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Abstract

The Chemical Master Equation (CME) is a cornerstone of stochastic analysis and simulation of models of biochemical
reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the
infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is
their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and computational requirements in
the number of problem dimensions. We present a novel approach that has the potential to ‘‘lift’’ this curse of
dimensionality. The approach is based on the use of the recently proposed Quantized Tensor Train (QTT) formatted
numerical linear algebra for the low parametric, numerical representation of tensors. The QTT decomposition admits both,
algorithms for basic tensor arithmetics with complexity scaling linearly in the dimension (number of species) and sub-
linearly in the mode size (maximum copy number), and a numerical tensor rounding procedure which is stable and quasi-
optimal. We show how the CME can be represented in QTT format, then use the exponentially-converging hp-discontinuous
Galerkin discretization in time to reduce the CME evolution problem to a set of QTT-structured linear equations to be solved
at each time step using an algorithm based on Density Matrix Renormalization Group (DMRG) methods from quantum
chemistry. Our method automatically adapts the ‘‘basis’’ of the solution at every time step guaranteeing that it is large
enough to capture the dynamics of interest but no larger than necessary, as this would increase the computational
complexity. Our approach is demonstrated by applying it to three different examples from systems biology: independent
birth-death process, an example of enzymatic futile cycle, and a stochastic switch model. The numerical results on these
examples demonstrate that the proposed QTT method achieves dramatic speedups and several orders of magnitude
storage savings over direct approaches.
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Introduction

In spite of the success of continuous-variable deterministic

models in describing many biological phenomena, discrete

stochastic models are often necessary to describe biological

phenomena inside living cells where random motion of reacting

species introduces randomness in both the order and timing of

biochemical reactions. Such random effects become more

pronounced when one factors in the discrete nature of reactants

and the fact that they are often found in low copy numbers

inside the cell. Manifestations of randomness vary from copy-

number fluctuations among genetically identical cells [1] to

dramatically different cell fate decisions [2] leading to pheno-

typic differentiation within a clonal population. Characterizing

and quantifying the effect of stochasticity and its role in the

function of cells is a central problem in molecular systems

biology.

In order to effectively capture this experimentally observed

stochasticity, the evolution of the chemical species of interest are

commonly modeled using jump Markov processes. Here, each

state of the process corresponds to the copy number of one of the

constituent species [3]. Within this framework, the evolution of the

probability density over the possible configurations of the reaction

network is described by a Forward Kolmogorov Equation,

frequently referred to as the Chemical Master Equation (CME)

within the chemical literature. While analytical solutions can be

obtained under specific assumptions about the structure of the

chemical network [4], these assumptions prove so restrictive as to

exclude the vast majority of biologically relevant systems. In most

cases, the CME cannot be solved explicitly and various numerical

simulation techniques have been proposed to approximately solve

the time-evolution problem.

A first class of methods seeks to compute approximations of the

CME solution instead by solving a truncated version of the original

Markov process. These methods are advantageous in that they

provide explicit error guarantees after simulation. This class

includes the finite state projection [5] and sliding window
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abstraction [6]. In these methods, the truncation is chosen so that

both the number of states retained is small enough that it may be

computed efficiently but large enough that it retains the majority

of the probability mass over the time evolution. Clearly, these two

objectives are not complementary. In order to guarantee that the

approximation has low error, most biologically relevant reaction

networks require truncations with so many states that they are

completely intractable on available hardware. The finite buffer

method [7,8] suggests a more sophisticated truncation to the states

reachable from a given initial state assuming that only a

prespecified finite number of molecules may be spontaneously

created. However, its use is limited to explicit time-stepping

schemes, in addition to requiring that the finite buffers be large to

compute accurate solutions.

A second broad class of methods are the kinetic Monte Carlo

approaches which instead seek to produce either exact or

approximate realizations of the underlying Markov process

[3,9,10]. By generating sufficiently many realizations, these

methods obtain statistics for events that are biologically important.

Unfortunately, in many systems, these important events occur

rarely, so that producing enough realizations to estimate these

statistics is prohibitive.

A third class of methods use asymptotic approximations to trade

accuracy for computational or analytical tractability. This class

includes the Moment Closure methods [11,12], the Linear Noise

Approximation (LNA) [13], and Chemical Langevin Equation

(CLE) treatments [14,15]. Each of these methods replaces the

discrete description of the population counts with a continuous one

and can therefore perform poorly in situations where the discrete

dynamics are difficult to capture with continuum models, e.g.

when even one of the reacting species exhibits low population

count or is constrained to have low population count, for instance,

in the presence of conservation laws.

Some of the classes of methods described so far perform well in

complementary regimes and recently there has been substantial

effort to combine these methods resulting in the so-called hybrid

methods. Several methods require a time-scale separation of the

dynamics to split the system into fast and slow species and impose a

quasi-stationary assumption for the fast reactions. An approximate

method which can converge quickly to an accurate approximation

of a stationary distribution such as t-leaping [16] or the Chemical

Langevin Equation [17,18] is used for the fast species, while the

slower but more accurate Gillespie algorithm is used for the slow

species. Rather than partitioning the species by time-scales of the

associated reactions, other methods separate by average molecule

count. The low count species are tracked by kinetic Monte Carlo

while an ODE approximation is made for the dynamics of the high

count species [19,20]. While these methods allow faster simula-

tions, speedups come at the cost of accuracy, as modeling errors

are introduced by the partial replacement of the CME with cruder

descriptions.

In order to provide methods that are both accurate and

computationally efficient, several numerical techniques for com-

pressing the dynamics and the solution have been explored in the

recent literature. Attempts were made to expand the probability

distribution as a linear combination of a small set of so-called

‘‘principal’’, orthogonal basis functions [21–25]. Then, either a

Galerkin projection was used to map the dynamics onto the lower

dimensional subspace spanned by the basis functions (Method of

Lines) or first a time discretization was used and then the basis at

each time step was adapted by either adding or subtracting basis

elements (Rothe’s Method). These methods differ primarily in

their choice of orthogonal basis. A common feature of these

approaches is that they begin with a basis for probability

distributions of a single variable and then use the corresponding

tensor product basis for multivariate distributions. This means that

they are susceptible to the so-called curse of dimensionality [26], that

is, the memory requirements and computational complexity of

basic arithmetics grow exponentially in the number of dimensions.

In the context of the CME, this means that all of these approaches

can exhibit an exponential scaling of the complexity with the

number of chemical species in the model.

Recent papers have attempted to address the curse of

dimensionality by using a low-parametric representation of tensors

known as canonical polyadic decomposition or CANDECOMP/

PARAFAC, both notions being subsumed under the acronym CP

[27,28]. CP is a methodology for generalizing the singular value

decomposition (SVD) for matrices to tensors of dimension greater

than two by representing the solution as sums of rank-one tensors

(equivalently, linear combinations of distributions in which species

counts are independent at each fixed time point). As long as the

tensor rank of the solution to be approximated remains low, these

approaches can be very computationally efficient as basic

arithmetics for tensors in the CP format scales linearly in the

number of tensor dimensions.

A key challenge in applying the CP decomposition to construct

approximate CME solvers is to control the tensor rank of the

computed solution. Basic algebraic tensor operations such as

addition and matrix-vector multiplication generally increase rank

and hence computational cost. In [29] it is suggested to recompute

a lower rank CP decomposition after every arithmetic operation.

This approach turned out to be problematic in practice. One

reason is that the problem of tensor approximation (in the

Frobenius norm) with a tensor of fixed rank is, in general, ill-posed

[30]. Thus, the numerical algorithms for computing an approx-

imate representation may easily fail. Another reason is that the

problem is NP-hard [31,32] and there is no robust algorithm

having any affordable complexity.

Another approach [33], related to the present work, attempts to

avoid the problem of approximation in the CP format entirely by

projecting the dynamics onto a manifold composed of all tensors

with a CP decomposition of some predetermined maximal tensor

Author Summary

Stochastic models of chemical networks are necessary to
quantitatively describe random fluctuations and other
probabilistic phenomena within living cells. The Chemical
Master Equation (CME) describes the time evolution of
molecular abundance probabilities in these models, and is
a basis for many stochastic simulation and analysis
methods. Yet the CME is difficult to solve directly except
for very simple structures. Indeed current approaches are
susceptible to the curse of dimensionality, that is, the
exponential growth of memory and computational re-
quirements in the number of problem dimensions. In this
paper, we propose a novel approach that has the potential
to overcome the curse of dimensionality. It is based on the
use of the recently proposed Quantized Tensor Train (QTT)
formatted numerical linear algebra for numerical repre-
sentation of tensors, using algorithms for basic tensor
arithmetics with complexity scaling linearly in the number
of reacting species considered, and sub-linearly in the
maximum allowed copy number per species. We present
this approach and demonstrate its effectiveness by
applying it to three problems from systems biology.
Numerical experiments are reported which show that
several orders of magnitude memory savings is typically
afforded by the new approach presented here.

Solution of the CME Using Quantized Tensor Trains

PLOS Computational Biology | www.ploscompbiol.org 2 March 2014 | Volume 10 | Issue 3 | e1003359



rank. This procedure results in a set of coupled nonlinear

differential equations which are then solved using available

ODE solvers. While this effectively controls the tensor rank of

the approximate solution, still, to the authors’ knowledge, there is

no way to estimate either theoretically (a priori) or numerically (a

posteriori) the CP rank of the full CME solution as a function of

given data.

In this paper we propose a new, deterministic computational

methodology for the direct numerical solution of the CME,

without modelling or asymptotic simplifications. The approach has

complexity that scales favorably in terms of the number of

different species considered and the maximum allowable copy

number of each of these species. It is based on the recently

proposed Quantized Tensor Train (QTT) formatted, numerical tensor

algebra [34–37] which operates on low-parametric, numerical

representation of tensors, rather than on their CP representations.

