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A B S T R A C T   

The number of SARS-CoV-2 spike Receptor Binding Domain (RBD) with multiple amino acid mutations is huge 
due to random mutations and combinatorial explosions, making it almost impossible to experimentally deter-
mine their binding affinities to human angiotensin-converting enzyme 2 (hACE2). Although computational 
prediction is an alternative way, there is still no online platform to predict the mutation effect of RBD on the 
hACE2 binding affinity until now. In this study, we developed a free online platform based on deep learning 
models, namely D3AI-Spike, for quickly predicting binding affinity between spike RBD mutants and hACE2. The 
models based on CNN and CNN-RNN methods have the concordance index of around 0.8. Overall, the test results 
of the models are in agreement with the experimental data. To further evaluate the prediction power of D3AI- 
Spike, we predicted and experimentally determined the binding affinity of a VUM (variants under monitoring) 
variant IHU (B.1.640.2), which has fourteen amino acid substitutions, including N501Y and E484K, and 9 de-
letions located in the spike protein. The predicted average affinity score for wild-type RBD and IHU to hACE2 are 
0.483 and 0.438, while the determined Kaff values are 5.39 ± 0.38 × 107 L/mol and 1.02 ± 0.47 × 107 L/mol, 
respectively, demonstrating the strong predictive power of D3AI-Spike. We think D3AI-Spike will be helpful to 
the viral transmission prediction for the new emerging SARS-CoV-2 variants. D3AI-Spike is now available free of 
charge at https://www.d3pharma.com/D3Targets-2019-nCoV/D3AI-Spike/index.php.   

1. Introduction 

As the world has grappled with COVID-19 since December 2019 [1], 
various variants of SARS-CoV-2 virus were found one after another. 
Subsequently, potential immune evasions caused by the variants from 
the existing vaccines and monoclonal antibodies brought new chal-
lenges to public health [2,3]. The mutations in virus variants are 
widespread on various proteins of SARS-CoV-2, which may change 
different aspects of virus biology, such as pathogenicity, infectivity, 

transmissibility, and antigenicity, crucial mutations with immune 
evasion are observed on the receptor-binding domain (RBD) located on 
the spike protein (S protein) [4]. Human angiotensin-converting enzyme 
2 (hACE2) is the receptor of SARS-CoV-2, the S protein binds to hACE2 
through its RBD and is then proteolytically activated by human pro-
teases [4–8]. It is also worth noting that a serological analysis of almost 
650 SARS-CoV-2-infected individuals indicated that about 90% of the 
plasma or serum-neutralizing antibody activity target the spike RBD [9]. 
Mutations, especially multiple mutations bring more uncertainty to 
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spike-hACE2 binding [10]. A Mutated RBD may strengthen the binding 
ability of S protein and hACE2, with a higher binding free energy (BFE) 
which is usually correlated to stronger viral infectivity [11,12]. We 
aligned the sequences of Variants of Concern (VOC), Variants of Interest 
(VOI), and the IHU sequence that harbors a very high number of mu-
tations – 46, even higher than Omicron(Fig. 1A). Phylogenetic tree an-
alyses according to GISAID [13] revealed that many variants with 
different mutations are evolved independently from each other(Fig. 1B). 
Fig. 1C and D illustrate the binding complexes of hACE2-S protein RBD 
of Omicron and IHU [14], showing that Omicron has 15 mutations and 
IHU has 6 mutations on the RBD region. 

The affinity changes between RBD with single amino acid mutation 
and hACE2 have been determined through a deep mutational scanning 
experiment [16]. However, the number of RBD with multiple amino acid 
mutations is huge due to random mutations and combinatorial explo-
sions, which make the experimental exploration impossible because of 
the tremendous human labor and extremely long experimental period. 
In addition, there is still a possibility that viral evolution will create 
future variants more infectious than the original SARS-CoV-2 by 
combining RBD co-mutations [17]. 

