed light on this possibility,
we conducted three experiments using a variety of
visual contents and tasks to ensure generalizability
of the findings. Additionally, the stimuli in our
experiments became increasingly complex, ranging
from attentional bias tasks with two images to viewing
complex scenes. The variety in the stimuli and tasks is
important for examining the robustness of the findings,
but on the other hand, it hampers direct comparison
between conditions. In all experiments, participants
were presented with multiple images and then, without
prior warning, asked to report the amount of time
they spent viewing specific visual content (e.g., faces or
images with positive valence). Individuals’ degree of
accessibility to their own preferences was examined by
correlating their self-reports (or estimates) of subjective
visual preference to their empirical gaze preference,
as measured by the eye-tracking system (“gaze
preference”).

Method

Experiment 1

Neurotypical participants tend to look more
at positive stimuli (e.g., Bradley et al., 1997;
Pool et al., 2015). In the current experiment,
we tested if participants are aware of this
tendency.
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Participants
Sixty-seven students of the Hebrew University of

Jerusalem (53 female, mean age = 24.95, SD = 4.84)
participated in the experiment in exchange for 20 NIS
(∼$5.00) or course credit. Eight participants did not
complete the experiment. Four other participants
were excluded due to bad data quality (see data
preprocessing section for further details), resulting in a
final sample size of 55 participants (43 females, mean
age = 24.67, SD = 3.65). All participants had normal
or corrected-to-normal vision and provided informed
consent prior to participating in the experiment. The
experiment was approved by the local ethics committee
of the Hebrew University of Jerusalem and conducted
in accordance with the Declaration of Helsinki.

Stimuli
The experiment was composed of three stimulus

categories in the form of International Affective Picture
System (IAPS) images (Lang, 2005), faces (Chelnokova
et al., 2014), and food images (Blechert et al., 2019).
There were 27 pairs of IAPS images, each consisting of
one of the 30 images with the highest positive valence in
the database (mean valence 8.01, SD = 0.18) matched
with a neutral image (mean valence 5.01, SD = 0.44).
The facial images consisted of 20 pairs of female
faces, each consisting of one of the 30 faces rated
as most attractive in the Oslo Face Database (mean
attractiveness rating 5.49, SD = 0.55) and a face that
was rated as one of the 30 least attractive faces (mean
attractiveness rating 3.03, SD = 0.59). The food stimuli
consisted of 30 pairs of images of food items, one
from the highest palatability rating (mean palatability
rating 79.73, SD = 3.00) out of the food images in the
Food-Pics_Extended database (Blechert et al., 2019)
and one image of rotten food downloaded from Google
images.

Apparatus
The experiment was conducted online on the

participants’ personal computers. The open-source
JaveScript package webgazer.js (Papoutsaki, 2015)
was used to capture the participants’ gaze position.
This package was recently compared to high-end
eye-tracking systems and was found to be reliable
for cognitive tasks that do not require very detailed
spatial resolution, such as the attentional bias task used
here (Semmelmann & Weigelt, 2018). The calibration
procedure included a sequential presentation of 20
squares at different locations on the screen. Participants
were instructed to look at the square and click
on it with the mouse. To further evaluate the data
quality, additional tests were conducted (see data

preprocessing). The experiment was run on the Pavlovia
website.

Procedure
The experiment consisted of 77 pairs of images

depicting three content types: images with a positive
and neutral valence (IAPS images; 27 trials), attractive
and less attractive faces (attractive faces; 20 trials), and
tasty and unappealing food images (food images; 30
trials). Images of the same visual content were presented
in the same block in a random order. The order of
the blocks was counterbalanced across participants.
Each pair of images was displayed for 3 s (see example
in Figure 1). Before presenting an image, participants
were instructed to look at a fixation point that appeared
in the center of the screen for 1 s. At the end of the
experiment, participants were asked to estimate on a
visual analog scale the amount of time (as a percentage)
they looked at the more positive images compared
to the less positive IAPS images, the percentage of
time they looked at the appealing food compared
to unappealing food images, and the percentage of
time they looked at the more attractive female faces
compared to the less attractive ones.

