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ABSTRACT Human campylobacteriosis, caused by Campylobacter jejuni and C. coli,
remains a leading cause of bacterial gastroenteritis in many countries, but the epide-
miology of campylobacteriosis outbreaks remains poorly defined, largely due to limi-
tations in the resolution and comparability of isolate characterization methods.
Whole-genome sequencing (WGS) data enable the improvement of sequence-based
typing approaches, such as multilocus sequence typing (MLST), by substantially in-
creasing the number of loci examined. A core genome MLST (cgMLST) scheme de-
fines a comprehensive set of those loci present in most members of a bacterial
group, balancing very high resolution with comparability across the diversity of the
group. Here we propose a set of 1,343 loci as a human campylobacteriosis cgMLST
scheme (v1.0), the allelic profiles of which can be assigned to core genome se-
quence types. The 1,343 loci chosen were a subset of the 1,643 loci identified in the
reannotation of the genome sequence of C. jejuni isolate NCTC 11168, chosen as be-
ing present in �95% of draft genomes of 2,472 representative United Kingdom
campylobacteriosis isolates, comprising 2,207 (89.3%) C. jejuni isolates and 265
(10.7%) C. coli isolates. Validation of the cgMLST scheme was undertaken with 1,478
further high-quality draft genomes, containing 150 or fewer contiguous sequences,
from disease isolate collections: 99.5% of these isolates contained �95% of the
1,343 cgMLST loci. In addition to the rapid and effective high-resolution analysis of
large numbers of diverse isolates, the cgMLST scheme enabled the efficient identifi-
cation of very closely related isolates from a well-defined single-source campylobac-
teriosis outbreak.
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Campylobacteriosis is a predominant bacterial cause of acute gastroenteritis world-
wide, causing substantial morbidity and costs to health care systems, in high-,

middle-, and low-income countries (1). In high-income countries such as the United
Kingdom (UK) and the United States, the majority (90%) of human disease is caused by
Campylobacter jejuni, with Campylobacter coli responsible for most of the remaining
cases (2). Both of these organisms are ubiquitously present in the intestines of wild and
domesticated animals, where they are thought to be harmless commensal members of
the microbiota. They are found at particularly high prevalence in commercial broiler
chickens, and there is some evidence that these infections may also be pathological (3).
Although C. jejuni and C. coli differ by �15% at the nucleotide sequence level across the
genome (4), a single multilocus sequence typing (MLST) scheme has been widely

Received 13 January 2017 Returned for
modification 17 February 2017 Accepted 13
April 2017

Accepted manuscript posted online 26
April 2017

Citation Cody AJ, Bray JE, Jolley KA, McCarthy
ND, Maiden MCJ. 2017. Core genome
multilocus sequence typing scheme for stable,
comparative analyses of Campylobacter jejuni
and C. coli human disease isolates. J Clin
Microbiol 55:2086 –2097. https://doi.org/10
.1128/JCM.00080-17.

Editor Daniel J. Diekema, University of Iowa
College of Medicine

Copyright © 2017 Cody et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Alison J. Cody,
alison.cody@zoo.ox.ac.uk.

EPIDEMIOLOGY

crossm

July 2017 Volume 55 Issue 7 jcm.asm.org 2086Journal of Clinical Microbiology

http://orcid.org/0000-0001-6321-5138
https://doi.org/10.1128/JCM.00080-17
https://doi.org/10.1128/JCM.00080-17
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:alison.cody@zoo.ox.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1128/JCM.00080-17&domain=pdf&date_stamp=2017-4-26
http://jcm.asm.org


adopted for the epidemiological and population analysis of both organisms (5, 6). Given
their shared hosts and similar pathologies, the use of a common typing scheme is
important for their analysis, and the Campylobacter MLST scheme has been highly
successful in elucidating the epidemiology, population structure (7), and evolution (8)
of these bacteria. MLST data have also been widely applied in attribution studies, which
have implicated contaminated poultry meat as a predominant source of human
Campylobacter infection in several settings (9–11).

