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ABSTRACT
For the better understanding of insulin resistance (IR), the molecular biomarkers in IR white
adipocytes and its potential mechanism, we downloaded two mRNA expression profiles from
Gene Expression Omnibus (GEO). The white adipocyte samples in two databases were collected
from the human omental adipose tissue of IR obese (IRO) subjects and insulin-sensitive obese
(ISO) subjects, respectively. We identified 86 differentially expressed genes (DEGs) between the
IRO and ISO subjects using limma package in R software. Gene Set Enrichment Analysis (GSEA)
provided evidence that the most gene sets enriched in kidney mesenchyme development in the
ISO subjects, as compared with the IRO subjects. The Gene Ontology (GO) analysis indicated that
the most significantly enriched in cellular response to interferon-gamma. The Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis revealed that the DEGs were most significantly
enriched in cytokine-cytokine receptor interaction. Protein–Protein Interaction (PPI) network was
performed with the STRING, and the top 10 hub genes were identified with the Cytohubba. CMap
analysis found several small molecular compounds to reverse the altered DEGs, including dropro-
pizine, aceclofenac, melatonin, and so on. Our outputs could empower the novel potential targets
to treat omental white adipocyte insulin resistance, diabetes, and diabetes-related diseases.
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1 Introduction

Insulin resistance and insulin resistance-related compli-
cation have become important causes of mortality and
morbidity through the world. Many studies have
ascribed insulin resistance and diabetes to obesity
[1,2]. Obesity is broadly characterized as an expansion
of white adipose tissue mass to reserve the excessive
energy in the form of triglycerides. During the recent
decades, white adipose tissue has been emerged as
a metabolic regulator for its secreting adipokines
including proinflammatory or anti-inflammatory fac-
tors [3]. One of the main reasons of dysfunction of
white adipose tissue to the impaired suppression of
lipolysis in the presence of high insulin levels, is white
adipose insulin resistance that plays a critical role in the
pathophysiology of diabetes, non-alcoholic fatty liver
disease, diabetic cardiomyopathy and tumours [4–6].

Most previous studies have focused on the contrast of
white adipose between the obesity and the lean [7–9].
However, not all obesity contributes to insulin resistance
[10,11]. Hardy and his colleagues demonstrated not only
that five genes including CCL2, CCL3, CCL4, CCL18
and IL8/CXCL8 were most highly expressed

independent of body mass index (BMI) in the human
omental adipose tissue of insulin-resistant obese (IRO)
subject, as compared with insulin-sensitive obese (ISO)
subjects, but that increased macrophage infiltration in
the omental adipose tissue was correlated to insulin
resistance. It was of great significance for their demon-
stration, however, the study only focused on that BMI-
independent inflammation in omental adipose tissue
associated with insulin resistance in morbid obesity [12].

In the present study, for the better understanding of
the molecular biomarkers, the potential mechanisms
and potential therapeutic agents for white adipocyte
insulin resistance, diabetes, and other metabolic dis-
eases, we downloaded two mRNA expression profiles
from Gene Expression Omnibus (GEO, http://www.
ncbi.nlm.nih.gov/geo/), which is an international public
repository providing freely high-throughput microarray
and relevant functional genomic data sets [13]. The
total 30 samples of white adipocytes in two databases
were collected from the human omental adipose tissue
of IRO subjects and ISO subjects, respectively. With the
performance of limma package in R software, 86 differ-
entially expressed genes (DEG) which would be the
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novel diagnostic biomarkers, were screened between
the IRO and ISO subjects. The potential mechanisms
of obesity-induced insulin resistance such as kidney
mesenchyme development, cellular response to inter-
feron-gamma and cytokine-cytokine receptor interac-
tion and so on were explored with the performance of
Gene Set Enrichment Analysis (GSEA), the Gene
Ontology (GO) analysis, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis and
Protein–Protein Interaction (PPI) network. Ten hub
genes (IL6, MMP9, CXCL8, CCL4, CXCL10, PTGS2,
CCL2, SELE, CCL2, BCL2A1) were identified with the
Cytohubba, including three genes (CCL2, CCL4,
CXCL8) which had been identified in the previous
study. CMap analysis was performed to discover several
small molecular compounds to reverse the altered
DEGs, including dropropizine, aceclofenac, melatonin,
and so on. Our output could empower the novel and
more comprehensive diagnostic and therapeutic targets
for omental white adipocyte insulin resistance, and
white adipocyte insulin resistance-induced diabetes
and other chronic metabolic diseases.