Data preprocessing
To compensate for between-participant variance

in setup-related noise levels, we used the following
preprocessing procedure. First, we computed the trial
mean horizontal center—that is, the mean horizontal
coordinates (x coordinates) of all samples collected
during the last 500 ms of the central fixation stage
for each trial. Then, for each participant, we defined
the participant’s standard deviation as the standard
deviation of the differences between all samples during
the last 500 ms of the central fixation stage and the
relevant trial’s mean horizontal center across all trials
and samples. These differences served to assess the
stability of the eye-tracking measures, in which a
larger participant’s standard deviation was indicative
of higher noise levels of the eye-tracking recording.
During the presentation of the images, if the horizontal
coordinate of the gaze position sample was more than
two participants’ standard deviations to the right
from the trial mean horizontal center, the sample
was considered as positioned on the right side of the
screen. If the sample’s horizontal value was more than
two participants’ standard deviations from the trial
mean horizontal center to the left, the sample was
considered as positioned on the left side of the screen.
Other samples (not right or left) were considered
as samples in the center. Based on this analysis, we
computed the visual gaze preference on each trial as
the number of samples of a certain content (one side)
divided by the total number of samples on both sides.
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Figure 1. Stimulus examples. Each line represents an example of a specific image content type. The two images in the attentional bias
task were presented simultaneously. The size of the illustrated matrix in Experiment 2 was 2 × 2, while the matrices in the experiment
were 10 × 10. Matrix was produced with permissions (copyright Center for Decision Center, University of Chicago). Note: due to
copyright limitations, the example of "attractive faces" includes the same face twice, rather than two different faces (copyright Leknes
Affective Brain lab). The stimulus example of Experiment 3 (taken by Austin Distel—no permission is needed; faces have been blurred
to protect people’s identity in accordance with copyright regulations) is an illustration of images in the experiment that were not
presented in the figure due to copyright limitations.

As a result of using an online eye-tracking procedure,
missing samples were not identified. However, samples
in which the face of the observer was not identified
were marked. The percentage of samples without a
face across all participants was 0.03% with a standard
deviation of 0.17%. Notably, computing the percentage
of time out of the total time gaze was directed to both
sides (rather than the overall display time) controls
for differences in the acquired number of samples
between individuals (which are influenced by the type

of personal computer, camera, and data loss) and
reduced the noise on the individual level. For example,
if a participant had 150 samples on the appealing
food and 100 on the unappealing food, the visual gaze
preference for appealing food was 60% (150/250).
Finally, we computed the overall gaze preference within
each category by averaging over trials consisting of the
same image category.

In addition to optimizing the signal of each trial
and participant, we validated the quality of the data
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by extracting the median horizontal coordinate for
each participant from all the samples taken during
the fixation stages (across all trials). If the median
horizontal coordinate of a participant was very far from
the center of screen (more than 25% of the screen width
to the right or left side), this participant was excluded
from the analysis (two participants). Participants with
a participant’s standard deviations of zero (i.e., for
whom no eye movements were recorded at all) were also
excluded (one participant). Furthermore, we removed
trials in which the trial mean horizontal center was far
from the center (more than five times the participant’s
standard deviation) and trials without any samples
on one of the sides (13% of trials). Participants with
50% or more excluded trials were excluded from the
analysis (one participant). Overall, four participants
were excluded in this process.

Experiment 2

Individuals often report that the prevalence of
minorities is higher than it is (Kardosh et al., 2022). In
the current experiment, we examined if participants
are aware of how much they look at faces with specific
characteristics, including minorities.

Participants
Thirty-two Hebrew University students (19 females,

mean age = 24.91, SD = 3.58) participated in the
experiment in exchange for 10 NIS (∼$2.50) or course
credit. One participant did not complete the experiment
and was excluded. All participants had normal or
corrected-to-normal vision and provided informed
consent prior to participating in the experiment. The
experiment was approved by the local ethics committee
of the Hebrew University of Jerusalem and conducted
in accordance with the Declaration of Helsinki.

Stimuli
The experiment consisted of 20 matrices, each

displaying of 100 neutral-expression faces previously
rated as belonging to either White Americans or Black
Americans taken from the Chicago Face Database (Ma
et al., 2015; for further details on these stimuli, see
Kardosh et al., 2022). The percentage of faces of Black
Americans changed between matrices (10%, 20%, 30%,
and 40% in equal probability), with overall 25% Black
faces. Half of the faces were females and the other half
were males. The location of the faces was randomly
chosen. The matrix resolution was 750 × 750 pixels,
capturing approximately 23 × 23 degrees of visual angle
from a distance of 50 cm.

