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Abstract: The problem of determining the best achievable performance of arbitrary lossless compression
algorithms is examined, when correlated side information is available at both the encoder and decoder.
For arbitrary source-side information pairs, the conditional information density is shown to provide
a sharp asymptotic lower bound for the description lengths achieved by an arbitrary sequence of
compressors. This implies that for ergodic source-side information pairs, the conditional entropy rate is
the best achievable asymptotic lower bound to the rate, not just in expectation but with probability one.
Under appropriate mixing conditions, a central limit theorem and a law of the iterated logarithm are proved,
describing the inevitable fluctuations of the second-order asymptotically best possible rate. An idealised
version of Lempel-Ziv coding with side information is shown to be universally first- and second-order
asymptotically optimal, under the same conditions. These results are in part based on a new almost-sure
invariance principle for the conditional information density, which may be of independent interest.

Keywords: entropy; lossless data compression; side information; conditional entropy; central limit
theorem; law of the iterated logarithm; conditional varentropy

1. Introduction

It is well-known that the presence of correlated side information can potentially offer dramatic
benefits for data compression [1,2]. Important applications where such side information is naturally
present include the compression of genomic data [3,4], file and software management [5,6], and image
and video compression [7,8].

In practice, the most common approach to the design of effective compression methods with side
information is based on generalisations of the Lempel-Ziv family of algorithms [9–13]. A different
approach based on grammar-based codes was developed in [14], turbo codes were applied in [15],
and a generalised version of context-tree weighting was used in [16].

In this work, we examine the theoretical fundamental limits of the best possible performance that
can be achieved in such problems. Let (X, Y) = {(Xn, Yn) ; n ≥ 1} be a source-side information pair;
X is the source to be compressed, and Y is the associated side information process which is assumed
to be available both to the encoder and the decoder. Under appropriate conditions, the best average
rate that can be achieved asymptotically [2], is the conditional entropy rate,

H(X|Y) = lim
n→∞

1
n

H(Xn
1 |Yn

1 ), bits/symbol,

where Xn
1 = (X1, X2, . . . , Xn), Yn

1 = (Y1, Y2, . . . , Yn), and H(Xn
1 |Yn

1 ) denotes the conditional entropy of
Xn

1 given Yn
1 ; precise definitions will be given in Section 2.

Entropy 2020, 22, 705; doi:10.3390/e22060705 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-7242-6375
http://dx.doi.org/10.3390/e22060705
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/6/705?type=check_update&version=2


Entropy 2020, 22, 705 2 of 18

Our main goal is to derive sharp asymptotic expressions for the optimum compression rate
(with side information available to both the encoder and decoder), not only in expectation but with
probability 1. In addition to the best first-order performance, we also determine the best rate at
which this performance can be achieved, as a function of the length of the data being compressed.
Furthermore, we consider an idealised version of a Lempel-Ziv compression algorithm, and we show
that it can achieve asymptotically optimal first- and second-order performance, universally over a broad
class of stationary and ergodic source-side information pairs (X, Y).

Specifically, we establish the following. In Section 2.1 we describe the theoretically optimal
one-to-one compressor f ∗n (Xn

1 |Yn
1 ), for arbitrary source-side information pairs (X, Y). In Section 2.2

we prove our first result, stating that the description lengths `( f ∗n (Xn
1 |Yn

1 )) can be well-approximated,
with probability one, by the conditional information density, − log P(Xn

1 |Yn
1 ). Theorem 2 states that

for any jointly stationary and ergodic source-side information pair (X, Y), the best asymptotically
achievable compression rate is H(X|Y) bits/symbol, with probability 1. This generalises Kieffer’s
corresponding result [17] to the case of compression with side information.

Furthermore, in Section 2.4 we show that there is a sequence of random variables {Zn} such that
the description lengths `( fn(Xn

1 |Yn
1 )) of any sequence of compressors { fn} satisfy a “one-sided” central

limit theorem (CLT): Eventually, with probability 1,

`( fn(Xn
1 |Yn

1 )) ≥ nH(X|Y) +
√

nZn + o(
√

n), bits, (1)

where the Zn converge to a N(0, σ2(X|Y)) distribution, and the term o(
√

n) is negligible compared to√
n. The lower bound (1) is established in Theorem 3 where it is also shown that it is asymptotically

achievable. This means that the rate obtained by any sequence of compressors has inevitable O(
√

n)
fluctuations around the conditional entropy rate, and that the size of these fluctuations is quantified by
the conditional varentropy rate,

σ2(X|Y) = lim
n→∞

1
n

Var
(
− log P(Xn

1 |Yn
1 )
)
.