2 Materials and methods

2.1 Microarray data archives

The expression profiles by an array of GSE15773 and
GSE20950 were retrieved from GEO database. The
samples in two databases were the human omental
(for visceral) white adipocytes collected from insulin-
resistant obese (IRO) and insulin-sensitive obese (ISO)
subjects undergoing gastric bypass surgery between
2005 and 2009 at the University of Massachusetts
Medical School [12]. GSE20950 collected 10 omental
samples from IRO subjects and 10 omental samples
from ISO subjects, and GSE15773 contained five IRO
samples and five ISO samples. Totally, 15 omental
samples from IRO subjects and 15 omental samples
from ISO subjects. The statistical analyses for age, gen-
der, height, weight, BMI, total cholesterol, high-density
lipoprotein (HDL) cholesterol, low-density lipoprotein
(LDL) cholesterol, triglycerides, and the number of
lipids lowering therapy, between ISO and IRO subjects
had no statistical significance. However, fasting glucose,
fasting insulin and homeostatic model of assessment
for insulin resistance (HOMA2-IR) between two groups
had statistical significance [12]. The expression profil-
ings of both databases were based on GPL570
(Affymetrix Human Genome U133 Plus 2.0 Array)
platform. Series matrix files and data table header
descriptions of two databases were downloaded from

the GEO database to screen and verify hub genes
involved in the IRO subjects.

2.2 Microarray data and degs identification

Following two databases annotated and consolidated by
the performance of Perl script, sva package in
R software (version 3.5.3) (University of California,
Berkeley, CA) was applied for background expression
value correction and data normalization [14]. DEGs
with the threshold criterion of adjusted p < 0.05 and |
log FC|; (fold change) >1 between the IRO and ISO
subjects were screened in limma package in R software
[15]. Pheatmap package in R software was subsequently
performed to plot the heatmap of DEGs [16].

2.3 GO and pathway enrichment analyses

GO is a commonly used bioinformatic tool that provides
comprehensive information on gene function of indivi-
dual genomic products based on defined features. GO
analysis of all detected genes was conducted by GSEA
software (version 3.0) [17]. GSEA is a promising, widely
used software package, which derives gene sets to deter-
mine different biological functions between two groups.

GO and KEGG pathway analyses of DEGs were per-
formed via The Database for Annotation, Visualization,
and Integrated Discovery (DAVID 6.8, http://david.
ncifcrf.gov) [18]. The GO analysis consists of biological
processes (BP), and cellular components (CC), molecular
functions (MF). KEGG is a database resource for under-
standing high-level biological functions and utilities.
Gene count >2 and p < 0.05 were set as the threshold.

2.4 PPI network creation and hub gene
identification

PPI network of DEGs was constructed by Search Tool
for the Retrieval of Interacting Genes (STRING10.5;
https://string-db.org/) with a combined score >0.4 as
the cut-off point [19]. Hub genes were identified using
Cytohubba, a plug-in of Cytoscape software
(Cytoscape, 3.7.1) and significant modules in the PPI
network were identified by molecular complex detec-
tion (MCODE 1.5.1), another plug-in of Cytoscape
software [20,21]. The parameters of DEGs clustering
and scoring were set as follows: MCODE score ≥4,
degree cut-off = 2, node score cut-off = 0.2, max
depth = 100, and k-score = 2.
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2.5 Correlation between hub genes and diabetes

Correlation between hub genes and diabetes was per-
formed with the Attie Lab Diabetes database (http://
diabetes.wisc.edu). The Attie Lab Diabetes database is
a searchable resource of the gene expression data that is
used to display the gene expression profiles of different
experimental groups (lean and obese BTBR mice at 4
and 10 weeks of age) in any of six tissues, including
adipose [22].