Single-source outbreaks of campylobacteriosis are considered rare, being associated
with the ingestion of raw or incompletely pasteurized milk (12, 13), untreated water (14,
15), and high-risk products such as chicken liver paté (16–18). Over ninety percent of
reported human disease is thought to be due to sporadic infection; however, many of
these cases may represent diffuse outbreaks. To date, documented continuous-source
outbreaks have been associated with contaminated water (19, 20), but many more such
outbreaks may occur across wide geographic areas and longer time periods, as a
consequence of the consumption of widely distributed foodstuffs. Such outbreaks will
be difficult to detect without large-scale surveillance involving high-resolution typing
approaches.

The advent of whole-genome sequencing (WGS) technologies for clinical microbi-
ology application (21) has greatly increased the volume of genetic information available
for the characterization of bacterial isolates, with simultaneous reductions in cost (22).
This has the potential to improve surveillance by the introduction of cost-effective,
high-resolution typing systems. Whereas previous typing systems relied on choosing
those components of the organism or parts of its genome that were amenable to
analysis, WGS enables any part of the genome to be considered as a typing target. The
challenges are, therefore, the design, validation, acceptance, and adoption of unified
agreed typing schemes (23) from the plethora of those that can be envisaged. For
Campylobacter, universal single- and multiple-locus typing schemes, including antigen
gene typing (24), conventional seven-locus MLST (5), and ribosomal sequence typing
(rMLST) (25, 26), have been designed and implemented with internationally accepted
Web-based nomenclature servers available (27), but none of these has the resolution to
identify diffuse outbreaks or diversity within outbreaks.

Here we present a set of loci for use as a core genome MLST (cgMLST) scheme for
C. jejuni and C. coli in the analysis of human campylobacteriosis isolates. The scheme
has been validated against a large number of representative isolates from the UK,
Europe, and North America and is versioned (version 1.0 is described here) to enable
consistent analyses to be performed among different laboratories in different jurisdic-
tions without the necessity of sharing isolates or data.

RESULTS

Of the 1,643 coding sequences identified in C. jejuni reference strain NCTC 11168,
1,365 were found to be present in 95% or more of the 2,472 Oxfordshire clinical draft
genomes (Fig. 1A). A secondary minor peak, indicating that an additional 72 loci were
identified in only 89% of the isolates, was observed, and reanalysis to establish the
presence of these loci in isolates belonging to C. jejuni or C. coli determined that these
loci were predominantly present only in C. jejuni isolates (Fig. 1B). A total of 22 potential
paralogous loci (Table 1) were identified and removed from the original list of 1,365
core genes, to give a cgMLST scheme of 1,343 loci, available at http://pubmlst.org/
campylobacter.

Of the 19 pseudogenes identified in the reannotation of the reference strain NCTC
11168 (28), only one (Cj0072c) of the candidate loci for inclusion in the cgMLST scheme
was also identified as a paralogue and therefore excluded. The 1,343 core loci included
only seven potential pseudogenes, which were retained in the scheme because (i)
between 36.9% and 100% of alleles at these loci in the 2,472 Oxfordshire clinical isolate
samples set as of 16 November 2016, and which did not include the reference strain,
represented coding sequence (Table 2) and (ii) no other loci were excluded from the
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scheme on the grounds that one or more alleles were noncoding in any of the
genomes.

Putative functions were assigned to 1,301 (96.9%) of the 1,343 core loci, using the
RAST server (29), with 25 functional categories represented by between 1 (0.1%) and
257 (19.8%) genes. The highest proportion of genes were associated with the metab-
olism of amino acids and derivatives (19.8%), proteins (15.4%), and cofactors, vitamins,
prosthetic groups, and pigments (10.6%) (see Table S1 in the supplemental material).
The remaining 23 categories were represented by 5.4% of loci or fewer.

The scheme was validated by assessment of the proportion of cgMLST loci detected
and alleles identified in isolate collections from Europe and North America of (i) 1,574
clinical isolates (1,349 C. jejuni and 225 C. coli isolates) and (ii) 1,371 animal and
environmental genomes (from 781 C. jejuni and 653 C. coli isolates) available from the
PubMLST database (Fig. 2; see also Tables S3 and S5 in the supplemental material).
Ninety-five percent or more of the 1,343 cgMLST loci were present in 1,510 (95.9%)
isolates from this clinical isolate collection (Fig. 2A), with an association between the
number of cgMLST loci identified and the number of contigs. Of the 1,478 clinical
genomes that comprised 150 contigs or fewer, only seven isolates (0.5%) had the
positions of �95% loci identified (tagged). After a BLAST search against the cgMLST
sequence definition database allele library, 1,452 of these 1,478 (98.2%) genomes were