This decomposition admits both algorithms for basic tensor

arithmetics that scale linearly in the dimension (the species

number) and a robust adaptive numerical procedure for the tensor

truncation, which is quasi-optimal in the Frobenius norm.

We show in the present paper how the CME can be represented

in QTT format, then use hp-discontinuous Galerkin discretization

in time to exploit the time-analyticity of the CME evolution and to

reduce the CME evolution problem to a set of QTT structured

linear equations that are solved at each time step [38]. We then

exploit an algorithm available for solving linear systems in this

format that is based on Density Matrix Renormalization Group

(DMRG) methods from quantum chemistry.

The numerical experiments reported below (see, in particular,

Table 1) show several orders of magnitude memory savings, which

is typically afforded by the new approach presented here.

Results/Discussion

We start our development by formulating the Chemical Master

Equation (CME), arising from stochastically reacting chemical

species. Then we will devote the remainder of the article for its

proposed solution. A ‘‘well-stirred’’ solution of d chemically

reacting molecules in thermal equilibrium can be described by a

jump Markov process, where for each fixed time t§0, X (t)[Zd
§0

is a random vector of nonnegative integers with each component

representing the number of molecules of one chemical species

present in the system. In [29] and the references therein, it is

shown that, given an initial condition X (0)[Zd
§0, the correspond-

ing probability density function (PDF) Zd
§0|½0,?)] x,tð Þ.px tð Þ

of the process solves the Chemical Master Equation (CME):

d

dt
px tð Þ~{px tð Þ

XR

s~1

vs xð Þz
XR

s~1

px{gs tð Þvs x{gs
� �

ð1Þ

where R is the number of reactions in the system, gs[Zd and vs

are the stoichiometric vector and propensity function of the sth

reaction, respectively. The CME is a system of coupled linear

ordinary differential equations with one equation per state

X (t)~x[Zd
§0.

Our Approach to Solving the CME
We briefly outline our proposed methodology for the numerical

solution of the CME. Since the state space of solutions is countably

infinite, the main challenge to be overcome is the curse of

dimensionality. As the state space of the CME is typically

countably infinite, there is a countably infinite number of different

possible states that could be reached by the chemical system. Our

approach consists of employing efficient methods for tensor-

structured, rank-adaptive numerical solution of very large but

‘‘finite state projection’’ truncations of the CME. In a nutshell, we

are proposing to solve large, coupled systems of linear ODEs with

a special, tensor structure inherited from the CME. We now give a

Table 1. Overview of the QTT compression of the storage needed for solutions (maximum throughout the time stepping) and
CME operators.

Direct Approach Proposed Approach

run solution operator solution truncated solution operator

Mem Mem Mem ratio Mem ratio Mem ratio

d independent
birth-death processes

d = 1 4.103 1.687 736 1.8021 264 6.4522 992 5.9125

d = 2 1.687 2.8214 3858 2.3024 528 3.1525 2852 1.01211

d = 3 6.8710 4.7221 7742 1.1327 898 1.3128 4800 1.02218

d = 4 2.8114 7.9028 12176 4.33211 1432 5.09212 6748 8.52226

d = 5 1.1518 1.3236 16262 1.41214 1946 1.69215 11032 8.30233

genetic toggle switch

only 3.367 1.1215 65264 1.9523 – – 10988 9.76212

enzymatic futile cycle

(A) 4.196 1.7613 18396 4.3923 8472 2.0223 25848 1.4729

(D) 4.196 1.7613 360332 8.5922 290144 6.9222 5584 3.17210

For details on ‘‘truncated solution’’ see Numerical experiments. Common details. Solution Mem in the Direct Approach is the number of states taken into account

in the FSP, which is equal to the number of entries, N , in the solution vector. For the CME operator, Mem is N2 , the number of entries in the matrix. In the Proposed QTT
Approach, ratio indicates the memory storage compression ratio, i.e. the ratio of Mem in the Proposed QTT Approach to that in the Direct Approach. In the sparse

representation of the CME operator the number of nonzero entries would be O Nð Þ rather than N2 . The exponents are given in boldface for the base 10.
doi:10.1371/journal.pcbi.1003359.t001
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general outline of our approach, followed by detailed descriptions

of each of these steps.

1. Truncate the CME to obtain a linear ODE with a finite

state space. The CME describes the dynamics of probabilities

of finding the chemical system in different states. In general the

number of these different states is countably infinite, as it is not

unknown a priori the maximum number of copies that each species

can take. While this gives rise to an infinite number of state

variables, each indicating the probability of a given chemical state,

the vast majority of these probabilities are vanishingly small. This

has motivated approaches for truncating the infinite number of

state variables in the CME in a way that results in a finite number

of state variables corresponding to chemical states that are likely to

have high probability mass. The truncated CME consists of a

system of linear ODEs with finite state space, that can in principle be

solved. One such truncation approach which we will follow here is

the Finite State Projection method. This truncation approach has

the advantage of yielding bounds on the error between the solution

of the truncated finite system and the original infinite set of ODEs

(the CME). The Finite State Projection has been reported

elsewhere [5], but we give a brief description of the approach in

this article for completeness.

2. Express the truncated CME using tensors; Employ

numerical rank reduction and compression to save storage

and to speed up algebraic operations. In conventional

approaches to solving the CME, the state-space is enumerated

by a ‘‘long’’ index and the corresponding probabilities are stacked

into a vector p̂p(t) that is then multiplied by the CME operator to

form the right-hand side of the ODE:
d

dt
p̂p tð Þ~Ap̂p tð Þ. At all times t

the solution is an array indexed by a multi-index, e.g., x, which is a

d-tuple of indices xk[ 0,1,2, . . . ,nk{1f g, where k ranges from 1 to

d . We shall also refer to px tð Þ as a d-dimensional n1| . . . |nd -

vector. Our approach is based on exploiting the high-dimensional

structure of the vectors and matrices involved, related to the

separation of the indices, instead of stacking all indices into a single

‘‘long’’ index.

Linear operators acting on these d-dimensional n1| . . . |nd -

vectors can themselves be expressed using tensor notation. In our

case, the action of the CME operator A is one such operator. A

key aspect of our approach is that both the tensor vector px and

the tensor operator A arising from CME problems admit a

dramatic level of compression. This tensor compression is

achieved through the so called tensor train representation (TT).

Tensor train compression goes beyond exploiting the sparsity

structure, and actually exploits the rank structure of the tensor.

This reduced rank compression is at the heart of our approach to

the CME solution. The compression itself is analogous to the

compression of the low-rank representation of usual matrices.

Indeed, an n|n matrix of rank r%n can be stored using 2rn
variables, while the approximation can be based, e.g., on the

Singular Value Decomposition (SVD). In a similar fashion, the TT

format is a generalization of this compression to multidimensional

tensors. This is both true for tensors and linear operators acting on

these. Further adaptive data reduction and compression is afforded by the

so-called quantized tensor train (QTT) format. Both the TT and

QTT formats will be discussed later in this article, along with

simple examples demonstrating the compression that can be

achieved by using these formats.

3. Employ hp-discontinuous Galerkin discretization in
time to solve the truncated ODE. Once the problem has

been represented in QTT format, we use hp-discontinous Galerkin

(hp-DG) discretization in time as the time-stepping scheme [38] to

solve the truncated ODE. Given a time mesh, the hp-DG method

finds an approximate solution to the initial value problem that is a

polynomial when restricted to each subinterval of the time mesh

and possibly discontinuous at each mesh point. This method

allows adaptation of the size of each time step (h-adaptation),

allowing good resolution of fast transients, as well as the order of the

approximating polynomial on each time step (p-adaptation), or both

simultaneously (hp-adaptation). For linear ODE initial value

problems like the projected CME, the hp-DG approach achieves

exponential rates of convergence to the classical solution with respect to the

number of temporal degrees of freedom. Practically, hp-DG

discretization in time reduces the projected CME evolution problem

to a sequence of systems of QTT structured linear equations that

must be solved at each time step. Our computational method then

exploits an algorithm available for solving linear systems in this

format that is based on Density Matrix Renormalization Group

(DMRG) methods from quantum chemistry.

CME Truncation: Separability and Finite State Projection
of the CME Operator

Munsky and Khammash [5] rewrote the right-hand side of the

CME (1) as the action of a linear operator A on the probability

density at the current time:

d

dt
p tð Þ~Ap tð Þ ð2Þ

Throughout this paper, we refer to A as the CME operator.

Hegland and Garcke introduced an explicit representation of

the CME operator as sums and compositions of a few elementary

linear operators [29]: let Sg be the spatial shift of a probability

density by a vector g[Zd and let Mv be multiplication by a real-

valued function v:

Sg p
� �

x
~px{g, Mv pð Þx~v xð Þ:px:

Then the CME operator can be written as follows, with denoting

the identity operator:

A~
XR

s~1

Sgs{
� �

0Mvs : ð3Þ

To simplify the exposition, we assume that all propensity functions

are rank-one separable, i.e. they are of the form

vs xð Þ~P
d

k~1
vs

k xkð Þ, x[Zd
§0, ð4Þ

for 1ƒsƒR, where each vs
k xkð Þ is a nonnegative function in the

single variable xk. Considering rank-one separable propensity

functions is sufficient for all elementary reactions which occur as

building blocks in more complicated reaction kinetics.

The CME (2) is posed on the (countably) infinite space Zd
§0 of

states. In this form, the CME (1) is an infinite-dimensional coupled

evolution problem which necessitates truncation prior to numer-

ical discretization. In the case of a particular class of monomo-

lecular reactions, Jahnke and Huisinga were able to construct an

explicit solution in terms of convolutions of products of Poisson

and multinomial distributions [4].