2.6 CMap analysis

The Connectivity Map (CMap) (https://portals.broadin
stitute.org/cmap) is an open resource that links disease,
genes, and drugs by similar or opposite gene expression
profiles [23]. CMap analysis is used to predict potential
small molecular compounds that can reverse altered
expression of DEGs in cell lines. Mean < −0.4 and p <
0.05 were set as the screening criteria.

2.7 Statistical analysis

The statistical analyses of DEGs were done in
R software. The p-values in GSEA analysis were ana-
lyzed with GSEA software (version 3.0). The p-value in
the correlation between hub genes and diabetes were
obtained from Attie Lab Diabetes database (http://dia
betes.wisc.edu). The p-values in CMap analysis were
analyzed in the CMap (https://portals.broadinstitute.
org/cmap). Whenever asterisks are used to indicate
statistical significance, *p < 0.05, **p < 0.01, and ***p
< 0.001.

3 Result

3.1 Identification of DEGs related to
insulin-resistant obese

To identify DEGs in the omental white adipocytes
between ISO and IRO subjects, we retrieved relevant
microarray expression profiles of GSE15773 and
GSE20950 from GEO database. After consolidation
and normalization of the microarray data, 86 DEGs
between ISO and IRO subjects were screened by
limma package (|logFC| >1, adjusted p < 0.05) as
shown in the heatmap (Figure 1). Among them, 14
genes were upregulated and 72 genes were downregu-
lated (Figure 2, Table 1).

3.2 GO enrichment analysis of all detected genes

To identify gene sets with a statistically significant
difference in the omental white adipocytes between

ISO and IRO subjects, GSEA was performed, which
showed most enriched gene sets of all detected genes
in the IRO subjects. The top-three most significant-
enriched gene sets negatively correlated with the IRO
subjects were kidney mesenchyme development, sex
determination, positive regulation of synapse assembly
(Figure 3a–c), meanwhile, the top-three most signifi-
cant-enriched gene sets positively correlated with the
IRO subjects were leukocyte chemotaxis, chemokine-
mediated signalling pathway, positive regulation of
inflammatory response (Figure 3d–f).

3.3 GO enrichment analysis of DEGs

To determine the biological features of DEGs, GO ana-
lysis was accomplished by DAVID online tools. The BP
analysis revealed that the DEGs were major enriched in
cellular response to interferon-gamma, chemokine-
mediated signalling pathway, cellular response to inter-
leukin-1, non-canonical Wnt signalling pathway via JNK
cascade (Figure 4). The CC analysis showed that DEGs
were enriched in extracellular space, extracellular region,
extracellular exosome and proteinaceous extracellular
matrix (Figure 4). Changes in MF of DEGs were signifi-
cantly enriched in chemokine activity, heparin binding,
protein binding, and peptidase activity (Figure 4).

3.4 KEGG enrichment analysis of DEGs

To explore the potential mechanism of these DEGs,
KEGG pathway analysis was performed using DAVID
online tools. The results of KEGG analysis revealed that
DEGs were mainly involved in cytokine-cytokine
receptor interaction, TNF signalling pathway, pathways
in cancer, NF-kappa B signalling pathway (Figure 5).

3.5 PPI network analysis

To identify the most significant clusters of the DEGs,
PPI network of DEGs was constituted by STRING. As
shown in Figure 6(a), there were 47 nodes and 102
edged in the PPI network. The most significant mod-
ules (score = 8.5) were recognized by MCODE, a plug-
in of Cytoscape. (Figure 6(b)).

3.6 Hub genes recognition

To identify the hub gene in the DEGs, Cytohubba,
a plug-in Cytoscape was performed. All the gene code
and edge were calculated. The top 10 genes were iden-
tified as hub genes (Table 2). To find the correlation
between hub genes and diabetes, the Attie Lab Diabetes
database was performed. BTBR mice become severely
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diabetic with obesity at 10 weeks of age. We checked
the hub genes using the Attie Lab Diabetes database to
identify the correlation between the hub genes and

diabetes. We could find that the expression of CCL2,
IL6, CCL4 were significantly upregulated in the 10-
weeks BTBR obese diabetic mice (Figure 7).