Without a doubt, predicting the possible impact of multiple amino 
acid mutations on the binding affinity between RBD and hACE2 in a 
timely manner can help fight against the potential forthcoming risk in 
advance [18]. Although several artificial intelligence (AI) models have 
been developed to estimate the mutation effect on protein-protein in-
teractions (PPI), e.g., MuPIPR, MutaBind2, ProAffiMuSeq, and END-
scriptIIWeb server [19–23], which gain unprecedented success in PPI 
predicting tasks, it’s unsatisfactory for these methods in predicting 
binding affinity between SARS-CoV-2 and hACE2 because these methods 
are designed for broad-spectrum protein affinity predictions. Hie et al. 
used a machine learning technique for natural language processing to 
predict the viral escape [24]. Deep mutational learning (DML) [25], a 
machine learning-guided protein engineering technology, could accu-
rately predict the impact on ACE2 binding and antibody escape. Based 
on MD simulations, MM-GBSA, and the neural network, Chen et al. 
developed the NN_MM-GBSA model [26] to predict binding affinity 
between SARS-CoV-2 spike RBD and hACE2. Chen et al. developed a 

comprehensive topology-based AI model TopNetmAb, which shows 
good predictability in BFE change between Spike RBD and hACE2/-
vaccines [27]. However, installing these programs is a difficult task for 
experimenters with little computer knowledge. Meanwhile, methods 
such as NN_MM-GBSA require large computing resources which are not 
available for most experimental scientists. Taken together, an online 
platform to predict the mutation effect of spike RBD on its hACE2 
binding affinity is highly expected. To solve these problems, we devel-
oped a free online deep learning platform D3AI-spike to predict the 
binding affinity changes between RBD with multiple amino acid muta-
tions and hACE2. After submitting the mutated residues on the online 
platform, users could quickly obtain the predicted binding affinity 
changes in less than a minute. The website is available at https://www. 
d3pharma.com/D3Targets-2019-nCoV/D3AI-Spike/index.php. The 
predicted results are in agreement with the experimental data. In 
addition, we validated the binding affinity of a VUM variant IHU by 
bioassay. 

2. Materials and methods 

2.1. Datasets preparation 

The datasets of D3AI-Spike are from two sources, i.e., RBD muta-
tional scanning and SKEMPI2 (Structural database of Kinetics and En-
ergetics of Mutant Protein Interactions) [28]. Firstly, binding affinity 
change data between RBD and hACE2 was obtained from a single 
mutational scanning experiment [16]. In order to improve the dataset 
quality, we retained the RBD mutation sequence data from residues 
positions 331 to 531 and deleted invalid data with no affinity infor-
mation in the experiment. Secondly, we collected data from the 
SKEMPI2, which is widely used as a benchmark set for mutant binding 
affinity prediction and indispensably used to train deep learning models. 
The mutated FASTA sequence was not provided directly by SKEMPI2. 
According to the protein mutation and affinity data given in SKEMPI2, 
the 3D structures were downloaded from the Protein Data Bank (PDB) 
[29]. The mutations are mapped to PDB structures, then the mapped 
protein 3D structures are converted to FASTA through a Python script. 

Fig. 1. Sequence alignment of SARS-COV-2 variants, illustration of Omicron and IHU RBDs interacting with hACE2, (A) Sequence alignments of VOCs, VOIs, and 
several related viruses. (B) Phylogenetic tree analyses of virus variants. Mutated residues are labeled in the crystal structure of chimeric Omicron RBD (strain BA.1) 
complexed with human ACE2 [ Protein Data Bank (PDB) entry 7U0N] (C). Mutated residues are labeled in the AlphaFold2 [15] predicted structure of IHU RBD 
(strain B.1.640.2) complexed with human ACE2 3D structures (D). 
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Finally, 9518 data instances were retained in the dataset, among which 
4003 were from the mutational scanning experiment and 5515 from 
SKEMPI2. The affinity energy values from the mutational scanning 
experiment and SKEMPI2 were expressed logarithmically to make them 
comparable. All data were saved in a specific format as fasta_1(RBD), 
fasta_2(ACE2), affinity change(ΔE). 