In order to be able to address more complex systems

computationally, Munsky and Khammash proposed the Finite

State Projection Algorithm (FSP) [5] which seeks to truncate the

Solution of the CME Using Quantized Tensor Trains
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countably infinite dimensional space Zd
§0 of states of the process to

its finite subset

Vn~ x[Zd
§0 : 0ƒxkvnk for 1ƒkƒd

� �
5Zd

§0, ð5Þ

associated with a multi-index n~ n1,n2,:::,ndð Þ[Nd , so that the

dynamics over Vn are close to those of the original system; see

Theorem 1. In practice, the truncation satisfying a given error

tolerance may still require a very large number of states: the

dimension of the FSP vector p̂p equals card(Vn)~Pd
k~1 nk

rendering a direct numerical solution of even the projected

equation (S1.1) infeasible in many cases. The remainder of the

paper presents a novel approach for the numerical solution of such

FSP truncated systems that retain large numbers of states. For

notational convenience, we drop the superscripts n and the hat

from p̂p indicating the FSP since we will only consider systems

which have already been truncated. Similarly, we now use the shift

and multiplication operators in (3) restricted to the truncated state

space without change of notation.

Assuming that a FSP has been performed, we henceforth treat

px tð Þ as a d-dimensional n1| . . . |nd -vector, i.e. as an array

indexed by Vn which we identify with ordered d-tuples of indices

ik[ 0,1,2, . . . ,nk{1f g, where k ranges from 1 to d. Each dimension

k (alternatively referred to as a mode or level) has a corresponding mode

size nk, that is, the number of values which the index for that

dimension can take. For our chemically reacting system, nk{1
corresponds to the maximum number of copies of the kth species

that is considered. For a more detailed introduction to basic tensor

operations and terminology see, for example, [39,40].

For the same ordering of x, consider the corresponding d-

dimensional n1| . . . |nd -vectors vs, 1ƒsƒR, containing the

values of the propensities on Vn to which we shall refer as propensity

vectors:

vs
x~vs xð Þ for all x[Vn: ð6Þ

Within the projected CME (S1.1), the operators corresponding to

weighting by the propensity functions, involved in (3), are finite

matrices: Mvs~diagvs. Then, under the rank one separability

assumption (4), with vs
k

� �
xk

~vs
k xkð Þ for 0ƒxkƒnk, 1ƒkƒd

there holds

vs~vs
16 . . .6vs

d , 1ƒsƒR: ð7Þ

Tensor Representation of the CME: TT and QTT Formats
Tensor Train representation of vectors and

matrices. Our approach to the direct numerical solution of

the CME (2) is based on the structured, low-parametric

representation of all vectors and matrices involved in the solution

in the Tensor Train (TT) format [34,41] developed by Oseledets

and Tyrtyshnikov. To present it, let us consider a d-dimensional

n1| . . . |nd -vector p and assume that two- and three-dimen-

sional arrays U1,U2, . . . ,Ud satisfy

pj1,...,jd
~
Xr1

a1~1

. . .
Xrd{1

ad{1~1

U1 j1,a1ð Þ: U2 a1,j2,a2ð Þ: . . .

:Ud{1 ad{2,jd{1,ad{1ð Þ:Ud ad{1,jdð Þ

ð8Þ

for 0ƒjkƒnk{1, where 1ƒkƒd . Then p is said to be

represented in the TT decomposition in terms of the core tensors

U1,U2, . . . ,Ud . The summation indices a1, . . . ,ad{1 and limits

r1, . . . ,rd{1 on the right-hand side of (8) are called, respectively,

rank indices and ranks of the decomposition. See Figure 1 for a

schematic drawing.

The TT decomposition can potentially result in large compres-

sion of the tensor by exploiting the rank structure of the tensor.

This is demonstrated in a simple example

Example 1 (TT Compression) Consider a vector p of size

n|n|n given elementwise by

pj1j2j3
~sin a1j1za2j2za3j3ð Þ, 0ƒj1,j2,j3vn,

where a1,a2,a3[R. By applying trigonometric identities, one obtains for all

0ƒj1,j2,j3vn the following row-matrix-column factorization:

pj1j2j3
~ sin a1j1 cos a1j1ð Þ

cos a2j2 {sin a2j2

sin a2j2 cos a2j2

� 	
cos a3j3

sin a3j3

� 	
,

in which the indices are separated so that every factor depends on the

corresponding index only. This factorization implies a TT representation of the

form (8) with ranks r1~r2~2 and the cores given for 0ƒj1,j2,j3vn by

U1 j1,:ð Þ~ sin a1j1 cos a1j1ð Þ,

U2
:,j2,:ð Þ~

cos a2j2 {sin a2j2

sin a2j2 cos a2j2

 !
, U3

:,j3ð Þ~
cos a3j3

sin a3j3

 !

This TT decomposition involves nr1zr1nr2zr2n~8n parameters instead

of n3 required for the elementwise representation. The case of dw3 dimensions

is considered in [42, Theorem 4], the number of parameters being under 4dn

compared to nd .

Unlike CP, the TT format allows the construction of a

decomposition, exact or approximate, through the low-rank repre-

sentation of a sequence of single matrices; for example, by SVD. In

particular, note that for every k~1, . . . ,d{1 the decomposition

(8) implies a rank-rk representation of an unfolding matrix U(k) which

consists of the entries

U
(k)

j1,...,jk ; jkz1,...,jd
~pj1,...,jk ,jkz1,...,jd

:

Here, the overscore denotes the vectorization of multi-indices:

j1, . . . ,jk~
Xk

m~1
jmP

k

‘~mz1n‘
for 1ƒkƒd. Conversely, if the

vector p is such that the unfolding matrices U(1), . . . ,U(d{1) are of

ranks r1, . . . ,rd{1 respectively, then the cores U1,U2, . . . ,Ud , such

that (8) holds, do exist; see Theorem 2.1 in [41]. The ranks of the

unfolding matrices are the lowest possible ranks of a TT

decomposition of the vector and, therefore, are called TT ranks

of the vector.

What is more important is that the low-rank matrix structure of

the unfolding matrices translates into the low-rank TT structure of

the vector. Once the former can be approximated in the Frobenius

norm with ranks r1, . . . ,rd{1 and accuracies e1, . . . ,ed{1, the latter

can be approximated in the same norm in the TT format with

ranks r1, . . . ,rd{1 and accuracy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd{1

k~1
e2

k

r
. The proof relies on

the TT approximation algorithm. For details, we refer to Theorem

2.2 with the corollaries and to Algorithms 1 and 2 in [41]. This low

rank approximation of the unfolding matrices can be considered
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and is implemented as adaptive and compressive data represen-

tation at each stage of computation.

Example 2 (Unfolding of a tensor) Consider a tensor p of size

3|2|2. It has two unfolding matrices U(1) and U(2) given by

U(1)~

p111 p121 p112 p122

p211 p221 p212 p222

p311 p321 p312 p322

0
B@

1
CA and U(2)~

p111 p112

p211 p212

p311 p312

p121 p122

p221 p222

p321 p322

0
BBBBBBBB@

1
CCCCCCCCA
:

While p, U(1), and U(2) are structured differently, all have the same entries

and represent the same data. The two TT ranks of p are exactly the (matrix)

ranks of U(1) and U(2).

Note also that, unlike CP, the TT representation relies on a

certain ordering of the dimensions so that reordering dimensions may

affect the numerical values of TT ranks significantly. We discuss this issue

in more detail in the transposed QTT section.

The TT representation may be applied to multidimensional

matrices in a similar way as to vectors. Consider a d-dimensional

m1| . . . |mdð Þ| n1| . . . |ndð Þ-matrix A. Let us vectorize it

and merge the corresponding row and column indices to obtain a

d-dimensional m1
:n1| . . . |md

:nd -vector a. Then the TT

representation of the vector a, given by the elementwise equality

A i1, . . . ,id ; j1, . . . ,jd
~ai1,j1,...,id ,jd

~
Xr1

a1~1

. . .
Xrd{1

ad{1~1

V1 i1,j1,a1ð Þ

: V2 a1,i2,j2,a2ð Þ: . . . :Vd{1 ad{2,id{1,jd{1,ad{1ð Þ:Vd ad{1,id ,jdð Þ,

ð9Þ

is called a TT representation of the matrix A, the cores V1, . . . ,Vd

are now three- and four-dimensional arrays. Our discussion of the

efficiency and robustness of the TT decomposition of vectors also

applies to the matrix case.

Note that the Hierarchical Tensor Representation [43,44] itself and

coupled with the tensorization [45], an extensive overview of which

is available in [40], are closely related counterparts of the TT and

QTT formats respectively. Also, the structure called now TT

decomposition has been known in theoretical chemistry as Matrix

Product States (MPS). It has been exploited by physicists to describe

quantum spin systems theoretically and numerically for at least

two decades now, see [46,47], cf. [48].

Basic operations of the numerical calculus with vectors and

matrices in the TT format, such as addition, Hadamard and dot

products, multi-dimensional contraction, matrix-vector multipli-

cation, etc. are considered in detail in [41]. Since the main aim of

using tensor-structured approximations is to reduce the complexity

of computations and avoid the curse of dimensionality, we

emphasize that the storage cost and complexity of basic operations

of the TT arithmetics, applied to the representation (8), can be

bounded by dnra with a[ 2,3f g, where n§n1, . . . ,nd and

r§r1, . . . ,rd{1. This estimate is formally linear in d; however,

the TT ranks r1, . . . ,rd{1 in (8) may depend on d and n. Showing

that the TT ranks are moderate, e. g. constant or growing linearly

with respect to d and constant or growing logarithmically with

respect to n, is a crucial issue in the context of TT-structured

methods and has been addressed so far mostly experimentally, see,

e. g. [49–53].

The TT approximation of a vector with d indices treated

separately results in a decomposition with d{1 TT ranks which

may take different values. To characterize them, an aggregate

characteristic such as the effective rank of the TT decomposition is

used. Consider an n1| . . . |nd -tensor is given in a TT

decomposition with ranks r1, . . . ,rd{1. We call the positive root

reff~r of the quadratic equation

n1r1z
Xd{1

k~2

rk{1nkrkzrd{1nd~n1rz
Xd{1

k~2

rnkrzrnd ð10Þ

the effective rank of the decomposition. Note that, for integer values of r,

the definition (10) equates the memory needed to store two TT

representations. The one corresponding to the left-hand side, is the

given decomposition. The one corresponding to the right-hand

side is of a vector with the same mode sizes, but with equal d{1
ranks r, . . . ,r. This renders reff ‘‘effective’’ with respect to

memory. On the other hand, the complexity of some TT-

structured operations, such as the matrix-vector multiplication and

Hadamard product, can also be estimated with the use of reff .