Figure 1. Heatmap of 86 DEGs screened by limma package in R software. Red areas represent highly expressed genes and green
areas represent lowly expressed genes in omental adipose from IRO subjects compared with ISO subjects. DEG: differentially
expressed gene; IRO: insulin-resistant obesity; ISO: insulin sensitivity obesity.
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3.7 CMap analysis

To search for potential small molecular compounds to
reverse altered expression of DEGs, CMap analysis was
performed. The most three significant small molecular
compounds were dropropizine, aceclofenac, melatonin
(Table 3).

4 Discussion

Insulin resistance is defined as the metabolic disordered
situation that even higher concentration of insulin is
insufficient to control the value of glycemia. During the
recent decades, white adipose tissue has been emerged
as an important regulator in the metabolism. Increasing
studies have discovered that white adipose insulin resis-
tance is strongly associated with the diabetes, cardio-
vascular diseases, and tumorigenesis [24–26].
Traditionally, white adipose includes subcutaneous adi-
pose and visceral adipose. However, metabolic disor-
ders are associated more strongly with visceral
adiposity, rather than with subcutaneous adiposity
[27]. The great concern is thus given to the diagnosis
and therapeutic targets of visceral insulin resistance
[28]. In the present study, bioinformatic methods are

promising methods to analyze the critical genes and
pathways which were associated with omental white
adipose insulin resistance.

In the present study, a total of 21,755 genes were
included. GSEA provided evidence that the most signif-
icant-enriched gene sets negatively correlated with the
IRO subjects was kidney mesenchyme development. It
has been discovered that BMP7, one of the gene ontology
annotations in GO kidney mesenchyme development,
could augment insulin sensitivity in mice with type 2
diabetes by potentiating PI3K/AKT pathway [29]. It will
provide a new perspective on the therapeutic strategy on
the insulin resistance and type 2 diabetes. Otherwise,
GSEA provided further evidence that inflammation
played a critical role in adipocyte insulin resistance, for
the gene sets in GO that positively correlated with the
IRO subjects were enriched in leukocyte chemotaxis and
chemokine-mediated signalling pathway.

Based on the mRNA expression data, the 86 DEGs
were identified between ISO and IRO groups. The
analysis of BP in GO annotation indicated the DEGs
were significantly enriched in cellular response to inter-
feron-gamma, which was consistent with the previous
demonstration that interferon-gamma released from
omental adipose tissue of insulin-resistant humans

Figure 2. Volcano plot analysis identifies DEGs. Red dots represent 12 upregulated genes and green dots represent 64 down-
regulated genes in omental adipocyte from IRO subjects compared with ISO subjects.
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Table 1. 86 differentially expressed genes (DEGs) between the IRO and ISO subjects.
Gene symbol LogFC P.Value Adj.P.Val Discription