This generalises the minimal coding variance of [18]. The bound (1) holds for a broad class of
source-side information pairs, including all Markov chains with positive transition probabilities.
Under the same conditions, a corresponding “one-sided” law of the iterated logarithm (LIL) is
established in Theorem 4, which gives a precise description of the inevitable almost-sure fluctuations
above H(X|Y), for any sequence of compressors.

The proofs of all the results in Sections 2.3 and 2.4 are based, in part, on analogous asymptotics for
the conditional information density, − log P(Xn

1 |Yn
1 ). These are established in Section 2.5, where we

state and prove a corresponding CLT and an LIL for− log P(Xn
1 |Yn

1 ). These results, in turn, follow from
the almost sure invariance principle for − log P(Xn

1 |Yn
1 ), proved in Appendix A. Theorem A1, which is

of independent interest, generalises the invariance principle established for the (unconditional)
information density − log P(Xn

1 ) by Philipp and Stout [19]. In fact, Theorem A1 along with the
identification of the conditions under which it holds (Assumption 1) in Section 2.4), are the more novel
contributions of this work.

In a different direction, Nomura and Han [20] establish finer coding theorems for the
Slepian-Wolf problem, when the side information is only available to the decoder. There,
they obtain general second-order asymptotics for the best achievable rate region, under an excess-rate
probability constraint.

Section 3 is devoted to universal compression. We consider a simple, idealised version of
Lempel-Ziv coding with side information. As in the case of Lempel-Ziv compression without side
information [21,22], the performance of this scheme is determined by the asymptotics of a family of
conditional recurrence times,Rn = Rn(X|Y). Under appropriate, general conditions on the source-side
information pair (X, Y), in Theorem 8 we show that the ideal description lengths, logRn, can be
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well-approximated by the conditional information density − log P(Xn
1 |Yn

1 ). Combining this with our
earlier results on the conditional information density, in Corollary 1 and Theorem 9 we show that the
compression rate of this scheme converges to H(X|Y), with probability 1, and that it is universally
second-order optimal. The results of this section generalise the corresponding asymptotics without
side information established in [23,24].

The proofs of the more technical results needed in Sections 2 and 3 are given in the appendix.

2. Pointwise Asymptotics

In this section, we derive general, fine asymptotic bounds for the description lengths of arbitrary
compressors with side information, as well as corresponding achievability results.

2.1. Preliminaries

Let X = {Xn ; n ≥ 1} be an arbitrary source to be compressed, and Y = {Yn ; n ≥ 1} be
an associated side information process. We let X ,Y , denote their finite alphabets, respectively, and we
refer to the joint process (X, Y) = {(Xn, Yn) ; n ≥ 1} as a source-side information pair.

Let xn
1 = (x1, x2, . . . , xn) be a source string, and let yn

1 = (y1, y2, . . . , yn) an associated side
information string which is available to both the encoder and decoder. A fixed-to-variable one-to-one
compressor with side information, of blocklength n, is a collection of functions fn, where each fn(xn

1 |yn
1 )

takes a value in the set of all finite-length binary strings,

{0, 1}∗ =
∞⋃

k=0
{0, 1}k = {∅, 0, 1, 00, 01, 000, . . .},

with the convention that {0, 1}0 = {∅} consists of just the empty string ∅ of length zero. For each
yn

1 ∈ Yn, we assume that fn(·|yn
1 ) is a one-to-one function from X n to {0, 1}∗, so that the compressed

binary string fn(xn
1 |yn

1 ) is always correctly decodable.
The main figure of merit in lossless compression is of course the description length,

`( fn(xn
1 |yn

1 )) = length of fn(xn
1 |yn

1 ), bits,

where throughout, `(s) denotes the length, in bits, of a binary string s. It is easy to see that under quite
general criteria, the optimal compressor f ∗n is easy to describe; see [25] for an extensive discussion.
For 1 ≤ i ≤ j ≤ ∞, we use the shorthand notation zj

i for the string (zi, zi+1, . . . , zj), and similarly Zj
i for

the corresponding collection of random variables Zj
i = (Zi, Zi+1, . . . , Zj).

Definition 1 (The optimal compressor f ∗n ). For each side information string yn
1 , f ∗n (·|yn

1 ) is the optimal
compressor for the distribution P(Xn

1 = ·|Yn
1 = yn

1 ), namely the compressor that orders the strings xn
1 in order of

decreasing probability P(Xn
1 = xn

1 |Yn
1 = yn

1 ), and assigns them codewords from {0, 1}∗ in lexicographic order.