Apparatus
The stimuli were displayed on a 23-in. Syncmaster

monitor, with a 120 Hz refresh rate and a 1920 × 1080
screen resolution. Monocular gaze position was tracked
at 1000 Hz with an Eyelink 1000+ (SR Research Ltd.,
Mississauga, Ontario, Canada). Participants’ heads
were stabilized using a chinrest situated 60 cm from the
screen.

Procedure
The second experiment was based on Experiment 2

in the Kardosh et al. (2022) study. Participants viewed
20 matrices of 100 faces with neutral facial expressions
while their eye movements were recorded. Before each
trial, the participants fixated on a central fixation
point, and a drift correction procedure was applied
(SR Research Ltd.). After observing each matrix for
2 s, participants were asked to indicate whether the
matrix had a majority of females or males. At the end
of the experiment, participants were asked to estimate
the percentage of Black and White faces across all
the matrices. Next, participants evaluated how much
time they had looked at female faces compared to
males (where 100 indicated that they looked only at
females and 0 only at males) and at Black compared
to White faces (100 indicated that they looked only
at Black faces and 0 only at White faces) on a visual
analog scale. Finally, participants were asked about
their political orientation. Because the current study
examined whether participants were aware of their
visual preferences, we only report here responses to
the gaze estimates at Black/White faces or female/male
faces.

Data preprocessing
To measure gaze preference for female faces, we

extracted the amount of time gaze was directed toward
female faces and divided it by the total time gaze was
directed toward both female and male faces. Then, the
gaze preference for female faces was averaged across
trials. Gaze preference for Black faces was calculated in
a similar manner. Gaze was considered to be directed at
a face if it fell within a virtual square of approximately
2.4 × 2.4 degrees of visual angle that included the
face. The average rate of missing samples across all
participants was 0.86% with a standard deviation
of 1.36%. Missing samples were excluded from the
analysis.

Experiment 3

Individuals differ in the amount of time they look at
semantic contents in complex scenes (Guy et al., 2019;
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Haas et al., 2019). Here we tested if they are aware of
their tendencies.

Participants
Sixty Hebrew University students (37 female, mean

age = 24.13, SD = 2.9) participated in the experiment in
exchange for 30 NIS or course credit. One participant
did not complete the experiment and was excluded
from the analysis. All participants had normal or
corrected-to-normal vision and provided informed
consent prior to participating in the experiment. The
experiment was approved by the local ethics committee
of the Hebrew University of Jerusalem and conducted
in accordance with the Declaration of Helsinki.

Stimuli
The stimuli consisted of a subset of 78 images from

the image collection in Xu et al. (2014). Each image
in this collection was published together with several
heatmaps containing information on the semantic
features of the objects. Here, we used the heatmaps
that capture information on the locations of faces
and texts, in which the center of each face/text has
a maximum value (255) and gradually decreases to
zero in a Gaussian manner when moving away from
the center. Similar to our previous study (Guy et al.,
2019), a threshold of 64 was used to indicate whether
a fixation was directed at a face/text or not. One third
of the images (26 images) contained faces and texts,
one third had only faces without text, and one third
included text without faces. As in Xu et al. (2014),
faces were defined as back, profile, or frontal views of
humans’ and animals’ heads.

Apparatus
Gaze position was tracked using a SMI 250RED

(SansoMotoric Instruments, Inc. [SMI], Teltow,
Germany), installed on a DELL laptop. Participants
were positioned approximately 60 cm from the
monitor. Each participant performed calibration and
validation sessions for five points (implemented by
the experimental software provided by SMI) at the
beginning of each session. All the data analyzed
here were obtained from recordings with an average
absolute global validation error of less than 1 degree
of visual angle. The recording sample rate was 250
Hz. The analysis was based on fixations parceled from
the data by the software provided by SMI (BeGaze).
Fixations were detected using a peak velocity threshold
of 40°/s and minimum duration of 50ms (default SMI
implementation). The monitor resolution was 1920 ×
1080, and the stimuli covered 1440 × 1080 of the screen
(centered), capturing approximately 24 × 18 degrees of
the visual field.