Quantized Tensor Train representation. So far, we have

discussed the use of the TT format for extracting low-rank

structure with respect to the ‘‘physical’’ dimensions, which are

naturally distinguished in the data due to their meaning in the

context of a particular problem. For the subject of the present

paper, such dimensions represent the reacting species. However,

Figure 1. Schematic drawing of a TT decomposition of a five-dimensional array. Each TT core can be visualized as a stack of matrices with
the size of the stack equal to the corresponding mode size. The number of TT cores is equal to the number of dimensions of the array. Element
u(j1, . . . ,j5) of the full array is given by the (matrix) product of matrix j1 selected from core U1, matrix j2 from core U2 , etc. Note that the size of each
matrix within a core must be the same, but may differ between distinct cores. Note also that the number of matrices in each core depends on the
corresponding mode size of the full tensor and generally differs between cores. Such an interpretation in the sense of a product of parametric
matrices is widely used for the Matrix Product States, see [46–48].
doi:10.1371/journal.pcbi.1003359.g001

(9)
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every such a dimension can be unfolded, or quantized, into a few

virtual dimensions representing its levels, or scales. Then the data

can be represented in the TT format applied to all the virtual

dimensions introduced. The use of quantization in the context of

tensor decompositions dates back to [54]. For the TT format, it

results in the Quantized Tensor Train (QTT) format [35–37]. For the

convenience of the reader, we provide a brief review and refer to

[35–37] for details.

Consider a d-dimensional vector of size n1| . . . |nd . Assume

that the kth mode size nk can be factorized as nk~nk,1
:nk,2

:

. . . :nk,lk in terms of integral factors nk,1, . . . ,nk,lk §2. Then the kth

mode index jk can be represented in a one-to-one fashion through

a tuple jk,1, . . . ,jk,lkð Þ of lk virtual indices. Here, jk,mk
runs from 0 to

nk,mk
{1 for 1ƒmkƒlk. The index transformation rule can be

defined in many ways.

In order to associate the virtual indices with the scales in

the vector, the transformation jk<
Xlk

mk~1
ik,mP

lk

‘~mkz1nk,‘

can be chosen. This index (bijective) transformation is analogous to

the positional notation for encoding numbers. In this

work we indicate this by the overscore notation

jk,1, . . . ,jk,lk ~
Xlk

mk~1
jk,mkP

lk

‘~mkz1nk,‘
. In the most general

case, the ‘‘virtual’’ mode factors nk,1, . . . ,nk,lk , which are

analogous to the bases in the positional notation, may differ for

different positions 1, . . . ,lk.

In terms of the vector, such an index transformation is often

called quantization. It is equivalent to folding, or reshaping,

the kth mode of size nk into lk modes of sizes nk1, . . . ,
nk,lk . When applied to all dimensions, this procedure

transforms a d-dimensional n1| . . . |nd -vector indexed by

j1~j1,1, . . . ,j1,l1 , . . . ,jd~jd,1, . . . ,jd,ld into an l1z . . . zld -dimen-

sional n1,1| . . . |n1,l1 | . . . . . . |nd,1| . . . |nd,ld -vector in-

dexed by j1,1, . . . ,j1,l1 , . . . . . ., jd,1, . . . ,jd,ld . A TT decomposition

of the quantized vector is referred to as QTT decomposition of the

original vector; the ranks of this TT decomposition are called ranks

of the QTT decomposition of the original vector. For details, we refer

to the papers [35–37] cited above.

Example 3 (QTT Compression) Consider a vector q of size Nw1
given elementwise by

qj~sin ajð Þ, 0ƒjvN,

where a[R. Assume that N~nl , where l~3 and n[N. Then the index j

running from 0 to N{1 can be represented as j~j1j2j3~n2j1znj2zj3
through l~3 ‘‘virtual’’ indices j1,j2,j3 running from 0 to n{1 each. The

corresponding quantization p of q of size n|n|n is given by

pj1j2j3
~qj1j2j3

~sin an2j1zanj1zaj3
� �

, 0ƒj1,j2,j3vn:

By applying the discussion of Example 1 to p, we see that the QTT format

represents q with the cores and ranks given in Example 1 through 8n
parameters intead of N required for the elementwise representation. The case of

lw3 virtual levels is considered in [37, Lemma 2.5] and [42, Theorem 7],

the number of parameters being under 4ln~n logn N instead of N. In these

paper, we use the binary quantization with n~2.

If the natural ordering

j1,1, . . . ,j1,l1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1st dimension

, j2,1, . . . ,j2,l2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2nd dimension

, . . . . . . , jd,1, . . . ,jd,ld|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
dth dimension

ð11Þ

of the ‘‘virtual’’ indices is used for representing the

quantized vector in the TT format, then the ranks of the QTT

decomposition can be enumerated as follows:

r1,1, . . . ,r1,l1{1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1st dimension

,̂rr1,r2,1, . . . ,r2,l2{1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
2nd dimension

,̂rr2, . . . . . . ,̂rrd{1,rd,1, . . . ,rd,ld {1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
dth dimension

,

where r̂r1, . . . ,̂rrd{1 are the TT ranks of the original tensor, i.e. the

ranks of the separation of ‘‘physical’’ dimensions. That is, the TT

ranks of a tensor are some of the QTT ranks of the same tensor,

provided that the natrual ordering (11) is used.

Note that equations (8) and (9) can also be understood as

QTT representations of a ‘‘one-dimensional’’ vector (i.e. a

vector with a single ‘‘physical’’ index) q and of a ‘‘one-

dimensional’’ matrix (i.e. a matrix transforming such vectors) B
with entries qj1,...,jd

~pj1,...,jd
and B

i1, . . . ,id ; j1, . . . ,jd
~A i1, . . . ,

id ; j1, . . . ,jd respectively. In this case, d denotes the number of

virtual dimensions corresponding to the single ‘‘physical’’

dimension.

As a QTT decomposition is a TT decomposition of an

appropriately quantized (and possibly, as we discuss in a later

section, transposed) tensor, the TT arithmetics referred to in

the previous section, when applied to QTT decompositions,

naturally provides the same basic operations in the QTT

format.

Quantization is crucial for reducing the computational com-

plexity further, as it allows the TT decomposition to resolve and

represent more structure in the data by splitting the ‘‘virtual’’

dimensions introduced by the quantization, as well as the

‘‘physical’’ ones. In practice it appears the most efficient to use

as fine a quantization (i.e. with small nk,mk
) as possible and to

generate as many virtual modes as possible. For example, when

nk~2lk for 1ƒkƒd , one may consider the ‘‘ultimate quantization’’

with nk,mk
~2 for all mk and k. In this case,

jk~jk,1, . . . ,jk,lk ~
Xlk

mk~1
2lk{mk jk,mk

, where the indices

jk,1, . . . ,jk,lk take the values 0 and 1.

The storage cost and complexity of basic QTT-structured

operations are estimated from above through dlra with a[ 2,3f g,
where l§l1, . . . ,ld and r is an upper bound on all the QTT ranks

of the decomposition in question. Note that this estimate may be,

depending on r, logarithmic in n (also in nd~2dl , which is an

upper bound on the number of entries). The notion of the effective

rank defined by (10) for TT decompositions applies verbatim to

vectors and matrices represented in the QTT format.

Structure of the CME operator in the QTT format. In the

following we consider the Finite State Projection of the CME, as

described previously, with nk~2lk for 1ƒkƒd and assume that

the PDF p of the truncated model and of the CME operator A
from (3) are represented in the QTT format outlined in the

previous section. We use the ultimate quantization, so that nkm~2
for 1ƒmƒlk and 1ƒkƒd . In this section we mathematically

establish rigorous upper bounds on the QTT ranks of A under

certain assumptions on the propensity vectors vs, 1ƒsƒR,

defined by (6).

Theorem 4 Consider the projected CME operator A defined by (3).

Assume that for every s~1, . . . ,R and k~1, . . . ,d the one-dimensional

vector vs
k from (6)–(7) is given in a QTT decomposition of ranks bounded by

rs
k; and that gs

k~0 implies rs
k~1. Then the CME operator A admits a

QTT decomposition of ranks

q1, . . . ,q1,q̂q1,q2, . . . ,q2,q̂q2, . . . , . . . ,q̂qd{1,qd , . . . ,qd
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with q̂qk~2R for 1ƒkƒd{1 and

qk~
X

s~1,...,R:
gs
k
~0

2 z
X

s~1,...,R:
gs

k
=0

3rs
k

for 1ƒkƒd.

The proof is provided at the end of Text S1.

A crude upper bound on the QTT ranks of the CME operator,

following from Theorem 4 in terms of r~maxs,krs
k, equals 3:R:r

and is still favorable, since it ensures the estimate O dlR2r2
� �

for

the number of parameters, i.e. the storage cost, where l1, . . . ,ldƒl.
Note that if the kth factor vs

k of the s-th propensity function is a

polynomial of degree ps
k, then vs

k (7) can be represented in the

QTT format with ranks bounded by rs
k~ps

kz1 uniformly in lk,

see [45, Corollary 13] and [42, Theorem 6]. In particular, this is

the case when the reaction network is composed entirely of

elementary reactions. Our numerical experiments show that the

QTT ranks of propensity vectors corresponding to rational

propensity functions are low as well, which results in low QTT

ranks of the CME operator (in particular, see the toggle switch

example).