FIG 1 (A) Numbers of 1,643 loci defined in the reannotation of reference genome NCTC 11168, identified in 2,472 clinical
C. jejuni (2,207) and C. coli (265) isolates, from Oxfordshire, UK. The area under the shaded box includes 1,365 loci identified
in 95% or more of the isolates from both species. (B) Reanalysis of the 72 loci identified under the peak at 89% in panel
A, indicating the number of loci identified in genomes from C. coli only or C. jejuni only or that are present in both species.
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found to have 95% or more of the cgMLST alleles designated (Fig. 2B). When this
analysis was applied to the 1,371 genomes from animal and environmental sources,
95% or more of the cgMLST loci were detected in 1,279 (93.3%) isolates (Fig. 2A), of
which 1,252 (91.3%) had 95% or more of cgMLST alleles designated (Fig. 2B). For the
1,278 (93.2%) nonclinical genomes with 150 contigs or fewer, 1,222 (95.6%) had 95% or
more cgMLST loci identified, and 1,200 (93.9%) of these had 95% or more of the cgMLST
alleles designated.

There are three C. coli clades described to date, using phylogenetic analysis of
7-locus MLST, which are associated with different host sources (8). Clade 1 C. coli, largely
represented by isolates belonging to ST-828 and ST-1150 clonal complexes (cc), are
most commonly associated with human campylobacteriosis and food animals, whereas
C. coli clades 2 and 3 are more usually isolated from wild birds and environmental
sources. Although the cgMLST scheme was established from clinical genomes, it was
important to assess the extent to which variation among clade 2 and clade 3 C. coli
isolates was identified. Of the 265 C. coli isolates in the 2,472 Oxfordshire clinical isolate
data set used to determine the core genome, 23 were not members of ST-828 cc or
ST-1150 cc and therefore did not belong to C. coli clade 1. Comparison of these
genomes with those of C. coli isolates of known clade assignment (see Table S2 in the
supplemental material) by phylogenetic analysis identified three genomes as belonging
to clade 3 (data not shown). When clinical isolates used for validation of the cgMLST
scheme (n � 42) that were unassigned to either of these clonal complexes were
compared to the reference genomes, by phylogenetic analysis of data from the MLST

TABLE 2 Pseudogenes identified in the reference genome and numbers of coding and
noncoding allele sequences identified in the 2,472 clinical isolates from Oxfordshire,
United Kingdom

Gene designation CAMP no.
No. (%) of
coding alleles

No. (%) of
noncoding alleles

Total no. of
alleles

Cj0292c CAMP1638 64 (82.1) 14 (17.9) 78
Cj0444 CAMP1627 98 (39.8) 148 (60.2) 246
Cj1064 CAMP1637 164 (100) 0 (0.0) 164
Cj1389 CAMP1639 87 (36.9) 149 (63.1) 236
Cj1395 CAMP1640 151 (69.9) 65 (30.1) 216
Cj1470c CAMP1641 129 (91.5) 12 (8.5) 141
Cj1528 CAMP1642 57 (78.1) 16 (21.9) 73

TABLE 1 Twenty-two potential paralogues removed from the initial C. jejuni/C. coli cgMLST v1.0 scheme of 1,365 loci