Procedure
Participants freely viewed 78 scenes without any

instructions or explanations as to the goals of the study.
Before each image was presented, the participants were
instructed to look at a fixation point that appeared in
the center of the screen for 1 s, after which each image
was displayed for 3 s. Immediately after the experiment,
the participants were asked verbally by the experimenter
about their visual preferences for text and faces: “How
much time did you look at the faces/text? 100 means
that you looked only at faces/text, and 0 that you did
not look at all.”

Data preprocessing
To measure gaze preference for faces and text, we

extracted the percentages of the fixation time directed
at each content type out of the total fixation time on
the image. This measure was extracted solely for images
that contained the relevant content (e.g., face preference
was computed only on images that contained faces).
Fixations were parceled from the sample data using the
software provided by SMI (BeGaze). The average rate
of missing samples across all participants was 9.75%
with a standard deviation of 16.23%. Missing samples
were excluded from the analysis.

General statistical analysis
In all three experiments, we extracted two measures:

gaze preference (i.e., the proportion of time gaze
was directed at the specific content, measured by the
eye-tracking system) and the subjective visual preference
(i.e., the participants’ reports on the percentage of time
they looked at certain content). The first experiment
had three types of visual content (food, attractive faces,
and IAPS images), the second experiment had two other
types of visual content (gender and skin color), and
the third had two other types of visual content (faces
and text). The participants’ ability to report their visual
preferences was evaluated by a Spearman correlation
between each participant’s estimate and acquired
gaze preferences for each type of visual content. To
examine the overall relation, an omnibus analysis
was performed to examine whether the Spearman
correlation coefficients are significantly larger than
zero across all visual content and experiments. To
that end, each Spearman correlation coefficient was
transformed to a Pearson correlation coefficient
(Rupinski & Dunlap, 1996). Then, a Fisher’s r-to-z
transformation was carried out on the approximated
Pearson correlation coefficients (Silver & Dunlap,
1987). The random-effects model was used to compute
the mean correlation coefficient across visual contents
without limiting the variability across visual contents.
Because the omnibus analysis yields a single measure
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that is compared to zero, no correction for multiple
comparisons was applied. The degree of heterogeneity
(i.e., τ 2) was estimated using the Hunter–Schmidt
estimator (Hunter & Schmidt, 2004; Viechtbauer,
2005). In addition to the estimate of τ 2, the Q-test for
heterogeneity (Cochran, 1954) is reported. Studentized
residuals and Cook’s distances were used to examine
whether the correlation coefficients were outliers and/or
influential in the context of the model (Viechtbauer
& Cheung, 2010). Correlations with a studentized
residual exceeding the 100 × (1 − 0.05/(2 × k))th
percentile of the standard normal distribution were
considered potential outliers, where k was defined as
the number of studies included in the omnibus analysis
(i.e., using a Bonferroni correction with a two-tailed
α = 0.05). Two correlation coefficients were detected as
outliers; hence, to validate the results, another omnibus
analysis was performed without it. Furthermore, to
take the dependency between correlations into account
(some correlations were based on the same samples),
we performed another omnibus analysis using the
sample-wise approach (Hunter & Schmidt, 2004) that
considers the averages of the correlation coefficients
of each experiment while defining the sample size as
the actual number of participants (the number of data
points used for one correlation from the experiment and
not the sum of all data points). The meta-analysis was
performed using the metafor R package (Viechtbauer,
2010).

Results

The first experiment involved an attentional bias task
in which two images appeared simultaneously on each
trial. The content of the images was either positive and
neutral IAPS images, attractive and less attractive faces,
or appealing and unappealing food. The correlations
between subjective reports and gaze preferences for
each content type revealed two significant positive
correlations for IAPS images (ρ = 0.29, p = 0.032)
and food (ρ = 0.66, p < 0.001), reflecting participants’
ability to evaluate how much time they looked at more
positive images and more appealing food, compared
to neutral images and unappealing food, respectively.
The correlation between subjective reports and gaze
preference for attractive faces was positive but not
significant (ρ = 0.07, p = 0.614). The scatterplots of all
correlations (across all experiments and visual contents)
are presented in Figure 2.