The rank estimate of Theorem 4 is based on the construction of

the CME operator, in which the reactions are treated indepen-

dently, and the ranks of the terms corresponding to different

reactions are summed. However, the bases of the QTT

representation of these terms can be related so that the resulting

decomposition of the CME operator can be reduced without

introducing any error; for example, in the case of polynomial

propensity functions. However, the rank bound of Theorem 4 is

sharp for general vectors used as propensity vectors.

Transposed QTT representation. So far we have shown

that the CME operator (3) under the FSP projection admits the

low-parametric representation in the standard QTT format

introduced previously. However, such a compressibility of the

operator does not imply that the format is suitable for the efficient

numerical solution of the CME. The example presented in Section

S1.2 hints at a natural modification of the QTT decomposition.

We represent in the TT format the quantized vector with virtual

dimensions permuted so that the ‘‘virtual’’ indices corresponding

to the same levels of quantization of different physical dimensions

are adjacent; for example, for l1~ . . . ~ld~l instead of (11) we

use the ordering

j1,1, . . . ,jd,1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
1st level

, j1,2, . . . ,jd,2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
2nd level

, . . . . . . , j1,l , . . . ,jd,l|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dth level

: ð12Þ

When l1, . . . ,ld are not equal, in order to obtain a similar to (12)

transposed ordering of indices, we introduce void indices jk,mk

with nk,mk
~1 for lkz1ƒmkƒmax1ƒk’ƒd lk’, reorder all the

‘‘virtual’’ indices according to (12) and then drop the void ones.

This modification of the QTT format, which we refer here to as

quantized-and-transposed Tensor Train; shortly, transposed QTT or QT3.

It was first applied to vectors in [55].

The index ordering (12) aims at the low-rank representation of

such tensors, in which the physical dimensions are coupled on the

corresponding virtual levels, i.e. scales, much more than different

scales are within each single dimension. This is the case for the

extreme example (S1.5), where we end up with a rank-one

decomposition if we choose to separate the scales first, and the

physical dimensions, then. Despite such a difference in approx-

imation properties, from the algorithmic point of view, QT3 is a

minor modification of the standard, widely used form of the QTT

format. We do not imply any particular ordering of indices by

referring simply to QTT.

Structure of the CME operator in the transposed QTT

format. Similarly to Theorem 4, we can bound the ranks of the

CME operator in the transposed QTT format relying on the

ordering (12) of ‘‘virtual’’ indices.

Theorem 5 Consider the projected CME operator A defined by (3).

Assume that for every s~1, . . . ,R and k~1, . . . ,d the one-dimensional

vector vs
k from (6)–(7) is given in a QTT decomposition of ranks bounded by

rs
k; and that gs

k~0 implies rs
k~1. Then the CME operator A admits a

QT3 decomposition of ranks bounded by

XR

s~1
ð1zP

k[Ks
2ÞðP

k[Ks
rs

kÞ,
where Ks~ k[N : 1ƒkƒd and gs

k=0
� �

.

The proof is given at the end of Text S1.

We observe in the enzymatic futile cycle example below that the

QT3 ranks of the CME operator may be significantly lower than

the bound of Theorem 4.

Time Integration of the CME: hp-Discontinuous Galerkin
Discretization

Let us consider the truncated CME (S1.1) with a state space

X~Rn1|...|nd on a finite interval J~(0,T). The Cauchy problem

with an initial value p0[X reads as find a continuously

differentiable function p : J?X such that

_pp tð Þ ~ A:p tð Þ for t[J,

p 0ð Þ ~ p0:

(
ð13Þ

The solution to (13) is given theoretically by p tð Þ~exp tAð Þ:p0

for t[J, but the straightforward numerical evaluation of the

matrix exponential involved is a very challenging task due to the

‘‘curse of dimensionality’’. Instead, we use the QTT-structured

hp-discontinuous Galerkin (hp-DG-QTT for short) time-stepping

scheme, proposed in [38], to solve (13). The hp-DG time

stepping was proposed earlier in [56] for initial value problems

for abstract, possibly non-linear, ODEs. We recapitulate the

analysis results from [56] for problems of the particular form

(13), which have unique, analytic in time classical solutions. To

discuss the tensor structure of the hp-DG-QTT approach, we

revisit [38].

Let us denote by Pr I ,Xð Þ the space of polynomials defined on a

finite interval I , of degree r at most and with coefficients from X .

Let M~ Jmf gM
m~1 be a partition of the time interval J into

subintervals Jm~(tm{1,tm), 1ƒmƒM, and r[NM
§0. Consider the

space

Pr M,Xð Þ~ p : J?X : pDJm[P
rm Jm,Xð Þ for 1ƒmƒM

� �

of functions, which are polynomials of degree rm at most on Jm for

all m. For all q[Pr M,Xð Þ let qz
m ~ limt;tm q tð Þ and

q{
m ~ limt:tm q tð Þ for all feasible m.

Definition 6. The hp-DG formulation of (13), corresponding to the

partitionM of the time interval and the vector r of polynomial degrees, reads
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as follows: find p[Pr M,Xð Þ such that

XM
m~1

ð
Jm

S _pp{Ap,qTdtz
XM
m~1

Spz
m{1{p{

m{1,qz
m{1T~0 ð14Þ

for all q[Pr M,Xð Þ, where p{
0 stands for the initial value p0.

Equation (14) can be understood as a time-stepping method: if

for all m from 1 up to ‘{1 the polynomial pDJm
[Prm Jm,Xð Þ is

known through rmz1 coefficients from X , then pDJ‘[P
r‘ J‘,Xð Þ

can be found as the solution to

ð
J‘

S _pp{Ap,qTdtzSpz
‘{1{p{

‘{1,qz
‘{1T~0: ð15Þ

For 1ƒmƒM let wj

� �rm
j~0

be a basis in Prm ({1,1),Xð Þ, then the

corresponding temporal shape functions on Jm are wj0F{1
m ,

0ƒjƒrm, where the affine map Fm : ({1,1)?Jm is defined by

t~Fm(t)~
1

2
(tmztm{1)z

1

2
(tm{tm{1)t for t[({1,1). If pDJm~Prm

j~0 Pmð Þj : wj0F{1
m

� �
, where Pm[X rmz1^R rmz1ð Þ|n1|...|nd ,

then (15) yields the following linear system on the coefficients:

Cm6 {Gm6Að Þ:Pm~wm{16p{
m{1, ð16Þ

where Cmð Þ i; j ~
Ð 1

{1
w’j(t)wi(t)dtzwj({1)wi({1) and

Gmð Þ i; j ~
Ð 1

{1
wj(t)wi(t)dt for 0ƒi,jƒrm, while wm{1ð Þi~

wi {1ð Þ for 0ƒiƒrm.

The hp-DG time discretization allows, on the one hand, to

resolve fast transients in the evolution by the time-step and

polynomial order adaptation for time-analytic solutions given

through matrix exponentials of the CME operator. In particular,

due to the time-analyticity of the solution, exponential rates of

convergence in r are achieved; for example, for the ‘‘h-version’’

with r~ r0, . . . ,r0ð Þ the error bound of Proposition 3 of Text S1

can be recast as

sup
t[J

Ep tð Þ{p̂p tð ÞE2ƒC exp {br0ð Þ

with constants C,bw0 asymptotically independent of r0, see [56,

Theorem 3.18]. This implies that a prescribed level of accuracy e

can be reached with r0M~O log e{1
� �

temporal degrees of

freedom.

In the tensor representation of the system (16) we keep the QTT

format used for A and attach the temporal index as a single

dimension (without quantization) to the first ‘‘virtual’’ spatial

index. In Section S1.3 we present this format in more detail.
Theorem 7. Assume that A is represented in the QTT or QT3 format

in terms of D cores with ranks r1, . . . ,rD{1. Then the matrix of system (16)

can be represented in the corresponding format in terms of Dz1 cores with

ranks 2,r1z1, . . . ,rD{1z1.

The proof is given at the end of Text S1.

As an alternative to the presently considered order and stepsize

adaptive time-stepping, it has been proposed in [5] to use a low-

order time discretization with a uniformly small step and rely on

tensor-structured compression methods also for time-adaptivity.

This approach leads to one large linear system with low-rank

structure. We found this approach to be more demanding to the

tensor-structured solvers, since the aggregate linear system for all

time steps seems to be more difficult to solve. A remedy may be to

partition the time interval into subintervals with possibly different

time steps being used within each such subinterval, which already

shifts the approach in the direction of the presently proposed hp-

DG method. In the presence of time inhomogeneity the aggregate

systems in general lose their low-rank structure rendering the

space-time tensor approach less efficient, while the hp-DG method

would still perform well.

Algorithm Summary
Assuming we have a finite state projection of the CME, we

summarize our approach to the CME solution by outlining the

two main algorithms we propose for its subsequent efficient

solution. Given a reaction network and a finite state projection

Algorithm 1 (Box 1) approximates the CME operator in QTT

format. Algorithm 2 (Box 2) then describes the time-stepping

procedure for computing the solution. Note that the integrals in

Algorithm 2 may be pre-computed depending on the choice of

temporal basis functions. E.g. if one chooses the Legendre

polynomials as the basis, then there are explicit solutions of the

integrals involved.

Comparison to Krylov Subspace Methods
The solution at a particular time of a finite state projection of

the CME is given analytically by the matrix exponential, but the

numerical computation of such solutions for large A is often

expensive. When A is sparse, however, the Krylov subspace

method [57,58] is one approach for performing the computation

for the CME as described in [59]. The method uses the Arnoldi

iteration to compute the Krylov subspace up to some order of

accuracy then computes the matrix exponential in that smaller

space (by diagonal Padé approximation). The publicly available

Expokit Toolbox by Sidje [60] provides an implementation of the

algorithm.