SELE 1.879096 0.003469 0.010998 Selectin E
FOSB 1.862047 0.005321 0.015295 FosB Proto-Oncogene, AP-1 Transcription Factor Subunit
CH25H 1.861392 0.000147 0.001037 Cholesterol 25-Hydroxylase
CCL3L3 1.637939 0.000161 0.0011 C-C Motif Chemokine Ligand 3 Like 3
IL6 1.593556 0.003843 0.011902 Interleukin 6
CCL2 1.509892 0.000415 0.002205 C-C Motif Chemokine Ligand 2
CXCL8 1.476708 2.80E-05 0.000332 C-X-C Motif Chemokine Ligand 8
MMP9 1.434427 2.67E-05 0.000321 Matrix Metallopeptidase 9
CCL8 1.233571 0.000148 0.001041 C-C Motif Chemokine Ligand 8
BCL2A1 1.207528 1.96E-05 0.000264 BCL2 Related Protein A1
CCL4 1.189727 0.000822 0.003646 C-C Motif Chemokine Ligand 4
SLC2A3 1.059321 0.000437 0.002277 Solute Carrier Family 2 Member 3
CXCL10 1.040682 0.001537 0.005848 C-X-C Motif Chemokine Ligand 10
PTGS2 1.014023 0.003974 0.012219 Prostaglandin-Endoperoxide Synthase 2
EZR −1.00561 0.001522 0.005807 Ezrin
FGF10 −1.00813 1.79E-05 0.000247 Fibroblast Growth Factor 10
LOC730101 −1.01143 7.46E-08 1.11E-05 Uncharacterized LOC730101
PDZK1IP1 −1.01724 1.80E-05 0.000248 PDZK1 Interacting Protein 1
GPT2 −1.02266 1.21E-06 4.58E-05 Glutamic–Pyruvic Transaminase 2
CCDC182 −1.02634 1.03E-08 3.54E-06 Coiled-Coil Domain Containing 182
LOC105379499 −1.02832 0.000278 0.001641 Uncharacterized LOC105379499
GPM6A −1.03013 1.12E-06 4.42E-05 Glycoprotein M6A
RARRES1 −1.03198 0.004503 0.013463 Retinoic Acid Receptor Responder 1
RBMS3-AS3 −1.03424 1.97E-08 5.06E-06 RBMS3 Antisense RNA 3
DAPK1 −1.03754 5.38E-07 2.94E-05 Death Associated Protein Kinase 1
DSC3 −1.03987 1.58E-05 0.000227 Desmocollin 3
LOC286191 −1.03992 1.81E-05 0.000249 Uncharacterized LOC286191
MGC24103 −1.05252 6.67E-06 0.00013 uncharacterized MGC24103
OGN −1.06052 0.000837 0.003696 Osteoglycin
PEG3-AS1 −1.06077 8.06E-07 3.62E-05 PEG3 Antisense RNA 1
BCO2 −1.07343 4.01E-05 0.000425 Beta-Carotene Oxygenase 2
WNT5A −1.07968 5.03E-05 0.000497 Wnt Family Member 5A
PTPN13 −1.08707 3.56E-05 0.000392 Protein Tyrosine Phosphatase Non-Receptor Type 13
ADGRD1 −1.09049 0.000745 0.003394 Adhesion G Protein-Coupled Receptor D1
MUC16 −1.09179 0.000337 0.001897 Mucin 16, Cell Surface Associated
COL8A1 −1.0999 2.43E-05 0.000303 Collagen Type VIII Alpha 1 Chain
SGO2 −1.10134 0.002526 0.008593 Shugoshin 2
REEP1 −1.10205 0.000224 0.0014 Receptor Accessory Protein 1
HAND2-AS1 −1.11029 8.44E-06 0.000151 HAND2 Antisense RNA 1
FAM184B −1.11123 5.55E-05 0.000529 Family With Sequence Similarity 184 Member B
SERTM1 −1.11179 0.006541 0.017993 Serine Rich And Transmembrane Domain Containing 1
HSD17B6 −1.11252 0.007312 0.019676 Hydroxysteroid 17-Beta Dehydrogenase 6
KLK5 −1.11374 8.95E-05 0.00073 Kallikrein Related Peptidase 5
ADAMTS3 −1.12108 3.45E-06 8.63E-05 ADAM Metallopeptidase With Thrombospondin Type 1 Motif 3
SLPI −1.12146 0.002489 0.008497 Secretory Leukocyte Peptidase Inhibitor
KCNK17 −1.12528 1.29E-06 4.74E-05 Potassium Two Pore Domain Channel Subfamily K Member 17
FZD7 −1.12933 2.02E-05 0.000269 Frizzled Class Receptor 7
SLC6A18 −1.14746 1.11E-09 1.27E-06 Solute Carrier Family 6 Member 18
MYOC −1.15129 0.000196 0.001269 Myocilin
OSR1 −1.18335 0.000381 0.002076 Odd-Skipped Related Transcription Factor 1
LOC107985971 −1.18454 4.19E-05 0.000436 Uncharacterized LOC107985971
LOC101930363 −1.18661 0.001718 0.006357 Uncharacterized LOC101930363
NNAT −1.19253 0.000392 0.002116 Neuronatin
MUM1L1 −1.19258 0.000198 0.001281 Mutated Melanoma-Associated Antigen 1-Like Protein 1
CRISPLD1 −1.19426 0.000157 0.001088 Cysteine Rich Secretory Protein LCCL Domain Containing 1
SLC28A3 −1.21083 0.000124 0.000918 Solute Carrier Family 28 Member 3
PCP4 −1.21751 1.73E-05 0.000242 Purkinje Cell Protein 4
STK26 −1.23583 9.86E-05 0.000785 Serine/Threonine Kinase 26
LRP2 −1.24535 6.50E-05 0.000589 LDL Receptor Related Protein 2
HCAR1 −1.24879 3.40E-07 2.25E-05 Hydroxycarboxylic Acid Receptor 1
MSLN −1.25677 0.002926 0.009622 Mesothelin
UPK3B −1.2569 0.015278 0.035445 Uroplakin 3B
CLIC3 −1.2602 0.000327 0.001854 Chloride Intracellular Channel 3
CCL21 −1.27874 0.002635 0.00887 C-C Motif Chemokine Ligand 21
KCNT2 −1.29148 0.000103 0.000807 Potassium Sodium-Activated Channel Subfamily T Member 2
SUSD5 −1.29173 3.51E-05 0.000387 Sushi Domain Containing 5
NELL2 −1.29529 1.14E-05 0.000184 Neural EGFL Like 2
FKBP5 −1.31942 0.000426 0.002244 FKBP Prolyl Isomerase 5
SLC27A2 −1.34127 3.38E-05 0.000377 Solute Carrier Family 27 Member 2
FAM110C −1.34917 0.004246 0.012852 Family With Sequence Similarity 110 Member C
TCEAL2 −1.35659 5.22E-06 0.00011 Transcription Elongation Factor A Like 2
MGARP −1.3571 0.00076 0.003442 Mitochondria Localized Glutamic Acid Rich Protein
ANXA8L1 −1.41631 0.003195 0.010298 Annexin A8 Like 1
WT1 −1.46178 0.000737 0.003366 WT1 Transcription Factor
DMKN −1.48658 1.41E-07 1.46E-05 Dermokine
BCHE −1.51598 0.000649 0.003057 Butyrylcholinesterase