2.2. The Conditional Information Density

Definition 2 (Conditional information density). For an arbitrary source-side information pair (X, Y),
the conditional information density of blocklength n is the random variable: − log P(Xn

1 |Yn
1 ) =

− log PXn
1 |Y

n
1
(Xn

1 |Yn
1 ).

[Throughout the paper, ‘log’ denotes ‘log2’, the logarithm taken to base 2, and all familiar
information theoretic quantities are expressed in bits.]

The starting point is the following almost sure (a.s.) approximation result between the description
lengths `( fn(Xn

1 |Yn
1 )) of an arbitrary sequence of compressors and the conditional information density

− log P(Xn
1 |Yn

1 )) of an arbitrary source-side information pair (X, Y). When it causes no confusion,
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we drop the subscripts for PMFs and conditional PMFs, e.g., simply writing P(xn
1 |yn

1 ) for PXn
1 |Y

n
1
(xn

1 |yn
1 )

as in the definition above. Recall the definition of the optimal compressors { f ∗n} from Section 2.1.

Theorem 1. For any source-side information pair (X, Y), and any sequence {Bn} that grows faster than
logarithmically, i.e., such that Bn/ log n→ ∞ as n→ ∞, we have:

(a) For any sequence of compressors with side information { fn}:

lim inf
n→∞

`( fn(Xn
1 |Yn

1 ))− [− log P(Xn
1 |Yn

1 )]

Bn
≥ 0, a.s.

(b) The optimal compressors { f ∗n} achieve the above bound with equality.

Proof. Fix ε > 0 arbitrary and let τ = τn = εBn. Applying the general converse in ([25], Theorem 3.3)
with Xn

1 , Yn
1 in place of X, Y and X n,Yn in place of X ,Y , gives,

P
[
`( f (Xn

1 |Yn
1 )) ≤ − log P(Xn

1 |Yn
1 )− εBn

]
≤ 2log n−εBn(blog |X |c+ 1),

which is summable in n. Therefore, by the Borel-Cantelli lemma we have that eventually, a.s.,

`( f (Xn
1 |Yn

1 )) + log P(Xn
1 |Yn

1 ) > −εBn,

Since ε > 0 was arbitrary, this implies (a). Part (b) follows from (a) together with the fact that
`( f ∗n (Xn

1 |Yn
1 )) + log P(Xn

1 |Yn
1 ) ≤ 0, a.s., by the general achievability result in ([25], Theorem 3.1).

2.3. First-Order Asymptotics

For any source-side information pair (X, Y), the conditional entropy rate H(X|Y) is defined as:

H(X|Y) = lim sup
n→∞

1
n

H(Xn
1 |Yn

1 ).

Throughout H(Z) and H(Z|W) denote the discrete entropy of Z and the conditional entropy of Z
given W, in bits. If (X, Y) are jointly stationary, then the above lim sup is in fact a limit, and it is equal
to H(X, Y)− H(Y), where H(X, Y) and H(Y) are the entropy rates of (X, Y) and of Y , respectively [2].
Moreover, if (X, Y) are also jointly ergodic, then by applying the Shannon-McMillan-Breiman
theorem [2] to Y and to the pair (X, Y), we obtain its conditional version:

− 1
n

log P(Xn
1 |Yn

1 )→ H(X|Y), a.s. (2)

The next result states that the conditional entropy rate is the best asymptotically achievable
compression rate, not only in expectation but also with probability 1. It is a consequence of Theorem 1
with Bn = n, combined with (2).

Theorem 2. Suppose (X, Y) is a jointly stationary and ergodic source-side information pair with conditional
entropy rate H(X|Y).

(a) For any sequence of compressors with side information { fn}:

lim inf
n→∞

`( fn(Xn
1 |Yn

1 ))

n
≥ H(X|Y), a.s.

(b) The optimal compressors { f ∗n} achieve the above bound with equality.
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2.4. Finer Asymptotics

The refinements of Theorem 2 presented in this section will be derived as consequences of the
general approximation results in Theorem 1, combined with corresponding refined asymptotics for the
conditional information density − log P(Xn

1 |Yn
1 ). For clarity of exposition these are stated separately,

in Section 2.5 below.
The results of this section will be established for a class of jointly stationary and ergodic

source-side information pairs (X, Y), that includes all Markov chains with positive transition
probabilities. The relevant conditions, in their most general form, will be given in terms of the
following mixing coefficients.