Algorithm 1. Assemble Projected CME Operator in QTT
Matrix Format.
Require: Rank-1 separable propensity functions vs xð Þ,
stoichiometric vectors gs, rectangular FSP truncation

½0, . . . ,2l1{1�| . . . |½0, . . . ,2ld {1�, propensity QTT com-
pression tolerance [prop, a QTT approximation subroutine
QTT Approx implementing [4, Algorithm 1] for quantized
vectors.
Ensure: Projected CME operator A in QTT matrix format

Initialize A~0;
for s~1, . . . ,R do

Sgs~S
(l1)

gs
1
6 . . .6S

(ld )

gs
d

;

for k~1, . . . ,d do

vs
k~QTT Approx(vs

k(0, . . . ,2lk {1)) with tolerance
[prop;

end for

vs~vs
16 . . .6vs

d ;

Mv s~diag vs;

A~Az Sgs{II
� �

0Mvs ;

end for

Solution of the CME Using Quantized Tensor Trains
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It is important to note that the algorithm steps incrementally in

time rather than jumping to the desired time step. In the context of

the CME, this means that the faster the support of the pdf fills the

set of reachable states, the more expensive this algorithm becomes

to compute. When there is reason to believe the support of the pdf

remains small, then the algorithm can be expected to compute

efficiently over large time intervals. Generically, however,the

support of the pdf quickly fills the set of reachable states which

may include every state retained in the projection. This renders

the Arnoldi iteration computationally expensive at each time step.

The QTT method effectively circumvents this problem by

storing the computed solution at each time step in the QTT

format and exploiting the fast algorithms for basic tensor

arithmetic available in this format. While it is unknown whether

a given reaction network and initial probability distribution will

produce an evolution that can be represented well by a QTT

formatted tensor with low QTT ranks, our numerical experiments

find this often is the case and that the savings over using traditional

sparse representations of vectors and matrices may be quite

substantial.

Below we compare our method to the Krylov subspace

approach in the toggle switch example which does not exhibit

any pronounced structure favoring either one of the methods

(rank-one separability and sparse structure respectively).

Numerical experiments
Common details. At the mth time step, after having

obtained Pm as an approximate solution of the corresponding

linear system (16), we evaluate p{
m and reapproximate it in the TT

format with relative ‘2-accuracy EPS in order to drop excessive

QTT components. The values of EPS and the complete set of

parameters of the time discretization and of the DMRG solver are

reported for each experiment in Section S1.7.

We compare the evaluated solution or its marginal to a

reference data. By D‘p
we denote the ‘p-norm of the discrepancy.

Generally we start with the ‘2-norm, which can be easily

computed even when the comparison is made only in the (Q)TT

format and cannot be made in the full format (which is the case in

the d-independent birth-death processes experiments for d§3). In

some cases we compute also the discrepancy for p~1 and the

probability deficiency ERRS p{
m

� 

~ 1{

X
p{

m

��� ���. The reference

data is also obtained with a certain accuracy which cannot be

reduced arbitrarily. Moreover, in some cases our solution appears

to be more accurate, which accounts for using the term

‘‘discrepancy’’ instead of ‘‘error’’.

In the first and third examples we reapproximate the solution

once more, with relative ‘2-accuracy a:
D‘2

p{
m

�� ��, where a is 0:05 and

0:01 respectively. Below we refer to this procedure as truncation,

and the approximated vector, as truncated solution. The procedure

ensures that the relative discrepancy in the ‘2-norm grows by the

factor of 1za at most and shows what QTT ranks allow for our

numerical solution, obtained without using any reference data, to

ensure almost the same discrepancy from the reference data (which

is related to the accuracy of both the solution and reference data)

as before truncation.

d independent birth-death processes. As a first example

we consider a system composed of d chemical species with

fX1, . . . ,Xdg a vector of random variables representing the species

count of each. The dynamics of the random vector are governed

by independent birth-death processes. For the k-th species, the

corresponding reactions are given by

1 bk

dk

Xk

where bk is the spontaneous creation rate and dk is the destruction

rate for species Xk. This problem is perfectly separable in the sense

that the dynamics of any one chemical species of this system is

independent of the dynamics of all others. Given the initial

condition Xk 0ð Þ~jk for each k, the marginal distribution for any

one species Xk at time t is given by:

pk(xk; t)~P xk,lk tð Þð Þ?xk
M(xk,jk,p(k) tð Þ), xk[Z§0

where P :,lk tð Þð Þ is the Poisson distribution with parameter lk tð Þ,
?xk

indicates the discrete convolution in variable xk,

M xk,jk,p(k) tð Þ
� �

the multinomial distribution with parameter

p(k) tð Þ, and the parameters p(k) and lk evolve according to the

reaction rate equations

d

dt
p(k) tð Þ~{dkp(k) tð Þ, d

dt
lk tð Þ~bk{dklk(t),

p(k) 0ð Þ~1, lk tð Þ~0:

See [4, Theorem 1] for details. Since X1, . . . ,Xk are mutually

independent, the joint PDF at time t, p tð Þ, is the product of the

marginals:

p tð Þ~P
d

k~1
pk tð Þ

that is, this system has an explicit formula for the solution

regardless of the number of chemical species involved. We can,

therefore, evaluate the accuracy and observe the complexity

scaling of the hp-DG-QTT solver as the number of chemical

species increases.

Algorithm 2. hp-DG-QTT CME Solver.
Require: Projected CME operator A in QTT format, time

mesh M~ Jmf gM
m~1, polynomial orders r[NM

§0, basis of

temporal shape functions wj

� �?
j~0

, DMRG-solver tolerance

RES
Ensure: Approximate solution p[Pr M,Xð Þ of the evolu-
tion _pp~Ap

for m~1, . . . ,M do
for i,j~0, . . . ,rm do

Cmð Þ i; j ~

ð1

{1

w’j(t)wi(t)dtzwj({1)wi({1);

Gmð Þ i; j ~

ð1

{1

wj(t)wi(t)dt;

end for
Solve Cm6II{Gm6Að Þ:Pm~wm{16p{

m{1, for Pm

using DMRG-solver with tolerance RES;

pm~
Xrm

j~1
Pm,jqj(1);

end for

Solution of the CME Using Quantized Tensor Trains

PLOS Computational Biology | www.ploscompbiol.org 10 March 2014 | Volume 10 | Issue 3 | e1003359



For numerical simulations we assume bk~1000 and dk~1 for

1ƒkƒd and consider the FSP with lk~12. We solve the

corresponding projected CME for d~1,2,3,4,5 to check that in all

these cases the hp-DG-QTT method using the ordering (11)

without transposition is capable of revealing the same low-rank

QTT structure of the solution. For the CME operator we have

rmax A½ �ƒ8 up to accuracy 5:10{15. We compute the evolution of

the PDF of the system for the zero initial value through M~569
time steps till T~10.

The results, which are presented in Figure 2 and Table 2, show

that the same low-rank structure of the solution is adaptively

reconstructed by the algorithm for all d considered. The transient

phase causes the growth of QTT ranks, because at certain steps of

every sweep the DMRG solver merges virtual dimensions

corresponding to different species and attempts to reduce the

numerical rank by re-separating these dimensions. As a conse-

quence, during the transient phase numerical QTT ranks are

overestimated, which does not affect the QTT structure of the

numerical solution at larger times.

Toggle switch. The next example models a synthetic gene-

regulatory circuit designed to produce bistability over a wide range of

parameter values [61]. The network consists of two promoters

constructed in a mutually inhibitory configuration that implement a

double negative feedback loop, causing the network to exhibit robust

bistable behavior (see Figure 3). If the concentration of one repressor is

high, this lowers the production rate of the other repressor, keeping its

Figure 2. d independent birth-death processes. The maximum QTT ranks of the solutions, rmax p{
M

� 

~6 for each d . Markers are omitted for

tmw10{2 in (a)–(c). (a) Relative discrepancy D‘2
p{

m

� 

= p{

M

�� �� (after truncation) vs. tm. (b) Cumulative computation time (in seconds) vs. tm. (c) Effective

QTT rank reff p{
m

� 

(after truncation) vs. tm. (d) Relative discrepancy D‘2

p{
M

� 

= p{

M

�� �� (blue) and total computation time (red) vs. d .
doi:10.1371/journal.pcbi.1003359.g002
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concentration low. This allows a high rate of production of the original

repressor, thereby stabilizing its high concentration.

A stochastic model of the toggle switch was considered in [62]

and consists of the following four reactions:

1

a1
1zVb

U, 1

a2
1zUc

V

U
d1

1 , V
d2

1

where U and V represent the two repressors. Denote the species

counts of each by U and V, respectively. The stochastic model

admits a bimodal stationary distribution over a wide range of

values of the rate constants. We consider the set of parameters

from [62] which were selected to test the efficiency of using

available numerical algorithms to calculate matrix exponentials to

solve low dimensional FSP approximations of the CME. We then

scaled the parameters so that a larger set of states would be

required to guarantee an FSP truncation with low approximation

error. While a different set of parameters were considered in

[23,63], which required a larger FSP truncation, this choice of

values renders the system symmetric under interchange of the roles

of U and V. This situation is less biologically relevant than what

we consider here.

For this numerical example we assume a1~5000, a2~1600,

b~2:5, c~1:5, d1~d2~1. We consider the FSP with lU~13,

lV ~12, which allows to take into account 225 states. The initial

value is zero. We use the ordering (11) without transposition. For

the CME operator we have rmax A½ �~14 and reff A½ �~10:89 up to

accuracy 10{14. We compute the evolution of the PDF up to time

T~100 with M~1111 time steps.

The results are presented in Figure 4. At the terminal time T we

have ERRS p{
M

� 

~3:17:10{5. The overall computation time is

14728 seconds. The validation with the PDF based on 816 million

Monte Carlo simulations (every 1000 draws taking on average

over 360 seconds, adding up to the overall CPU time over 3:108

seconds), indicates D‘1
p{

M

� 

~8:34:10{4, and for the 2-

and Chebyshev norms we have D‘2
p{

M

� 

= p{

M

�� ��
2
~6:62:10{4

and D‘? p{
M

� 

~5:50:10{6. As for the ranks, reff p{

M

� 

~8:74 and

rmax p{
M

� 

~13. Figure 4 (c) shows that after t&20 the norm of the

time derivative stagnates at approximately 10{5 determined by

the accuracy parameters chosen, and the following time steps

require negligible computational effort. At the same time, as we

see in Figure 4 (b), all QTT ranks stabilize under 15, but the

transient phase preceding that moment involves far higher ranks.