2.2. Normalization of datasets 

The affinity difference between two proteins is described as the af-
finity change ΔE, which is calculated as the difference between the 
variant log10(KD, app)variant and wild-type log10(KD, app) WT: ΔE =
log10(KD, app)WT – log10(KD, app)variant). A positive value indicates that the 
variant has a higher variant hACE2 affinity than the wild type. Based on 
the ΔE results, four normalization methods (Min-Max, Z-Score, Sigmoid, 
Tanh) are used to improve the prediction accuracy. The four normali-
zation methods are defined as: 

ΔEMin− Max =
ΔE − ΔEmin

ΔEmax − ΔEmin
(1)  

ΔEZ− Score =
ΔE − ΔE

σ
(2)  

ΔESigmoid =
1

1 + e− ΔE (3)  

ΔETanh =
eΔE − e− ΔE

eΔE + e− ΔE
(4)  

where ΔEMin-Max, ΔEZ-Score, ΔEsigmoid, and ΔEtanh are the values after 
normalization. ΔE represents the affinity change relative to wild type. Δ 
Emin and ΔEmax are the min and max values from the original dataset. ΔE 
and σ are the mean value and standard deviation of the original dataset. 

Among the four different normalization methods, Min-Max and Z- 
Score are linear methods, while Sigmoid and Tanh are nonlinear 
methods. Generally speaking, normalization could improve learning 
ability. For different deep learning models, different normalization 
methods show different effects on prediction accuracy. We tried to 
combine different models and normalization methods to seek the best 
combinations. 

2.3. Regression deep learning models of D3AI-Spike 

SBPF (sequence-based protein fold) [30], APAAC (amphiphilic 
pseudo amino acid composition) [31], Quasi-seq-order (quasi-se-
quence-order effect) [32], and KFCT (kernel function and a conjoint 
triad) [33] are four methods focusing on protein sequence information. 
SBPF is a long-length vector with every position corresponding to an 
amino acid trimer. APAAC is based on SBPF with additionally extended 
protein hydrophobicity and hydrophilicity patterns information. KFCT 
encodes protein by using the continuous three amino acids frequency 
distribution. Quasi-seq-order follows the principle of the sequence order 
effect. A one-dimensional (1D) input vector is prepared from the protein 
FASTA and then encoded with an embedding layer by CNN (convolu-
tional neural networks) [34] (Fig. 2A). With a GRU bidirectional 
recurrent neural network attached to the CNN output, CNN + RNN 
(Recurrent Neural Network) [35,36] can get extra sequence order in-
formation that CNN doesn’t support (Fig. 2B). Transformer [37] uses a 
self-attention-based transformer encoder and operates on 

Fig. 2. The schematic illustration of CNN (A), CNN-RNN (B), and Trans-
former (C). 

Fig. 3. Flowchart of D3AI-Spike. RBD and hACE2 FASTA are input to different deep learning models, following operations by encoders and fully connected layers, 
and the predicted result is obtained. 
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moderate-sized protein substructures, which are fed into the model 
(Fig. 2C). Many CNN-based 1D sequence deep learning models have 
achieved outstanding results. Chen et al. [27] indicated that the CNN 
model has a good effect on the sequence-based RBD-hACE2 affinity 
prediction. Zhang et al. [38] also proposed that when the training 
sample size is sufficiently large, LSTM embedding and CNN-based pre-
dictive model show superior performance in the RBD-hACE2 affinity 
prediction. In long sequence processing, RNN is expensive in time. But 
1D convolutional neural networks are computationally cheap, so it is a 
wise idea to use the 1D convolutional neural network as a preprocessing 
step before RNN, which can make the sequence shorter, and extract 
useful information to be processed by RNN [34–36]. Dispensing with 
recurrence and convolutions entirely, Transformer is based totally on 
the attention mechanisms. Translation tasks experiments showed 
Transformer models are superior in quality, meanwhile, they are more 
parallelizable and require significantly less time to train [37]. 

To explore the effectiveness of each model, we conducted 10-fold 
cross-validation, where the dataset was split into 10 subsets — 9 for 
training and 1 for validation. Each run was trained until the loss be-
comes convergence (about 200 epochs). 

2.4. Workflow of D3AI-Spike 

To predict the binding affinity changes of RBD mutants and hACE2, 
we trained and selected several deep learning (DL)-based PPI prediction 
models. RBD variants’ FASTA and hACE2’s FASTA are encoded by One- 
Hot encoding and then the features are extracted through a multi-layer 
CNN/CNN-RNN. Meanwhile, a self-attention-based Transformer 
encoder, as well as encoding methods such as SPBF directly utilizing 
protein FASTA information, are also used to extract features from pro-
tein FASTA. Then the FASTA features of RBD and hACE2 are combined 
and then projected to the multi-layer perceptron. The affinity score 
between RBD and hACE2 is obtained through the fully connected layer. 
The prediction results of the top 7 models are normalized by Min-Max, 
and then the average value is taken as the final predicted score. The 
overall schematic diagram of D3AI-Spike is shown in Fig. 3. 