Definition 3. Suppose Z = {Zn ; n ∈ Z} is a stationary process on a finite alphabet Z . For any pair of
indices −∞ ≤ i ≤ j ≤ ∞, let F j

i denote the σ-algebra generated by Zj
i . For d ≥ 1, define:

α(Z)(d) = sup
{
|P(A ∩ B)− P(A)P(B)| ; A ∈ F 0

−∞, B ∈ F∞
d
}

,

γ(Z)(d) = max
z∈Z

E
(∣∣ logP(Z0 = z|Z−1

−∞)− logP(Z0 = z|Z−1
−d)

∣∣).
Note that if Z is an ergodic Markov chain of order k, then α(Z)(d) decays exponentially fast [26],

and γ(Z)(d) = 0 for all d ≥ k. Moreover, if (X, Y) is a Markov chain with all positive transition
probabilities, then γ(Y)(d) also decays exponentially fast; cf. ([27], Lemma 2.1).

Throughout this section we will assume that the following conditions hold:

Assumption 1. The source-side information pair (X, Y) is stationary and satisfies one of the following
three conditions:

(a) (X, Y) is a Markov chain with all positive transition probabilities; or
(b) (X, Y) as well as Y are kth order, irreducible and aperiodic Markov chains; or
(c) (X, Y) is jointly ergodic and satisfies the following mixing conditions: [Our source-side information pairs

(X, Y) are only defined for (Xn, Yn) with n ≥ 1, whereas the coefficients α(Z)(d) and γ(Z)(d) are defined
for two-sided sequences {Zn ; n ∈ Z}. However, this does not impose an additional restriction, since any
one-sided stationary process can be extended to a two-sided one by the Kolmogorov extension theorem [28].]

α(X,Y)(d) = O(d−336), γ(X,Y)(d) = O(d−48), and γ(Y)(d) = O(d−48). (3)

In view of the discussion following Definition 3, (a)⇒ (c) and (b)⇒ (c). Therefore, all results
stated under Assumption 1 will be proved under the weakest set of conditions, namely that (3) hold.

Definition 4. For a source-side information pair (X, Y), the conditional varentropy rate is:

σ2(X|Y) = lim sup
n→∞

1
n

Var(− log P(Xn
1 |Yn

1 )). (4)

Under the above assumptions, the lim sup in (4) is in fact a limit. Lemma 1 is proved in
the Appendix A.

Lemma 1. Under Assumption 1, the conditional varentropy rate σ2(X|Y) is:

σ2(X|Y) = lim
n→∞

1
n

Var(− log P(Xn
1 |Yn

1 )) = lim
n→∞

1
n

Var

(
− log

(P(Xn
1 , Yn

1 |X0
−∞, Y0

−∞)

P(Yn
1 |Y0
−∞)

))
.
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Our first main result in this section is a “one-sided” central limit theorem (CLT), which states that
the description lengths `( fn(Xn

1 |Yn
1 )) of an arbitrary sequence of compressors with side information,

{ fn}, are asymptotically at best Gaussian, with variance σ2(X|Y). Recall the optimal compressors
{ f ∗n} described in Section 2.1

Theorem 3 (CLT for codelengths). Suppose (X, Y) satisfy Assumption 1, and let σ2 = σ2(X|Y) > 0 denote
the conditional varentropy rate (4). Then there exists a sequence of random variables {Zn ; n ≥ 1} such that:

(a) For any sequence of compressors with side information, { fn}, we have,

lim inf
n→∞

[
`( fn(Xn

1 |Yn
1 ))− H(Xn

1 |Yn
1 )√

n
− Zn

]
≥ 0, a.s., (5)

where Zn → N(0, σ2), in distribution, as n→ ∞.
(b) The optimal compressors { f ∗n} achieve the lower bound in (5) with equality.

Proof. Letting Zn = [− log P(Xn
1 |Yn

1 )]/
√

n, n ≥ 1, and taking Bn =
√

n, both results follow by
combining the approximation results of Theorem 1 with the corresponding CLT for the conditional
information density in Theorem 5.

Our next result is in the form of a “one-sided” law of the iterated logarithm (LIL) which states
that with probability 1, the description lengths of any compressor with side information will have

inevitable fluctuations of order
√

2σ2n loge log2 n bits around the conditional entropy rate H(X|Y);
throughout, loge denotes the natural logarithm to base e.

Theorem 4 (LIL for codelengths). Suppose (X, Y) satisfy Assumption 1, and let σ2 = σ2(X|Y) > 0 denote
the conditional varentropy rate (4). Then:

(a) For any sequence of compressors with side information, { fn}, we have:

lim sup
n→∞

`( fn(Xn
1 |Yn

1 ))− H(Xn
1 |Yn

1 )√
2n loge loge n

≥ σ, a.s., (6)

and lim inf
n→∞

`( fn(Xn
1 |Yn

1 ))− H(Xn
1 |Yn

1 )√
2n loge loge n

≥ −σ, a.s. (7)

(b) The optimal compressors { f ∗n} achieve the lower bounds in (6) and (7) with equality.