Figure 5 (a) presents a snapshot of the distribution.

Comparison to the Krylov subspace approach. We

compared the performance of our proposed method to that of

the Krylov subspace approach implemented in Sidje’s Expokit

[60]. In order to make the comparison as fair as possible we

further restricted the FSP truncation used by the Krylov approach

to a hyperbolic cross, that is, we only kept states with indices (jU ,jV )
satisfying the condition (jUz1):(jVz1)v9216000. Effectively,

this reduces the states in the truncation from 225 to 21120695, a

reduction of about a third. A similar truncation was used for this

model in [62].

We emphasize that formulating this hyperbolic cross truncation

requires special insight into the problem on the part of the

modeler. In constrast, our proposed method is completely naive in

this respect, instead relying on the adaptivity of the QTT

compression.

For the FSP with 225 states considered we reach t&1 with the

first 43 time steps of our method in 4385 seconds; with the Krylov

subspace method restricted to the hyperbolic cross, in 10333
seconds. For the discrepancy between the two solutions obtained

we have D‘1
~4:04:10{5 and D‘?~9:64:10{8.

At approximately t~t43&1, the decay of the relative norm of

the solution becomes exponential; see Figure 4 (c). That is

exploited by our method in two ways. On the one hand, we adjust

the time mesh manually, which reduces the overall number of time

steps needed to reach t1111~T from t43: we take 1068 steps intead

of approximately 3307 we would need if we had used a uniform

time mesh for the long-term dynamics. On the other hand, what is

more significant, the adaptive QTT representation used at each

step yields a substantial speedup of the solution of linear systems,

which is possible due to the rapid convergence of the solution to a

stationary distribution. The Krylov subspace solver adapts the

time mesh on its own, but employs no self-adaptivity for efficient

storage of numerically computed states. As a result, the

performance (in terms of the computational time vs. physical time

of the system) decays much slower for the Krylov subspace solver,

and our method excels even more in modelling the long-term

dynamics. For example, our method achieves t&30, when

_ppk k2= pk k2 reaches 1:1:10{5, with the overall computation time

14541 seconds compared to 126530 seconds of the Krylov

subspace solver, i.e. approximately 8:7 times faster. For larger

Table 2. d independent birth-death processes: reff~reff p{
M

� 

,

D‘2
~D‘2

p{
M

� 

, computational TIME in seconds; rmax p{

M

� 

~6

for all d .

d N
EAp0E2

Ep0E2

EAp{
ME2

Ep{
M E2

reff D‘2
TIME

1 212 1.4+3 1.023 3.53 1.925 87

2 224 2.4+3 1.423 3.42 2.325 704

3 236 3.5+3 1.823 3.38 3.525 1548

4 248 4.5+3 2.023 3.37 3.625 2516

5 260 5.5+3 2.323 3.36 3.525 3544

N is the number of states taken into account in the FSP. The exponents are
given in boldface for the base 10.
doi:10.1371/journal.pcbi.1003359.t002

Figure 3. Toggle Switch consisting of double negative
feedback loop. Species U represses the production of species V
and vice versa.
doi:10.1371/journal.pcbi.1003359.g003
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terminal times the advantage of our method becomes even more

pronounced.

Enzymatic futile cycle. Futile cycles are composed of two

metabolic or signaling pathways that work in opposite directions so

that the products of one pathway are the precursors of the other

and vice versa, see Figure 6. This biochemical network structure

results in no net production of molecules and often results only in

the dissipation of energy as heat [64]. Nevertheless, there is an

abundance of known pathways that use this motif and it is thought

to provide a highly tunable control mechanism with potentially

high sensitivity [64,65].

[65] introduced a stochastic version of the model with just the

essential network components required to model the dynamics.

The stochastic model consists of six chemical species and six

reactions:

XzEf
z

kz1

kz2

Eb
z, X�zEf

{

k{1

k{2

Eb
{,

Eb
z

kz3
Ef

zzX�, Eb
{

k{3
Ef

{zX,

fX,X�g represent the forward substrate and product, fEz,E{g

Figure 4. Genetic toggle switch. The values are given vs. tm . Markers are omitted for tmw10{1 . (a) Probability deficiency ERRS p{
m

� 

. (b)

Maximum and effective QTT ranks of the computed solution. (c) Relative norm
Ap{

mk k
2

p{
mk k2

of the derivative (blue) and cumulative computation time (red,

sec.)
doi:10.1371/journal.pcbi.1003359.g004
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denote the forward and reverse enzymes, respectively. Note that

this system is closed meaning that particles are neither created nor

destroyed. We denote the random variables representing the

molecule count of each species with italics.

For the particular set of initial conditions considered in [65]

the number of states that are reachable is large enough to render

a direct numerical solution of the CME impractical. The

authors instead used the Gillespie Direct SSA to generate a

large number of sample paths to estimate the distribution. The

authors also applied a diffusion approximation to their model

which resulted in a SDE which produced qualitatively similar

dynamics. To the authors’ knowledge, no attempt has been

made so far towards the direct numerical solution of the CME

for this system.

At time t, let X T(t) denote the total amount of both free and

bound substrate, and ET
z(t) and ET

{(t) the total forward and

reverse enzymes, respectively. We observe the following conser-

vation relations:

Ef
z(t)zEb

z(t)~ET
z(t)~ET

z(0)

Ef
{(t)zEb

{(t)~ET
{(t)~ET

{(0)

X (t)zX �(t)zEb
z(t)zEb

{(t)~X T(t)~X T(0)

Using the above, one can establish an upper and lower bound

relating the species count of X(t) to X�(t) that depends only on the

total initial amount of substrate and the total initial amount of

enzymes in the system

X T(0){X �(t)§X (t)§X T(0){X �(t){ ET
z(0)zET

{(0)
� �

:

Assuming that the initial quantity of enzymes ET
z(0)zET

{(0) is

small, for a given copy number of X �(t), X (t) may take at most

Figure 5. Snapshots of solutions. (a) Genetic toggle switch. The PDF for m~350, tm&10:18, U (hor.) vs. V (vert.). As the process evolves, the
probability mass becomes concentrated in two distinct regions. Contour coloring is logarithmically scaled with base 10. (b) Enzymatic futile cycle. The
marginal PDF for m~20, tm~5:10{3 , X (vert.) vs. X� (hor.). Black diagonal lines delimit the states reachable from the initial condition. The transposed
QTT format automatically exploits this sparsity pattern of the full PDF for compression without special input from the user.
doi:10.1371/journal.pcbi.1003359.g005

Figure 6. Enzymatic futile cycle. X is transformed into X � and vice versa by enzymes Ez and E{, respectively.
doi:10.1371/journal.pcbi.1003359.g006
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ET
z(0)zET

{(0) different values. Since X T(t) is a conserved

quantity, this means that X (t) and X �(t) will be strongly anti-

correlated with the set of reachable states having an affine

structure. Under these circumstances, we find in our numerical

experiments that the transposed QTT format is better suited than

the standard QTT to efficiently represent the corresponding PDF,

since the transposed format better utilizes the sparsity pattern of

the full PDF for compression.

Following [65], we consider kz1~40, kz2~104, kz3~104,

k{1~200, k{2~100, k{3~5000. For initial value we take

E
f
+~2,Eb

+~0,X~30,X �~90. We consider the FSP projection

with l
E

b,f
+

~2 and lX ~lX �~7, i.e. with 222 states. We present 4

runs: (A), (B) and (C) use the transposed QTT format, and (D), the

standard QTT. Theorems 5 and 4 bound the exact QTT ranks of

the CME operator by 216 and 21 respectively, and numerically for

accuracy 10{14 we have rmax A½ �~38, reff A½ �~17:93 in (A)–(C)

and rmax A½ �~11, reff A½ �~8:30 in (D). We compute the evolution

of the PDF up to time T~1 with M~1332 time steps.

For the runs (A) and (D), which differ in the format, we keep the

same accuracy parameters. The runs (B) and (C) use the same

format as (A), but different accuracy parameters, so that they yield,

respectively, a more accurate and a cruder solution as compared to

(A).

This experiment shows, in particular, that lower ranks of the

operator do not necessarily lead to lower ranks of the solution, and

that in this example the transposed QTT format actually ensures

smaller ranks of the solution than the QTT format without

Figure 7. Enzymatic futile cycle. The values are given vs. tm. Markers are omitted for tm§2:10{3 in (a)–(c). (a) Discrepancy D‘1
(before truncation)

from the marginal PDF based on Monte Carlo simulations. (b) Probability deficiency ERRS p{
m

� 

. (c) Cumulative computation time (sec.) (d) Relative

norm
Ap{

mk k
2

p{
mk k2

of the derivative.

doi:10.1371/journal.pcbi.1003359.g007
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transposition does and than Theorem 5 suggests. As for the

solution, we observe that max0ƒtmƒ0:1 rmax Pm½ � reaches 51 for (A)

and 359 for (D).

For every m, we validate our solution p{
m by comparing its

marginal distribution
X

Eb,f
+

p{
m to that based on 18:6:109 Monte

Carlo simulations (every 10000 draws taking at least 110 seconds,

amounting to the overall CPU time over 2:108 seconds). The

discrepancy D‘p
~D‘p

X
Eb,f
+

p{
m

� �
in the marginal distribution

with respect to X and X � is reported for p~1 in Figure 7 (a) and

Table 3. With p~2 we use it for the discrepancy-based truncation,

which, as Figure 7 (b) shows, does not affect the probability

deficiency significantly.