In the second experiment, participants were asked
to estimate whether they looked more at female faces
than male faces when viewing matrices of faces and
whether they looked more at Black faces than White
faces. The correlations between the subjective reports
and gaze preferences for skin color (ρ = 0.41, p =

0.02) and gender (ρ = 0.26, p = 0.163) revealed two
nonsignificant positive correlations.

In the third experiment, participants freely viewed
complex scenes that included text and faces without
specific instructions. The correlations between the
subjective reports and gaze preferences were positive
and significant for both faces (ρ = 0.31, p = 0.015) and
text (ρ = 0.29, p = 0.025).

To evaluate whether the ability to report visual
preferences differed across experiments and contents,
an omnibus analysis was performed. A total of seven
different visual contents were included in the analysis.
Fisher’s r-to-z transformed correlation coefficients
ranged from 0.07 to 0.83, and all estimates were positive.
The estimated average Fisher’s r-to-z transformed
correlation coefficient based on the random-effects
model was μ̂ = 0.37 (95% CI: 0.2, 0.54). Therefore,
the average outcome differed significantly from zero
(z = 4.27, p < 0.0001), which indicates that overall,
the correlation between subjective reports and gaze
preferences was significant and that people are aware
of their visual preferences. A forest plot showing the
observed outcomes and the estimates based on the
random-effects model is shown in Figure 3. To validate
the robustness of the results, two statistical adjustments
were performed (removal of outliers and considering
the dependencies between samples). These adjustments
led to qualitatively similar results (Supplementary
Table S1).

Discussion

The current study examined whether individuals are
aware of their visual preferences. All the correlations
between subjective visual preference (the participants’
estimates of how long they looked at certain content)
and objective gaze preference (the time they actually
spent looking at the content) toward all content types
were positive. An omnibus analysis including the
seven different types of visual content showed that
participants were aware of their visual preferences.

Previous research on individuals’ knowledge of
their gaze behavior characteristics has focused on
the ability to recognize one’s own gaze patterns as
compared to others (Clarke et al., 2017; Foulsham &
Kingstone, 2013; Võ et al., 2016). Here, we focused
on a more general measure—namely, visual gaze
preferences, which visual content people tend to look
at. The findings suggest that participants were aware of
their visual preferences for various types of content.
Interestingly, although gaze tendencies can be inferred
from the specific gaze pattern, the mixed results as to
the ability to recognize one’s own scanning patterns
(Henderson, 2017; Võ et al., 2016) suggest that there
may be other ways in which people estimate their visual
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Figure 2. Scatterplots with regression lines of gaze preference and subjective reports of visual preference. Each cell illustrates the
scatterplot for visual gaze preference (x-axis), as measured by the eye tracker, and subjective reports of visual preference (y-axis), as
reported by the participants after the experiment, for each specific content type.

preferences rather than remembering where exactly they
fixated.

Here we suggest three nonmutually exclusive
explanations for participants’ ability to report their
gaze preferences. First, participants might have based
their subjective visual preferences reports on their visual
memory of the objects they looked at and not their

specific gaze positions (Clarke et al., 2017; Foulsham
& Kingstone, 2013). Importantly, this explanation
assumes that participants remembered many of the
objects they looked at across multiple stimuli and
were able to evaluate the time they looked at each
object. Second, participants might have inferred their
subjective visual preference through introspection by
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Figure 3. Omnibus analysis forest plot. Each line shows the observed output of visual content. The bottom line indicates the estimate
of the random-effects model.

examining internal processes and thoughts (Byrne,
2005). For example, after viewing the IAPS images
(neutral and positive images), individuals who felt
happier may have inferred that they looked longer at
the positive images. Finally, our measure might reflect
the declarative knowledge of visual preference—that
“knowledge about oneself as a learner and about
what factors influence one’s performance” (Schraw &
Moshman, 1995), which suggests that people generally
know their visual preferences and therefore can report
them at any given time (and not only after viewing
images of specific visual content). Further research
is needed to differentiate between these possible
explanations.

According to the omnibus analysis, a large
proportion of the variances of both measures (gaze and
subjective visual preferences) remained unexplained
(i.e., not related to the other). Thus, although subjective
visual preferences reflect objective gaze preferences
(∼13% of the variance), they do not fully capture them
(∼87% of the variance). The unexplained variance
suggests that both measures tap additional information
that might relate to other cognitive processes. For
example, the unexplained variance could be related
to individuals’ percepts of themselves, which could
influence the subjective reports but not gaze preference.
If people perceive themselves as optimistic, they
might tend to report a more positive visual preference
regardless of their gaze preference. Another alternative
is related to visual processing abilities. More efficient
processing of faces (faster recognition) may shorten the
time people look at faces without perceiving this time as

shorter, resulting in an overestimation of the subjective
reporting of face preference.