Proof. Taking Bn =
√

2n log2 loge n, the results of the theorem again follow by combining the
approximation results of Theorem 1 with the corresponding LIL for the conditional information
density in Theorem 6.

Remark 1.

1. Although the results in Theorems 3 and 4 are stated for one-to-one compressors { fn}, they remain valid for
the class of prefix-free compressors. Since prefix-free codes are certainly one-to-one, the converse bounds
in Theorem 3 (a) and 4 (a) are valid as stated, while for the achievability results it suffices to consider
compressors f p

n with description lengths `( f p
n (xn

1 |yn
1 ))) = d− log P(xn

1 |yn
1 )e, and then apply Theorem 5.

2. Theorem 3 says that the compression rate of any sequence of compressors { fn} will have at best Gaussian
fluctuations around H(X|Y),

1
n
`( f ∗n (Xn

1 |Yn
1 )) ≈ N

(
H(X|Y), σ2(X|Y)

n

)
, bits/symbol,
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and similarly Theorem 4 says that with probability 1, the description lengths will have inevitable

fluctuations of approximately ±
√

2nσ2 loge loge n bits around nH(X|Y).

As both of these vanish when σ2(X|Y) is zero, we note that if the source-side information pair (X, Y)
is memoryless, so that {(Xn, Yn)} are independent and identically distributed, then the conditional
varentropy rate reduces to,

σ2(X|Y) = Var(− log P(X1|Y1)),

which is equal to zero if and only if, for each y ∈ Y , the conditional distribution of X1 given Y1 = y is
uniform on a subset Xy ⊂ X , where all the Xy have the same cardinality.

In the more general case when both the pair process (X, Y) and the side information Y are Markov chains,
necessary and sufficient conditions for σ2(X|Y) to be zero were recently established in [25].

3. In analogy with the source dispersion for the problem of lossless compression without side
information [29,30], for an arbitrary source-side information pair (X, Y) the conditional dispersion
D(X|Y) was recently defined [25] as,

D(X|Y) = lim sup
n→∞

1
n

Var
[
`( f ∗n (Xn

1 |Yn
1 ))
]
.

There, it was shown that when both the pair (X, Y) and Y itself are irreducible and aperiodic Markov
chains, the conditional dispersion coincides with the conditional varentropy rate:

D(X|Y)= lim
n→∞

1
n

Var
[
`( f ∗n (Xn

1 |Yn
1 ))
]
= σ2(X|Y) < ∞.

2.5. Asymptotics of the Conditional Information Density

Here we show that the conditional information density itself, − log P(Xn
1 |Yn

1 ), satisfies a CLT and
a LIL. The next two theorems are consequences of the almost sure invariance principle established in
Theorem A1, in the Appendix A.

Theorem 5 (CLT for the conditional information density). Suppose (X, Y) satisfy Assumption 1, and let
σ2 = σ2(X|Y) > 0 denote the conditional varentropy rate (4). Then, as n→ ∞:

− log P(Xn
1 |Yn

1 )− H(Xn
1 |Yn

1 )√
n

→ N(0, σ2), in distribution. (8)

Proof. The conditions (3), imply that as n → ∞, [nH(X, Y)− H(Xn
1 , Yn

1 )]/
√

n → 0, and [nH(Y)−
H(Yn

1 )]/
√

n→ 0, cf. [19], therefore also, [nH(X|Y)− H(Xn
1 |Yn

1 )]/
√

n→ 0, so it suffices to show that
as n→ ∞,

− log P(Xn
1 |Yn

1 )− nH(X|Y)√
n

→ N(0, σ2). in distribution. (9)

Let D = D([0, 1],R) denote the space of cadlag (right-continuous with left-hand limits) functions
from [0, 1] to R, and define, for each t ≥ 0, S(t) = log P(Xbtc1 |Y

btc
1 ) + tH(X|Y), as in Theorem A1 in the

Appendix A. For all n ≥ 1, t ∈ [0, 1], define Sn(t) = S(nt). Then Theorem A1 implies that as n→ ∞,{ 1
σ
√

n
Sn(t) ; t ∈ [0, 1]

}
→ {B(t) ; t ∈ [0, 1]}, weakly in D,

where {B(t)} is a standard Brownian motion; see, e.g., ([19], Theorem E, p. 4). In particular,
this implies that

1
σ
√

n
Sn(1)→ B(1) ∼ N(0, 1), in distribution,
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which is exactly (9).