Figure 7 (a) shows that the refined run (B) yields the smallest

discrepancy, which suggests that the reference distribution is

sufficiently accurate to allow for the discrepancy to represent the

actual error in the results of (A), (B) and (C). As we can see from

Figure 7 (d), in all 4 runs the time derivative stagnates after t&0:1,

at lower levels for more accurate runs. Let us note that at that

stage in (A)–(C) it exhibits relatively strong oscillations compared

to (D), which happens due to different effect of the addition of

random components in the DMRG solver in the presence and

absence of the transposition. On the other hand, compared to (A),

the run (D) yields a less accurate solution and reaches t~0:1
almost 9 times later, the accuracy settings being the same in these

two runs. In all, the transposition appears to make the QTT

format far more efficient in this experiment, and we expect it to be

even more so in larger systems of such type.

The results are given in Figures 7 and 8 and in Table 3. Figure 5

(b) presents a snapshot of the marginal distribution.

Conclusion
We presented a novel, ‘‘ab-initio’’ computational methodology

for the direct numerical solution of the CME. The methodology

exploits the time-analytic nature of solutions to the CME and the

low-rank, tensor structure of the CME operator by combining an

hp-timestepping method that is order and step size adaptive,

unconditionally stable and exponentially convergent with respect to

the number of time discretization parameters, with novel, tensor-

formatted linear algebra techniques for the numerical realization of

the method. In particular, after an initial projection on a (sufficiently

rich) finite state, the QTT representation allows for the dynamic

adaptation of the effective state-space size, as well as of the principal

components, or basis elements of the numerical representation

of solution vectors in the numerical simulation of the time evolution

of the CME solution. We emphasize that, while the performance of

our approach is better when the solution can be approximated in

the QTT format with a high degree of separability of the ‘‘physical’’

and ‘‘virtual’’ variables (i.e. with low TT ranks), the approach does

not require a particular degree of separability, but instead reveals

possibly present low TT rank in the solution at runtime. In the

course of rank adaptation, the singular vectors, in the span of which

the solution is approximated, are also adapted. Hence, the presently

proposed approach is superior to fixed basis approaches (even when

used with adaptivity), such as those reported in [19,22,23,66]. The

precise class of chemical reaction networks that lead to low TT rank

in the solution tensor is currently unknown. To the extent that this

rank increase during runtime, the effectiveness of the compression

will be decreased, which could prove limiting for some problems.

However, in this case other methods will be equally challenged.

Identifying the architecture of the chemical reaction networks that

lead to very low ranks is currently a research problem under

investigation.

While the discussion following Theorem 4 relates to the case

when the factors of the propensity functions are monomial, the

approach presented herein applies equally well to models with

propensity functions that are merely smooth enough. For example

[67], gives bounds on the QTT ranks of the propensity functions

and CME operator in the case of the stochastic mass-action and

Michaelis–Menten kinetics with separable propensity functions.

Also, the same work proves the bounds on the QTT ranks of

product-form stationary distributions [68] of weakly-reversible

reaction networks of zero deficiency in the sense of Feinberg [69]. Those

bounds explain some of the experimental observations made in the

present paper. Furthermore, the approach proposed is suitable for

non-separable propensity functions. However, in that case the

characterization of the rank structure of the CME operator needs

to rely on some extra assumptions ensuring moderate QTT ranks,

even though more general than separability, and Algorithm 1

needs to be altered accordingly.

The performance of the approach proposed essentially relies on

the efficiency of the numerical solution of TT-structured linear

systems of equations. In particular, a globally (or ‘‘less strictly

locally’’) convergent iterative solver would allow us to take larger

time steps and to exploit the exponential convergence of the hp-

DG time discretization. We believe that while the presently

reported numerical results which were obtained with the DMRG

solver are quite encouraging, ongoing research on TT-structured

linear system solvers holds the promise for a substantial efficiency

increase of the present methodology. We only mention a family of

alternating minimal energy methods which was announced very

recently in [70].

We also mention that, of course, the choice of the tensor format

and, possibly, index ordering, has an essential impact on the

performance of the approach. The computational experiments

reported in the present paper show that even a straightforward

permutation of ‘‘virtual’’ indices produced by quantization may

allow to exploit additional structure in the data and the QTT

formatted CME solution and, therefore, may improve the

performance of the QTT-structured approach dramatically. We

point out that the TT format can be considered as a special case of

Table 3. Enzymatic futile cycle: reff~reff p{
m

� 

,

rmax~rmax p{
m

� 

, D‘1

~D‘1

X
Eb,f
+

p{
m

� �
, ERRS~ERRS p{

m

� 

are given for the truncated solution p{

m ; computational TIME

is given in seconds;
EAp0E2

Ep0E2

~5:2:104.

run
EAp{

m E2

Ep{
m E2

reff rmax D‘1
ERRS TIME

m = 210, tm = 0.1

(A) 3.524 13.17 27 5.724 2.325 1.073

(B) 6.525 12.14 25 4.625 6.127 1.603

(C) 1.321 12.16 24 2.323 2.123 9.872

(D) 4.124 60.06 109 1.124 1.024 9.233

m = M = 1322, tm = T = 1

(A) 1.824 13.66 27 7.225 2.525 3.703

(B) 1.125 12.06 25 5.725 6.227 4.213

(C) 2.522 12.85 24 3.323 1.323 4.033

(D) 3.724 58.97 107 1.724 1.724 1.524

The exponents are given in boldface for the base 10.
doi:10.1371/journal.pcbi.1003359.t003
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tensor network states: TT formatted tensors belong to the class of

simple, rooted tree-type tensor networks. Relating the architecture

of the chemical reaction networks and appropriate tensor networks

representing its states efficiently, i.e. with low ranks, is currently a

research problem under development. The results of [67]

mentioned above can be considered as the first step in this

direction.

A general discussion of tensor networks and their use in

numerical simulations for quantum spin systems can be found in

[71,72]. As for the numerical solution of the CME, particular real-

life problems might require more sophisticated tensor networks to

be used to efficiently approximate reachable states of the systems

in question. The mathematical investigation of the relative merits

and drawbacks of tensor formats for particular applications is

currently undergoing rather active development; we mention only

the recent monograph [40] and the references there.

We finally mention that recently, and independently, TT

formatted linear algebra methods for the CME were proposed in

[73]; a low order time stepping, and no transposition of tensor

trains was used in that work. The CME examples presented in

[73] also included a toggle switch, but the authors mostly rely on

the intrinsic convergence of their method without analyzing actual

accuracies. The latter are reported only for moderate sized

examples which are computationally tractable with the direct

approach in the full format. However, no attempt is made to

analyze the accuracy in comparison to other simulation methods,

which are typically applied to larger problems featuring essential

difficulties for the direct approach. In the present paper we give

comparisons with a state-of-the-art, massively parallel stochastic

simulation package. This allows us, on the one hand, to validate

the accuracy of the QTT-based solutions obtained here and, on

the other hand, to provide evidence of the dramatic increase in

Figure 8. Enzymatic futile cycle. QTT ranks of the solution. The values are given vs. tm. Markers are omitted for tm§2:10{3 . (a) Effective QTT ranks
reff for parameter set (A). (b) Maximum QTT ranks rmax for parameter set (A). (c) Effective QTT ranks reff for parameter set (D). (d) Maximum QTT ranks
rmax for parameter set (D).
doi:10.1371/journal.pcbi.1003359.g008
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efficiency afforded by the new deterministic approach: Monte

Carlo simulations on 1500 cores of a high-performance cluster

were matched in accuracy and outperformed in the wall-clock

time by a MATLAB implementation running on a notebook.

Methods

To solve the initial value problem for (2), we exploit the hp-DG-

QTT algorithm proposed in [38] and adapted to the CME as

described above, implemented in MATLAB. It uses an implicit,

exponentially convergent spectral time discretization of discontin-

uous Galerkin type. The resulting, time-discrete CME in ‘‘species

space’’ is solved in the QTT format. Our implementation relies on

the public domain TT Toolbox which provides basic TT-structured

operations and solvers for linear systems in the QTT format. The

TT toolbox is publicly available at http://spring.inm.ras.ru/osel

and http://github.com/oseledets/TT-Toolbox; to be consistent,

we use the GitHub version of July 12, 2012 in all examples below.

We run the hp-DG-QTT solver in MATLAB 7.12.0.635 (R2011a)

on a laptop with a 2.7 GHz dual-core processor and 4 GB RAM,

and report the computational time in seconds.

For the solution of the large, linear systems in the QTT and

QT3 formats in each time step, we use the optimization solver,

based on the DMRG approach [46–48] and elaborated on in the

context of the TT format in [74] and available as the function

dmrg_solve3 of the TT Toolbox. While the ‘‘DMRG’’ solver still

lacks a rigorous theoretical foundation, it proves to be highly

efficient in many applications, including our experiments. In [75] a

closely related Alternating Least Squares (ALS) approach was

mathematically analyzed and shown to converge locally. More

on the mathematical ideas behind the ALS and DMRG

optimization in the TT format can be found in [76].

The ‘‘DMRG’’ solver, under certain restrictions on the time

step, manages to find a parsimonious QTT formatted solution of

the linear system (up to a specified tolerance). Moreover, the solver

in effect automatically adapts both the QTT rank as well as the

QTT ‘‘basis’’ of the solution at every time step guaranteeing that it

is sufficiently rich in order to capture the principal dynamics of

interest.

In the first numerical example the solution is symmetric and

exactly rank-one separable, which allows us to use the standard

MATLAB solver ode15 s in the sparse format to obtain the

univariate factor of a reference solution. In other examples we

used SPSens beta 3.4, a massively parallel package for the

stochastic simulation of chemical networks (http://sourceforge.

net/projects/spsens/) [77], to construct reference PDFs.

The stochastic simulations were carried out on up to 1500
cores of Brutus, a high-performance cluster of ETH Zürich

(https://www1.ethz.ch/id/services/list/comp_zentral/cluster/index_EN).
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