Gene designation CAMP no. Gene product

Cj0045c CAMP0044 Putative iron-binding protein
Cj0072c CAMP1625 Pseudogene (putative iron-binding protein)
Cj0251c CAMP0221 Highly acidic protein
Cj0416 CAMP0381 Hypothetical protein
Cj0770c CAMP0705 Putative NLPA family lipoprotein
Cj0771c CAMP0706 Putative NLPA family lipoprotein
Cj0772c CAMP0707 Putative NLPA family lipoprotein
Cj0814 CAMP0749 Hypothetical protein
Cj0816 CAMP0751 Hypothetical protein
Cj0851c CAMP0786 Putative integral membrane protein
Cj1018c/livK CAMP0941 Branched-chain amino acid ABC transport system, periplasmic binding protein
Cj1019c/livJ CAMP0942 Branched-chain amino acid ABC transport system, periplasmic binding protein
Cj1149c/gmhA CAMP1068 Sedoheptulose 7-phosphate isomerase
Cj1189c/cetB CAMP1108 Bipartate energy taxis response protein CetB
Cj1191c CAMP1110 Putative PAS domain containing signal transduction sensor protein
Cj1200 CAMP1119 Putative NLPA family lipoprotein
Cj1224 CAMP1143 Putative iron-binding protein
Cj1305c CAMP1223 Hypothetical protein
Cj1306c CAMP1224 Hypothetical protein
Cj1310c CAMP1228 Hypothetical protein
Cj1342c/maf7 CAMP1258 Motility accessory factor
Cj1360c CAMP1276 Putative proteolysis tag for 10Sa_RNA
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FIG 2 Validation of the cgMLST scheme by assessment of the proportion of clinical (blue) and nonclinical (red) isolates in which the core
loci and defined allele sequences could be identified. (A) Percentage of 1,343 cgMLST loci identified; (B) proportion of these loci from panel
A with an allele designated in 2,945 C. jejuni and C. coli isolates. Broken lines indicate the cutoff values for isolates in which 95% of loci
were identified or alleles designated and the numbers of contigs from which these data could be reliably informed. Quadrants thus
defined are labeled as i, ii, iii, and iv, respectively, with details of these for each isolate detailed in Table S5.
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scheme, 25 were identified as belonging to clade 1, two isolates to clade 2, and 15
isolates to clade 3 (Fig. 3). Of these, 20 (80.0%), 1 (50.0%), and 10 (62.5%) isolates,
respectively, were represented by 150 contigs or fewer, from which 95% or more loci
were tagged; however, two clade 1 genomes and one clade 2 genome with 150 contigs
or fewer had less than 95% of alleles designated. A comparison of nonclinical (n � 175)
unassigned C. coli isolates used for scheme validation, with the same reference ge-
nomes, determined the presence of 80 clade 1, 41 clade 2, and 54 clade 3 isolates (Fig.
3), 70 (83.8%), 37 (90.2%), and 22 (40.7%) of which, respectively, had genomes com-
prised of 150 contigs or fewer, in which 95% or more of loci were tagged and 95% or
more of cgMLST alleles were designated; fewer than 95% of alleles were designated in
six clade 3 genomes comprising fewer than 150 contigs. A single isolate (id 31118),
confirmed as C. coli by rMLST, did not have a complete MLST profile and was excluded
from further analysis.

The comparison of cgMLST allelic profiles from a previously published data set of 23
isolates associated with a known outbreak and 59 contemporaneous Oxfordshire
surveillance C. jejuni samples (13), visualized as a minimum spanning tree in PHYLOViZ,
identified a cluster of 15 allelic profiles representing 20 outbreak isolates (Fig. 4). Within
this cluster, differences between isolates predominantly arose in instances where loci
occurred on the end of a contig, from which complete locus detection and allele
designations could not be made. Three potential outbreak-associated genomes were
genetically distant from the cluster of 20 but were highly similar to contemporaneous
isolates, with one differing by only 3 alleles from the genome of a control isolate from
Oxfordshire. Phylogenetic comparison of the concatenated cgMLST nucleotide se-
quences identified the same isolate clusters as those obtained with allelic profiles (see
Fig. S1 in the supplemental material).

DISCUSSION

Genomic studies of multiple bacterial isolates have enabled the establishment of the
concepts of (i) the core genome, i.e., those genes present in most or all bacterial isolates

FIG 3 Identification of C. coli genomes unassigned to a clonal complex from clinical (n � 42) (black
triangles) and nonclinical (n � 175) (gray triangles) isolates belonging to clades 1, 2, and 3. Concatenated
sequences from seven-locus MLST alleles of isolates used to validate the human disease cgMLST scheme
v1.0 were used to construct a neighbor-joining tree, which included reference isolates of known C. coli
clades that are colored as follows: red, C. coli clade 1; yellow, C. coli clade 2; green, C. coli clade 3.
Reference isolates are detailed in Table S2. The scale bar represents the p-distance between aligned
sequences.
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in a particular group, and (ii) the whole genome, the complete genetic complement of
a constrained number of related isolates, as defined by the full complement of loci from
a defined reference genome. In practice, very high resolution can be attained across
large groups of isolates by core genome comparisons, which have the advantage of