2.5. Performance test metrics 

We tried several deep learning models to predict the affinity change 
between RBD and hACE2. To evaluate the predictive ability of every 
model, we used the Pearson correlation coefficient, concordance index, 
and MSE as performance indicators. These indicators are defined as 
follows: 

Pearson correlation=
N
∑

xiyi −
∑

xi
∑

yi̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N
∑

x2
i − (

∑
xi)

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N
∑

y2
i − (

∑
yi)

2
√ (5)  

where N is the number of all samples. xi and yi are the experimental and 
predicted values of samples, respectively. 

Concordance index=
∑

i,j1Tj<Ti ⋅1ηj>ηi ⋅δj
∑

i,j1Tj<Ti ⋅δj
(6)  

where ηi represents the risk score of a unit i. 1Tj<Ti : if Tj < Ti, 1Tj<Ti = 1, 
else 1Tj<Ti = 0. 1ηj>ηi : if ηj > ηi, 1ηj>ηi = 1, else 1ηj>ηi = 0. Factor δj is 
multiplied to discards not comparable pairs of observations. 

MSE=
1
n
∑n

i=1
(f(xi) − yi)

2 (7)  

where n is the number of all samples. xi and yi are the label and predicted 
values of samples, respectively. 

2.6. The website of D3AI-Spike 

For the user’s convenience, we developed D3AI-Spike, a free online 
platform. Binding affinity can be predicted by inputting the RBD mu-
tations according to the HGVS mutation naming rules [39]. After sub-
mitting RBD mutations on the webpage, the FASTA sequence will be 
automatically generated and fed into the deep learning models to 
calculate its affinity with hACE2. In less than a minute, the predicted 
affinity score and the 3D structure mapped with the mutant residues will 
be displayed on the result page. 

The web page of D3AI-Spike is based on Remote Dictionary Server 
(Redis) and Hypertext Preprocessor (PHP). In the construction of the 
web page, RBD-hACE2 affinity prediction results calculated by the deep 
learning models were stored in the Redis database. When a user inputs a 
sequence, D3AI-Spike will check the database first to look up if there are 
any corresponding previously obtained prediction results. If the results 
are already in the database, the results will be displayed on the web page 
directly, otherwise, the calculation of affinity prediction of the new 
mutants will be performed and then the predicted results are written 
into the database. On the backend of the web page, the prediction results 
from the database will be re-read after the prediction calculation is 
complete. The usage of the Redis database helps users save time by 
reducing unnecessary repetitive calculations. 

2.7. Binding ELISA 

A non-competitive ELISA was performed to measure the affinity 
constant (Kaff) of WT SARS-CoV-2 Spike protein RBD (His Tag) (Gen-
Script), and SARS-CoV-2 B.1.640.2 (IHU) Spike RBD protein (His Tag) 
(Sino Biological) against the hACE2-Fc protein (GenScript) [40]. Briefly, 
the 96-well plates were coated with 2, and 4 μg/mL hACE2-Fc Tag 
protein at 4 ◦C overnight, then washed with 0.1% PBST. Then the plates 
were blocked for 1 h at 37 ◦C using 3% BAS in phosphate-buffered saline 
(PBS) (Thermo Fisher Scientific, Waltham, MA, USA), and finally incu-
bated with 4- fold serial dilutions of RBDs at 37 ◦C for 1 h. The tested 
concentrations were between 10 μg/mL and 9.54 pg/mL. His tag anti-
body (HRP) (Sino Biological) diluted 1/10,000 was applied, and the 
plate was incubated at 37 ◦C for 1 h. After washing the plate thrice with 
0.1% PBST, TMB substrate (SeraCare, Milford, MA, USA) was added and 
the reaction was terminated with 2 M H2SO4, and the absorbance was 
read at 450 nm with an Infinite F50 microplate reader (Tecan Trading 
AG, Zürich, Switzerland). The following formula for calculation of af-
finity constant (Kaff) in 1/mol (M− 1) was used: 

Kaff =
(n − 1)