(Continued )
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impaired the response to insulin [30]. The most
enriched gene set of DEGs in the BP of GO was inflam-
matory response, which was well consistent with the
demonstration by Hardy and his colleagues [12]. The
most gene set of DEGs in the CC of GO was enriched
in extracellular exosome, which included 25 DEGs.
Exosomes are extracellular microvesicles (30 to 150
nm in diameter) derived from various cells, transferring
different proteins, non-coding RNA and coding RNA,
which have been looked as diseases biomarkers or cell-
cell communication factors [31,32]. Increasing studies

have unveiled that exosomes derived from the insulin-
resistant adipocyte were implicated in the skeletal mus-
cle insulin resistance, obesity-related liver disease,
atherosclerosis, and lung cancer [33–36]. Given the
broad spectrum of the discoveries of the function of
these exosomes, it is not surprising that exosomes
derived from insulin-resistant adipocytes, functioned
as independent metabolic units, which might provide
a promising therapeutic target on the insulin resistance,
diabetes, and related metabolic disorders [37]. The MF
analysis of GO suggested that the DEGs were the most

Table 1. (Continued).

Gene symbol LogFC P.Value Adj.P.Val Discription

FAM221A −1.52345 3.00E-10 5.43E-07 Family With Sequence Similarity 221 Member A
TMEM255A −1.52749 0.0003 0.001738 Transmembrane Protein 255A
MMRN1 −1.57297 0.000467 0.002391 Multimerin 1
GPAT3 −1.61959 4.73E-09 2.57E-06 Glycerol-3-Phosphate Acyltransferase 3
PKHD1L1 −1.6242 0.001835 0.006696 Polycystic Kidney And Hepatic Disease 1 (Autosomal Recessive)-Like 1
AZGP1 −1.6757 3.82E-11 4.16E-07 Alpha-2-Glycoprotein 1, Zinc-Binding
FLRT3 −1.69116 8.87E-05 0.000727 Fibronectin Leucine Rich Transmembrane Protein 3
PTPRZ1 −1.72517 8.63E-09 3.29E-06 Protein Tyrosine Phosphatase Receptor Type Z1
ANGPTL7 −1.87141 3.28E-07 2.22E-05 Angiopoietin Like 7
XIST −1.88809 0.018291 0.040896 X Inactive Specific Transcript