FIG 4 (A) Single-linkage cluster analysis of cgMLST allelic profiles visualized as a minimum spanning tree in
PHYLOViZ, from 23 potential outbreak isolates (red) and 59 contemporaneous surveillance isolates from
Oxfordshire, UK (black). (B) Twenty clustered outbreak isolates represented by 15 cgMLST profiles, as
represented by a single isolate identifier, indicated in black type. The numbers of allelic differences between
cgMLST profiles are indicated in red. Link lengths are not proportional to the number of allelic differences.
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being highly reproducible across data sets, although increased resolution can be
achieved using whole-genome analysis. These high-resolution MLST-like approaches to
the genomic comparison of bacterial isolates can be systematized as core genome
MLST (cgMLST) and whole-genome MLST (wgMLST) (23, 26).

Various definitions can be used to identify the members of a core genome (23). The
most stringent definition, designating as part of the core genome those genes that are
present in all isolates, is problematic, first, because all isolates are potential mutants,
resulting in a progressive reduction in core genome size as more isolates are examined,
and second, because the WGS approaches used at the time of writing result in draft,
incomplete genome sequences in which some genes may be missing (30). A number
of approaches have been used to define core genomes in Campylobacter, leading to
estimated core genome sizes of 847 (31), 866 (32), 1,001 (33), 1,035 (34), and 1,295 (35)
loci. The number of loci in the core genome set varies depending on the algorithms
used and the cutoff values employed, combined with the source, species, and genomic
diversity of the isolates examined. Here we undertook a survey of large collections of
WGS data of human campylobacteriosis isolates to identify the maximum number of
genes for use in a cgMLST scheme. The aim was to propose a set of genes that can be
used as a basis for reproducible comparisons among clinical laboratories interested in
human campylobacteriosis.

The reannotated genome sequence of the reference isolate NCTC 11168 (36) was
used as the primary source for the 1,643 candidate protein-encoding loci to be included
in the core genome scheme (28). A set of 1,343 genes with single loci (82% of the
genome) was generated by using a 95% threshold for the presence of loci in the 2,472
human campylobacteriosis isolates (Fig. 1), followed by the removal of paralogous
genes, a potential source of inaccuracies in gene-by-gene comparisons. These 1,343 loci
were included in the human campylobacteriosis cgMLST scheme, version 1.0, in which
the proportion of genes belonging to different functional categories were largely
comparable to that of the 1,643 loci from the NCTC 11168 genome (Table S1) (28). This
scheme, including the allele sequences for each of the loci included, is available from
https://pubmlst.org/campylobacter/, where it can be accessed directly or through a
RESTful API (http://rest.pubmlst.org) of the BIGSdb database (37). The version number
for the scheme means that it is possible to make refinements while retaining the
possibility of using previous versions for comparative analyses or to reproduce work
published with the scheme. Any such changes would affect only the complement of
genes included and not allele designations made at each locus.

Using a single reference genome as a source of loci potentially results in loci that are
present in the majority of isolates but are not present as a functional gene in the
reference isolate, being excluded from the cgMLST scheme. This is especially a concern
in Campylobacter, in which organism a large number of genes are potentially phase
variable and present as nonfunctional genes in some isolates (36). Nineteen such genes
are identified in the reannotation of NCTC 11168 (28). These genes were not removed
from this analysis, and after the removal of potential paralogues, seven of them were
included in cgMLST v1.0. Interestingly, only one of these (Cj1064, PubMLST locus
CAMP1637) was “phase variable off” in NCTC 11168 and “phase variable on” in all
members of the reference set of human campylobacteriosis isolates (Table 2). The
remaining phase-variable genes were phase variable on in 36.9 to 100.0% of the alleles
identified in the human campylobacteriosis isolates (Table 2). Thus, it is unlikely that
many functional genes have been excluded from cgMLST v1.0 due to the use of the
single reference genome.