The current study has several limitations. First,
participants may have been more conscious of their
eye movements following the eye-tracking procedures
(e.g., calibration), which could either have improved
their accuracy in estimating their subjective visual
preference or impacted their “natural” visual preference.
Future studies could calibrate without the participants’
knowledge, for example, by using smooth pursuit
calibration (Celebi et al., 2014). Second, we asked
participants to report their visual preference for two
or three visual contents at a time, so the reports could
have influenced each other. Third, the number of trials
differed across visual contents, which might have led
to underestimating the correlation for cases with fewer
trials. This concern also limits the ability to directly
compare the awareness level of preference to the
different contents. Fourth, in Experiment 2, matrices
always contained fewer Black faces compared to White
faces. This might lower the range of subjective report
values and by product lower the correlation with the
real gaze behavior measures. Finally, although some
studies generalize gaze preference to the real world
(Peterson et al., 2016), it still remains unclear whether
all gaze preferences measured in the lab apply to real
situations.

Nevertheless, the findings suggest that the
participants were aware of which content they looked
at. The content types were positive and neutral images
(IAPS), appealing and unappealing food images (food),
attractive faces and less attractive faces (attractive
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faces), female and male faces (gender), Black and White
faces (skin color), and faces and text in complex scenes.
The experiments presented here tested various visual
contents, but each content appeared in only one of
the experiments, which also differed in terms of their
settings.While the different settings mean that any direct
comparison between preferences should be treated with
cautious, a few interesting observations emerged from
the findings. In the second experiment that included
two types of visual content, one was related to the
task itself (the participants were asked to estimate
the percentage of female faces), and the other was
unrelated (skin color). Presumably, the relationship to
the task should improve participants’ ability to estimate
their visual preference for female faces. However, the
results did not support this hypothesis and instead
revealed a stronger correlation for the unrelated visual
content. In addition, the omnibus analysis revealed
two outliers that reflected a very strong relationship
between subjective report and gaze preference when
viewing food images (appealing and unappealing) and
a weak relationship when viewing attractive and less
attractive faces. One possible explanation for the high
correlation coefficient observed in the study involving
food pictures presenting a contrast between fresh
and rotten food is that the definition of freshness
and rottenness is relatively objective and not highly
influenced by the subjectivity of the participants.
In contrast, attractiveness is highly subjective and
therefore may lead to a weaker relationship. Besides the
extreme values, we still observed a range of coefficients
across different visual contents, with a range of 0.26
≤ ρ ≤ 0.41. The cause of this variation is currently
unknown, but understanding it may provide insight
into metacognitive processes. Nevertheless, the presence
of this pattern across multiple stimuli supports the
existence of a basic metacognitive process that occurs
irrespective of the specific stimulus being presented.
Future research is needed in order to better understand
what influences the ability to report visual preferences.

The present findings have implications for the
development of eye tracking–based diagnostic tools
and clinical practice. Since gaze preferences are
predictive of mental health states (e.g., Giel et al.,
2011; Kellough et al., 2008), the positive correlations
observed here between subjective reports and gaze
preferences imply that asking individuals about their
visual preferences may also be predictive of their mental
health states. In addition, the finding that participants
were aware of their visual biases and preferences
could pave the way to techniques that interfere with
(undesirable) preferences in clinical settings. For
example, individuals could be trained to look more
or less at certain visual content as a function of their
biases. Indeed, simply enhancing their awareness
of their visual preferences might influence their
percepts.

Thus, overall, in three different tasks (attentional bias,
estimation, and scene viewing) and across seven types
of visual content, participants could accurately report
their visual preferences. Individuals’ sensitivity to their
visual preferences hints at memory and metacognitive
mechanisms that allow access to features of gaze
behavior. This access has applicative implications for
the development of eye tracking–based diagnostic tools
and clinical interventions.

Keywords: eye movements, visual cognition, meta
cognition, individual differences
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