2(n[Ab]1 − [Ab]2)
(8)  

where n represents the ratio between the highest and the lowest hACE2 
concentration for the three possible comparisons. In a comparison be-
tween two hACE2 concentrations, [Ab]1 represents the molar RBD 
concentration calculated for OD-50 (half of maximum OD450 nm), 
corresponding to the lower hACE2 concentration. [Ab]2 represents the 
molar RBD concentration calculated for OD-50 measured at 450 nm, 
corresponding to the higherhACE2 concentration. The calculation of 
[Ab]1 and [Ab]2 was carried out by interpolating the value of OD-50 in 
the curve of OD450 nm vs. RBD concentration, fitting the curve to a four- 
parameter logistic regression by GraphPad Prism version 9.1.1 (Graph-
Pad Software, San Diego, California, USA). The Kaff value for each RBD 
represents the mean ± the standard deviation (SD) of the three calcu-
lated Kaff values. 

2.8. Statistics analysis 

The F test was used to test the Homogeneity of variance. Subse-
quently, in order to analyze whether there is a significant difference 
between the binding affinities for either wild type or IHU RBD to hACE2, 
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the two-tailed unpaired Student’s t-test with equal or unequal variance 
was used for every two groups. P values of less than 0.05 were consid-
ered to be significant. 

3. Results and discussion 

3.1. Performance evaluation of D3AI-Spike 

For different deep learning models and data normalization methods, 
we use the 10-fold cross-validation, where the dataset was split into 10 
subsets — 9 to train each model and 1 to evaluate its performance. Four 
evaluation metrics: Pearson correlation coefficient, coefficient index, 
mean squared error (MSE), and loss curve for the validation set were 
used to assess the quality of prediction and select models. 

As shown in Fig. 4A, more than half of the models have a Pearson 
correlation coefficient >0.8, which stands for an extremely strong cor-
relation. Fig. 4B displays that CNN with sigmoid normalization among 
all models possesses the best average concordance index = 0.90, while 
half of all models have a concordance index of around 0.8, indicating 
good prediction ability. In general, the performance of models normal-
izing by sigmoid is better than other normalization methods in most 
encoders, while CNN and CNN-RNN have better overall results than 
other models. On the other hand, encoders such as Quasi-seq-order 
which only consider amino acid sequence composition or amino acid 
triad frequency have relatively low Pearson correlation coefficient and 
concordance index (Fig. 4A and B), which could be partially attributed 
to the composition of protein sequence might ignore the interactions 
between residues. Quasi-seq-order and APAAC have high MSE (Fig. 4C) 
and high loss values (Fig. S1). As a result, we abandon predicted results 
by APAAC and Quasi-seq-order. 

3.2. Test evaluation of D3AI-Spike with experimental data as the external 
test set 

To validate the performance of different deep learning models, we 

Fig. 4. Model evaluation criteria of all models. (A) Pearson Correlation Coefficient (B) Concordance Index and (C) MSE of each model, each model was trained 
through the 10-fold cross-validation method. See also Supplement Material 2. 

Fig. 5. Predicted results of D3AI-Spike and the experimental results. The pre-
dicted affinity score of every single model is shown in points connected by 
dashed lines, and the average predicted value of the 7 models is shown in the 
red solid line with the standard deviations shown in red error bars. Black points 
connected by solid lines represent experimental results with black error bars for 
the data points with at least two values. A higher predicted score value in-
dicates the variant has a higher hACE2 affinity. 
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collected affinity experimental data from literature as the external test 
set. However, experimental results obtained from different laboratories 
or different experimental methods are of high variability. To integrate 
these reported affinity data, we selected data from Han et al.’s work [41] 
as the baseline. The affinities of SARS-CoV-2 variants are converted 
according to the fold relationship between the same paper’s WT data 

and the baseline, and all integrated data are shown in Table S1. The 
external test set was used to evaluate all 28 deep learning models 
(Fig. S2). 

Finally, we chose the top 25% of models (top 7 models) as the final 
models of D3AI-Spike, namely SBPF_Sigmoid, SBPF_Tanh, CNN_Min- 
Max, CNN_Z-Score, CNN-RNN_Min-Max, CNN-RNN_Sigmoid, and 
Transformer_Sigmoid (Fig. 5). The final affinity score of D3AI-Spike is 
the average normalized score of the seven models. Although the pre-
dicted trend of an individual model might differ from that of the 
experimental results, the average predicted value of the 7 models fol-
lows almost the same trend as the experimental data (Fig. 5). Therefore, 
the 7 models as well as their average values were used as the website 
backend of D3AI-Spike. 