One of the challenges in the application of WGS approaches to clinical and public
health problems is the incompleteness of the data that can be available from clinical
specimens. This is exacerbated by the use of draft sequences, which may be in multiple
contiguous sequences (contigs) and may have many loci missing (30). In both the
clinical and nonclinical data sets analyzed here, 95% of the cgMLST loci were detected
in the majority (97.6%) of those genome assemblies with 150 contigs or fewer, which
can be used as a quality threshold for the analysis of such data. It was noteworthy that
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for some isolates with substantially more than 150 contigs, it was still possible to detect
more than 95% of the cgMLST v1.0 genes.

There are three known clades of C. coli (referred to as clades 1, 2, and 3) (8), with
clade 1 being the most commonly associated with human disease and clades 2 and 3
more commonly present among isolates from wild birds and environmental sources.
Clade 1 C. coli isolates show the most evidence for introgression, i.e., gene acquisition,
from C. jejuni (4). As expected, there were a lower proportion of the cgMLST v1.0 genes
detected in C. coli clade 2 and clade 3 isolates, present in the second set of isolates
examined. Although cgMLST v1.0 will provide some resolution of such isolates, it was
formulated for the analysis of human campylobacteriosis isolates and this is its recom-
mended use. For detailed analysis of C. coli as a species, an alternative cgMLST scheme
should be developed. The analysis presented here suggests that a cgMLST scheme for
C. jejuni alone would be 70 to 80 loci larger (Fig. 1B), which is unlikely to substantially
improve resolution over the one that we propose, covering both species.

The reanalysis of a previously published human campylobacteriosis outbreak
(13) with cgMLST v1.0 demonstrated the comparability of the results obtained and
the ease with which results of cgMLST analyses can be manipulated. Within a group
of 23 potential outbreak isolates, 20 were found to represent a single strain,
indicating that they most likely shared a common point source. When compared
with isolates concomitantly sampled in a geographically distant surveillance area,
one of the three isolates disparate from the outbreak strain was found to differ at
only three loci from a surveillance isolate. This finding adds further support to the
hypothesis that many disease isolates may represent continuous source outbreaks,
acquired via extended food distribution networks. The cgMLST allelic profile com-
parisons were directly comparable with the originally reported findings, obtained
using wgMLST (13), and with those from phylogenetic analysis of concatenated
cgMLST allele sequences (Fig. S1).

In conclusion, the cgMLST v1.0 genes set proposed here provides a high-resolution
WGS analysis scheme for isolates from human campylobacteriosis, which can be used
both for ongoing disease surveillance and the resolution of very closely related isolates
obtained during outbreak investigation. The ability to group isolates using this scheme
provides, for the first time, an automated means of detecting clusters from a diffuse set
of isolates rapidly using Web-based tools. The scheme is freely available via the
PubMLST.org database and in machine-readable format via the RESTful API, enabling its
incorporation into other analysis platforms, as required.

MATERIALS AND METHODS
Core gene identification. Whole-genome sequence data from 2,472 clinical C. jejuni (n � 2,207) and

C. coli (n � 265) isolates, each representing a unique infection and with complete MLST and rMLST
profiles, from Oxfordshire, UK, between 2011 and 2014, were obtained as previously described (26).
Contiguous sequences for each isolate were scanned by BIGSdb software (37), and the positions of the
1,643 loci were recorded (“tagged”) in each draft genome. Coding sequence was identified by alleles with
in-frame start and stop codons; these were initially indicated by the reference allele from NCTC 11168,
but as the number of genomes increased, some start codons that were not necessarily in accordance
with that defined in the initial reference were identified, and codons were then identified as dictated by
the remainder of the data set. Alleles without in-frame start and/or stop codons were regarded as
noncoding, and their assigned alleles were flagged as such.

The annotated reference strain used to seed the database was representative of the most abundant,
multihost clonal complex (ST-21 complex) causing human disease in the UK (2, 26). The presence of these
loci in each draft genome was compared using BLASTN to identify genes with �70% sequence identity
to �50% of the length of the locus. Loci found to be absent in no more than 5% of isolates (i.e., those
present in �95.0% of isolates) were included within the scheme. This cutoff level was chosen (i) to take
into account the draft nature of the genomes, in which all regions may not sequence or assemble
completely, and (ii) to prevent the exclusion of loci that encode conserved essential functions but are
inactive in particular rare isolates.