Figure 3. GSEA plot showing most enriched gene sets of all detected genes in the IRO subjects. The top-three most significant
down-regulated enriched gene sets in the IRO subjects: kidney mesenchyme development (a), sex determination (b), positive
regulation of synaspse assembly (c). The top-three most significant up-regulated enriched gene sets in the IRO subjects: leukocyte
chemotaxis (d), chemokine-mediated signalling pathway (e), positive regulation of inflammatory response (f). GSEA: gene set
enrichment analysis; NES: normalized enrichment score.
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Figure 4. GO enrichment result of DEGs. The x-axis label represents gene ratio and y-axis label represents GO terms. The size of circle
represents gene count. Different colour of circles represents different adjusted p value. DEG: differentially expressed gene; FDR: false
discovery rate; GO: Gene Ontology.

Figure 5. KEGG pathway analysis of differentially expressed genes. Advanced bubble chart shows enrichment of DEGs in signalling
pathways. Y-axis label represents pathway, and X-axis label represents rich factor (rich factor = amount of DEGs enriched in the
pathway/amount of all DEGs in background gene set). Size and colour of the bubble represent amount of DEGs enriched in pathway
and enrichment significance, respectively. KEGG: Kyoto Encyclopedia of Genes and Genomes; DEG: differentially expressed gene; FDR:
false discovery rate.
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significant enriched in protein binding, suggesting that
the interaction of two or more proteins played an
important role in the adipocyte insulin resistance.
Additionally, KEGG enrichment analysis of DEGs
showed that these DEGs were mapped in cytokine-
cytokine receptor interaction, TNF signalling pathway,
toll-like receptor signalling pathway, pathways in can-
cer, all which were consistent with the previous demon-
stration that white adipocyte insulin resistance had

cross-talking with inflammation and tumorigenesis
[38,39].

In the present study, we found 10 hub genes includ-
ing MMP9, IL6, CXCL8 (IL8), CCL4, CXCL10, PTGS2
(COX-2), CCL2 (MCP-1), SELE, CCL21 and BCL2A1.
MMP9 has been reported to be positively correlated
with omental adipocyte insulin resistance and MMP9
was decreased in response to pioglitazone [40,41].
Hoene et al. demonstrated that IL6 could induce

Figure 6. The PPI network and the most significant modules of DEGs. (a) The PPI network was analyzed by String software. Here
were 47 nodes and 102 edged in the PPI network. (b) The most significant module identified by MCODE (score = 8.5). DEG:
differentially expressed gene; PPI: protein–protein interaction.
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insulin resistance and IL6 played a pivotal role in the
metabolic process [42]. Kobashi and his colleagues
suggested that IL-8 could induce insulin resistance via

the inhibition of insulin-induced Akt phosphorylation
in adipocytes [43]. Po-Shiuan et al. reported that COX-
2 activation in visceral fat inflammation might crucially
contribute to the development of insulin resistance and
fatty liver in high-fat induced obese rats [44]. Kanda
et al. demonstrated that abundance of MCP-1 mRNA
in adipose tissue was increased in genetically obese
diabetic (db/db) mice. Their research also revealed
that insulin resistance induced by a high-fat diet was
improved extensively in MCP-1 homozygous KO mice
compared with WT animals and that acute expression
of a dominant-negative mutant of MCP-1 ameliorated
insulin resistance in db/db mice, which made it con-
firmed that MCP-1 played a critical role in adipocyte
insulin resistance [45]. To the date, there is still no
reports on the correlation between the genes of CCL4,
CXCL10, SELE, BCL1A1 and CCL21 with adipocyte
insulin resistance.