Theorem 6 (LIL for the conditional information density). Suppose (X, Y) satisfy Assumption 1, and let
σ2 = σ2(X|Y) > 0 denote the conditional varentropy rate (4). Then:

lim sup
n→∞

− log P(Xn
1 |Yn

1 )− H(Xn
1 |Yn

1 )√
2n loge loge n

= σ, a.s., (10)

and lim inf
n→∞

− log P(Xn
1 |Yn

1 )− H(Xn
1 |Yn

1 )√
2n loge loge n

= −σ, a.s. (11)

Proof. As in the proof of (8), it suffices to prove (10) with nH(X|Y) in place of H(Xn
1 |Yn

1 ). However,
this is immediate from Theorem A1, since, for a standard Brownian motion {B(t)},

lim sup
t→∞

B(t)√
2t loge loge t

= 1, a.s.,

see, e.g., ([31], Theorem 11.18). In addition, similarly for (11).

3. Idealised LZ Compression with Side Information

Consider the following idealised version of Lempel-Ziv-like compression with side information.
For a given source-side information pair (X, Y) = {(Xn, Yn) ; n ∈ Z}, the encoder and decoder
both have access to the infinite past (X0

−∞, Y0
−∞) and to the current side information Yn

1 . The encoder
describes Xn

1 to the decoder as follows. First she searches for the first appearance of (Xn
1 , Yn

1 ) in the
past (X0

−∞, Y0
−∞), that is, for the first r ≥ 1 such that (X−r+n

−r+1 , Y−r+n
−r+1 ) = (Xn

1 , Yn
1 ). Then she counts

how many times Yn
1 appears in Y0

−∞ between locations −r + 1 and 0, namely how many indices

1 ≤ j < r there are, such that Y−j+n
−j+1 = Yn

1 . Say there are (Rn − 1) such js. She describes Xn
1 to the

decoder by telling him to look at theRnth position where Yn
1 appears in the past Y0

−∞, and read off the
corresponding X string.

This description takes ≈ logRn bits, and, as it turns out, the resulting compression rate is
asymptotically optimal: As n→ ∞, with probability 1,

1
n

logRn → H(X|Y), bits/symbol. (12)

Moreover, it is second-order optimal, in that it achieves equality in the CLT and LIL bounds given
in Theorems 3 and 4 of Section 2.

Our purpose in this section is to make these statements precise. We will prove (12) as well as its
CLT and LIL refinements, generalising the corresponding results for recurrence times without side
information in [24].

The use of recurrence times in understanding the Lempel-Ziv (LZ) family of algorithms was
introduced by Willems [21] and Wyner and Ziv [22,32]. In terms of practical methods for compression
with side information, Subrahmanya and Berger [9] proposed a side information analog of the sliding
window LZ algorithm [33], and Uyematsu and Kuzuoka [10] proposed a side information version
of the incremental parsing LZ algorithm [34]. The Subrahmanya-Berger algorithm was shown to be
asymptotically optimal in [12,13]. Different types of LZ-like algorithms for compression with side
information were also considered in [11].

Throughout this section, we assume (X, Y) is a jointly stationary and ergodic source-side
information pair, with values in the finite alphabets X ,Y , respectively. We use bold lower-case
letters x, y without subscripts to denote infinite realizations x∞

−∞, y∞
−∞ of X, Y , and the corresponding

bold capital letters X, Y without subscripts to denote the entire process, X = X∞
−∞, Y = Y∞

−∞.
The main quantities of interest are the recurrence times defined next.
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Definition 5 (Recurrence times). For a realization x of the process X, and n ≥ 1, define the repeated
recurrence timesR(j)

n (x) of xn
1 , recursively, as:

R(1)
n (x) = inf{i ≥ 1 : x−i+n

−i+1 = xn
1},

R(j)
n (x) = inf{i > R(j−1)

n (x) : x−i+n
−i+1 = xn

1}, j > 1.

For a realization (x, y) of the pair (X, Y) and n ≥ 1, the joint recurrence time Rn(x, y) of (xn
1 , yn

1 ) is
defined as,

Rn(x, y) = inf{i ≥ 1 : (x, y)−i+n
−i+1 = (x, y)n

1},

and the conditional recurrence timeRn(x|y) of xn
1 among the appearances yn

1 is:

Rn(x|y) = inf
{

i ≥ 1 : x−R
(i)
n (y)+n

−R(i)
n (y)+1

= xn
1

}
.

An important tool in the asymptotic analysis of recurrence times is Kac’s Theorem [35].
Its conditional version in Theorem 7 was first established in [12] using Kakutani’s induced
transformation [36,37].