3.3. IHU variant RBD shows significantly weaker binding affinity than the 
wild type (WT) to hACE2 by bioassay 

To further evaluate the prediction power of D3AI-Spike, we chose a 
natural variant, i.e., the IHU variant, which harbors a very high number 
of mutations – 46, even higher than Omicron [14]. According to 
D3AI-Spike, the predicted average affinity score for wild-type RBD and 
IHU to hACE2 are 0.483 and 0.438 respectively, indicating that the af-
finity of IHU to hACE2 was largely reduced compared to WT. By using 
the non-competitive ELISA approach, we measured the affinity constant 
of human ACE2 to RBDWT and RBDIHU respectively. As shown in Fig. 6, 
the determined Kaff values of hACE2-RBDWT and hACE2- RBDIHU are 
5.39 ± 0.38 × 107 L/mol and 1.02 ± 0.47 × 107 L/mol respectively (see 
also Fig. S3 in supplementary materials). In conclusion, the IHU variant 
RBD shows significantly weaker binding affinity than the WT to hACE2 
with the P value of 0.00927 (Fig. 6). 

3.4. The web page of D3AI-Spike 

D3AI-Spike is a free web server that is user-friendly. Compared with 
the cumbersome installation of scripts or programs, users can simply 

Fig. 6. RBD-hACE2 affinity constants measured by ELISA. The P value was 
determined by the two-tailed unpaired Student’s t-test. **P < 0.01. 

Fig. 7. Graphical interface for input and output of D3AI-Spike. (A) Graphical interface for input of D3AI-Spike. (B) The mutations (red) were mapped to the three- 
dimensional (3D) structure of the RBD (light blue) and hACE2 (yellow) complex. (C) The output affinity scores of 7 deep learning models for the user’s variant. (D) 
The user’s variant (red) is compared with the known variants. 
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submit mutations to the webserver and get results in less than a minute. 
To predicate the mutant variant’s affinity, users only need to input 
residue mutant type following HGVS (Human Genome Variation Soci-
ety) rules [39] or select known variants, D3AI-Spike will automatically 
generate the corresponding RBD sequence and then make the prediction 
(Fig. 7A). Usually predicting process will last no more than 1 min which 
is faster than the other approaches partly based on 3D structure or 
molecular dynamics. 

The output of D3AI-Spike contains three parts. To assist intuitive 
understanding of the mutation information, we mapped the input mu-
tation residues onto the 3D structure of the RBD (light blue) and hACE2 
(yellow) complex (Fig. 7B). Prediction results of 7 deep learning models 
are displayed in Fig. 7C, and the average score is the normalized mean 
score of the 7 models. The higher the average score, the higher the 
binding affinity. For the convenience to evaluate the affinity of the 
user’s variant, we put it with the known variants together and rank them 
from predicted highest binding affinity to lowest binding affinity. 
(Fig. 7D). D3AI-Spike is accessible free of charge at https://www.d3ph 
arma.com/D3Targets-2019-nCoV/D3AI-Spike/index.php. 

4. Conclusion 

In this study, we developed D3AI-Spike as a free online platform to 
facilitate researchers quickly and easily predicting binding affinity be-
tween spike RBD mutant and hACE2. D3AI-Spike is a collection of deep 
learning models which perform the prediction in less than a minute. The 
average predicted value of the 7 models follows almost the same trend as 
the experimental data, implying the prediction power of D3AI-Spike. To 
further evaluate the prediction power of D3AI-Spike, we chose a natural 
variant named IHU, which harbors a very high number of mutations – 
46, even higher than Omicron. The predicted average affinity score for 
hACE2-RBDWT and hACE2- RBDIHU are 0.483 and 0.438, while the 
determined Kaff values are 5.39 ± 0.38 × 107 L/mol and 1.02 ± 0.47 ×
107 L/mol, demonstrating the prediction power of D3AI-Spike. We hope 
D3AI-Spike will be helpful to the viral transmission prediction for the 
new emerging SARS-CoV-2 variants. 
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