In the present study, we found several potential
small molecular compounds to reverse the altered
expression of the DEGs, which might improve white
adipocyte insulin resistance. It was reported that the
replacement therapy of melatonin might contribute to
restore insulin resistance of cardiomyocytes and skele-
tal muscle [46–48]. Withaferin A also has been demon-
strated that it played an important role on improving
high-fat diet-induced obesity and palmitic acid-induced
endothelial insulin resistance through attenuation of
oxidative stress and inflammation [49,50]. Levodopa is
known as a precursor to dopamine. The previous stu-
dies revealed that the altered dopamine turnover con-
tributed to the behavioural disorders in brain insulin
resistance, implying that dopamine might be
a protective molecule [51]. However, whether dopa-
mine and its precursor levodopa could improve

Table 2. 10 hub genes identified by Cytohubba.
Gene
symbol Description

Degree of
connectivity logFC

IL6 Interleukin 6 20 1.59
MMP9 Matrix Metallopeptidase 9 16 1.43
CXCL8 C-X-C Motif Chemokine Ligand 8 15 1.47
CCL4 C-C Motif Chemokine Ligand 4 12 1.19
CXCL10 C-X-C Motif Chemokine Ligand

10
11 1.04

PTGS2 Prostaglandin-Endoperoxide
Synthase 2

11 1.01

CCL2 C-C Motif Chemokine Ligand 2 9 1.51
SELE Selectin E 8 1.88
CCL21 C-C Motif Chemokine Ligand 21 7 −1.28
BCL2A1 BCL2 Related Protein A1 7 1.21

Figure 7. The expression of genes significantly upregulated in the adipose of the 10-weeks obese diabetic mice. (a) CCL2 gene
expression was significantly upregulated in the adipocyte of the 10-weeks obese diabetic mice (p < 0.001). (b) IL6 gene expression
was significantly upregulated in the adipocyte of the 10-weeks obese diabetic mice (p < 0.05). (c) CCL4 gene expression was
significantly upregulated in the adipocyte of the 10-weeks obese diabetic mice (p < 0.001).

Table 3. List of the 20 most significant small molecular com-
pounds provided by CMap analysis to reverse altered expres-
sion of DEGs in cell lines.
CMap name Mean Enrichment p Percent non-null

Dropropizine −0.741 −0.971 0.00167 100
Aceclofenac −0.743 −0.965 0.00274 100
Melatonin −0.731 −0.96 0.00352 100
Dihydroergotamine −0.782 −0.958 0.00378 100
Levodopa −0.708 −0.955 0.00429 100
Glycocholic acid −0.702 −0.953 0.00467 100
Isocarboxazid −0.688 −0.939 0.00767 100
Mafenide −0.662 −0.932 0.00972 100
Methocarbamol −0.723 −0.925 0.01153 100
Prestwick-1103 −0.648 −0.922 0.01223 100
Prednisone −0.678 −0.918 0.01374 100
Withaferin A −0.654 −0.907 0.01718 100
Pivampicillin −0.633 −0.903 0.01871 100
Isoxicam −0.643 −0.902 0.01911 100
Neomycin −0.737 −0.9 0.02008 100
Niflumic acid −0.669 −0.895 0.02185 100
Sulfacetamide −0.642 −0.89 0.02416 100
Ethambutol −0.617 −0.888 0.02491 100
Hesperetin −0.589 −0.887 0.02527 100
Vinburnine −0.627 −0.885 0.02648 100
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adipocytes insulin resistance remains unclear. Yoshida
et al. provided novel evidence that hesperetin directly
inhibited TNF-alpha-stimulated FFA secretion to ame-
liorate FFA-induced insulin resistance in mice adipo-
cytes [52]. However, the other small molecular
compounds have not been reported to have the func-
tion to reverse insulin resistance or diabetes. All these
small molecular compounds could be explored as the
novel therapeutic targets to treat insulin resistance,
diabetes, and related metabolic diseases.

In the present study, though we identified 10 hub genes
of adipocyte insulin resistance and potential mechanism of
white adipose insulin resistance with the bioinformatic
analysis, further studies are urgently demanded to validate
the hub genes, and further mechanisms would be uncov-
ered. All the output will pave way to the potential thera-
peutic strategy to treat insulin resistance, diabetes and
related metabolic disease.
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