Theorem 7 (Conditional Kac’s theorem). [12] Suppose (X, Y) is a jointly stationary and ergodic source-side
information pair. For any pair of strings xn

1 ∈ X n, yn
1 ∈ Yn:

E[Rn(X|Y)|Xn
1 = xn

1 , Yn
1 = yn

1 ] =
1

P(xn
1 |yn

1 )
.

The following result states that we can asymptotically approximate logRn(X|Y) by the
conditional information density not just in expectation as in Kac’s theorem, but also with probability 1.
Its proof is in Appendix B.

Theorem 8. Suppose (X, Y) is a jointly stationary and ergodic source-side information pair. For any sequence
{cn} of non-negative real numbers such that ∑n n2−cn < ∞, we have:

(i) logRn(X|Y)− log
( 1

P(Xn
1 |Yn

1 )

)
≤ cn, eventually a.s.

(ii) logRn(X|Y)− log
( 1

P(Xn
1 |Yn

1 , Y0
−∞, X0

−∞)

)
≥ −cn, eventually a.s.

(iii) logRn(X|Y)− log
( P(Yn

1 |Y0
−∞)

P(Xn
1 , Yn

1 |Y0
−∞, X0

−∞)

)
≥ −2cn, eventually a.s.

Next we state the main consequences of Theorem 8 that we will need. Recall the definition of the
coefficients γ(Z)(d) from Section 2.4. Corollary 1 is proved in Appendix B.

Corollary 1. Suppose (X, Y) are jointly stationary and ergodic.

(a) If, in addition, ∑d γ(X,Y)(d) < ∞ and ∑d γ(Y)(d) < ∞, then for any β > 0:

log[Rn(X|Y)P(Xn
1 |Yn

1 )] = o(nβ), a.s.

(b) In the general jointly ergodic case, we have:

log[Rn(X|Y)P(Xn
1 |Yn

1 )] = o(n), a.s.
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From part (b) combined with the Shannon-McMillan-Breiman theorem as in (2), we obtain the
result (12) promised in the beginning of this section:

lim
n→∞

1
n

logRn(X|Y)→ H(X|Y), a.s.

This was first established in [12]. However, at this point we have already done the work required
to obtain much finer asymptotic results for the conditional recurrence time.

For any pair of infinite realizations (x, y) of (X, Y), let {R(x|y)(t) ; t ≥ 0} be the continuous-time
path, defined as:

R(x|y)(t) = 0, for t < 1,

R(x|y)(t) = logRbtc(x|y)− btcH(X|Y), for t ≥ 1.

The following theorem is a direct consequence of Corollary 1 (a) combined with Theorem A1 in
the Appendix A. Recall Assumption 1 from Section 2.4.

Theorem 9. Suppose (X, Y) satisfy Assumption 1, and let σ2 = σ2(X|Y) > 0 denote the conditional
varentropy rate. Then {R(X|Y)(t)} can be redefined on a richer probability space that contains a standard
Brownian motion {B(t) ; t ≥ 0} such that for any λ < 1/294:

R(X|Y)(t)− σB(t) = O(t1/2−λ), a.s.

Two immediate consequences of Theorem 9 are the following:

Theorem 10 (CLT and LIL for the conditional recurrence times). Suppose (X, Y) satisfy Assumption 1,
and let σ2 = σ2(X|Y) > 0 denote the conditional varentropy rate. Then:

(a)
logRn(X|Y)− H(Xn

1 |Yn
1 )√

n
→ N(0, σ2), in distribution, as n→ ∞.

(b) lim sup
n→∞

logRn(X|Y)− H(Xn
1 |Yn

1 )√
2n loge loge n

= σ, a.s.
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Appendix A. Invariance Principle for the Conditional Information Density

This Appendix is devoted to the proof of Theorem A1, which generalises the corresponding almost
sure invariance principle of Philipp and Stout ([19], Theorem 9.1) for the (unconditional) information
density − log P(Xn

1 ).

Theorem A1. Suppose (X, Y) is a jointly stationary and ergodic process, satisfying the mixing conditions (3).
For t ≥ 0, let,

S(t) = log P(Xbtc1 |Y
btc
1 ) + tH(X|Y). (A1)
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Then the following series converges:

σ2 = E
[
log P(X0, Y0|X−1

−∞, Y−1
−∞) + H(X|Y)

]2
+ 2

∞

∑
k=1

E
{[

log P(X0, Y0|X−1
−∞, Y−1

−∞) + H(X|Y)
][

log P(Xk, Yk|Xk−1
−∞ , Yk−1

−∞ ) + H(X|Y)
]}

.