Paralogue and pseudogene identification. Inaccuracies may arise in core genome comparisons
when two different genes are so similar that their alleles can be assigned to multiple loci in the genome.
To prevent such errors, potential paralogous loci were excluded from the core genome definition by their
identification from five subsets of 10 isolates (Table S4), chosen to represent the diversity of clonal
complexes causing the majority of human disease, using a variety of methods which are as follows (Fig.
5). The 50 genomes were compared using the genome comparator function of BIGSdb to identify
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paralogous loci for exclusion from the cgMLST scheme as follows: (i) those loci that were paralogous in
all 50 isolates, using the BLAST settings detailed above, and (ii) those loci that were paralogous in any
of the 50 isolates, but with the requirement for �70% sequence identity to a minimum of 90% of the
locus. Additionally, the 2,472 draft genomes were searched for loci at which more than one allele was
designated. The similarities of sequences thus identified to loci present elsewhere in the genome were
also investigated. Finally, genes identified by any of these analyses that were also present in the initial
95% core genome were removed from the scheme.

Loci identified as pseudogenes in the reannotation given in reference 28 that were candidate
members of the cgMLST scheme were investigated for the presence of coding sequence in the 2,472
genomes, by aligning translated allele sequences contained in pubmlst.org/campylobacter and analysis
with MEGA v5.1 (38). The whole-genome sequence of the reference genome and the concatenated allele
sequences for cgMLST loci were downloaded from pubmlst.org/campylobacter and submitted to the
RAST server (29) for annotation of putative functional categories.

Validation analyses. The cgMLST scheme was validated by identification of the 1,343 loci in 1,574
draft clinical C. jejuni (1,349) and C. coli (225) genomes, obtained from Europe and North America,
available at pubmlst.org/campylobacter (Tables S3 and S5). These draft genome assemblies were chosen
such that each had a total length of 2 Mb or less and fewer than 500 contigs. These criteria were
instituted to minimize mixed cultures and poor-quality sequencing. Allele sequences of the cgMLST loci
were automatically scanned, sequences were tagged, and alleles were assigned and incorporated into
the sequence definition database allele library, using the BIGSdb autotagger facility. In a further
validation step, the analysis was extended to include an additional 1,371 (total, 2,945) similarly chosen
C. jejuni (718) and C. coli (653) isolates from animal and environmental sources available in the PubMLST
database (Table S5).

The extent to which the cgMLST scheme accurately identified variation among genomes obtained
from C. coli isolates belonging to clades 1, 2, and 3 was assessed by means of a neighbor-joining tree of

FIG 5 Diagrammatic representation of the basic methodology used for (i) identification of cgMLST genes
from Oxfordshire clinical draft genomes and paralogous loci, for the development of the cgMLST scheme
(top), and (ii) validation of the scheme using clinical and nonclinical draft genomes available in
pubmlst.org/campylobacter (bottom).

Core Genome MLST Scheme for Clinical Campylobacter Journal of Clinical Microbiology

July 2017 Volume 55 Issue 7 jcm.asm.org 2095

http://jcm.asm.org


seven-locus MLST concatenated-nucleotide data, reconstructed using MEGA 5.1 software (38), and by
comparison with reference isolates (see Table S2 in the supplemental material). Clade 1 C. coli isolates are
most commonly isolates from agricultural and clinical sources, whereas clades 2 and 3 are more
frequently found in riparian environments (4).

The potential of this cgMLST scheme to distinguish potential outbreak isolates was investigated by
comparison of 23 genomes obtained from a geographically isolated human population and 59 contem-
poraneous clinical C. jejuni genomes from Oxfordshire, UK, which had been previously analyzed by
seven-locus MLST and wgMLST (13). Core-genome MLST types (cgST) were assigned to allelic profiles
that had up to 100 missing alleles. Missing alleles were replaced in the profile by an “N.” A cgST was
added to a single-linkage group if it was linked with at least one other member of that group with less
than or equal to the threshold number of allelic differences, where the value N matched any other locus.
Core genome STs were automatically assigned to single-linkage clusters, comprising isolates that differed
at fewer than 5, 10, 25, 50, 100, or 200 cgMLST loci, as implemented in BIGSdb version 1.14.0. These
allele-based isolate clusters were visualized in a minimum spanning tree using PHYLOViZ (39) and
compared with those observed by phylogenetic analysis of the concatenated allele sequences of the
1,343 core loci.
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