If σ2 > 0, then, without changing its distribution, we can redefine the process {S(t) ; t ≥ 0} on a richer
probability space that contains a standard Brownian motion {B(t) ; t ≥ 0}, such that

S(t)− σB(t) = O(t
1
2−λ), a.s., (A2)

as t→ ∞, for each λ < 1/294.

To simplify the notation, we write h = H(X|Y) and define,

f j = log

(
P(Xj, Yj|X

j−1
−∞, Y j−1

−∞ )

P(Yj|Y
j−1
−∞ )

)
, j ≥ 0, (A3)

so that for example, the variance σ2 in the theorem becomes,

σ2 = E[( f0 + h)2] + 2
∞

∑
k=1

E[( f0 + h)( fk + h)]. (A4)

Lemma A1. If ∑d γ(X,Y)(d) < ∞ and ∑d γ(Y)(d) < ∞ then, as n→ ∞:

n

∑
k=1

fk − log P(Xn
1 |Yn

1 ) = O(1), a.s.

Proof. Let,

gj = log

(
P(Xj, Yj|X

j−1
1 , Y j−1

1 )

P(Yj|Y
j−1
1 )

)
, j ≥ 2,

and,

g1 = log
(

P(X1, Y1)

P(Y1)

)
= log P(X1|Y1).

We have, for k ≥ 2,

E| fk − gk| ≤ E| log P(Xk, Yk|Xk−1
−∞ , Yk−1

−∞ )− log P(Xk, Yk|Xk−1
1 , Yk−1

1 )|
+E| log P(Yk|Yk−1

−∞ )− log P(Yk|Yk−1
1 )|

≤ ∑
x,y

E
∣∣ log P(Xk = x, Yk = y|Xk−1

−∞ , Yk−1
−∞ )− log P(Xk = x, Yk = y|Xk−1

1 , Yk−1
1 )

∣∣
+ ∑

y
E
∣∣ log P(Yk = y|Yk−1

−∞ )− log P(Yk = y|Yk−1
1 )

∣∣
≤ |X ||Y|γ(X,Y)(k− 1) + |Y|γ(Y)(k− 1).

Therefore, ∑∞
k=1 E| fk − gk| < ∞, and by the monotone convergence theorem we have,

∞

∑
k=1
| fk − gk| < ∞, a.s.
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Hence, as n→ ∞,∣∣∣∣∣ n

∑
k=1

fk − log P(Xn
1 |Yn

1 )

∣∣∣∣∣ ≤ n

∑
k=1
| fk − gk| = O(1), a.s.,

as claimed.

The following bounds are established in the proof of ([19], Theorem 9.1):

Lemma A2. Suppose Z = {Zn ; n ∈ Z} is a stationary and ergodic process on a finite alphabet, with entropy
rate H(Z), and such that α(Z)(d) = O(d−336) and γ(Z)(d) = O(d−48), as d→ ∞.

Let f (Z)
k = log P(Zk|Zk−1

−∞ ), k ≥ 0, and put η
(Z)
n = f (Z)

n + H(Z), n ≥ 0. Then:

1. For each r > 0, E
[∣∣ f (Z)

0

∣∣r] < ∞.
2. For each r ≥ 2 and ε > 0,

E
[∣∣ f (Z)

0 − log P(Z0|Z−1
−k )
∣∣r] ≤ C(r, ε)(γ(Z)(k))

1
2−ε,

where C(r, ε) is a constant depending only on r and ε.

3. For a constant C > 0 independent of n, ‖η(Z)
n ‖4 ≤ C.

4. Let η
(Z)
n` = E[η(Z)

n |Fn
n−`]. Then, as `→ ∞:

‖η(Z)
n − η

(Z)
n` ‖4 = O(`−11/2).

Please note that under the assumptions of Theorem A1, the conclusions of Lemma A2 apply to Y
as well as to the pair process (X, Y).

Lemma A3. For each r > 0, we have, E[| f0|r] < ∞.

Proof. Simple algebra shows that
f0 = f (X,Y)

0 − f (Y)0 .

Therefore, by two applications of Lemma A2, part 1,

‖ f0‖r ≤ ‖ f (X,Y)
0 ‖r + ‖ f (Y)0 ‖r < ∞.

The next bound follows from Lemma A2, part 2, upon applying the Minkowski inequality.

Lemma A4. For each r ≥ 2 and each ε > 0,∥∥∥∥∥ f0 − log

(
P(X0, Y0|X−1

−k , Y−1
−k )

P(Y0|Y−1
−k )

)∥∥∥∥∥
r

≤ C1(r, ε)[γ(X,Y)(k)]
1−2ε

2r + C2(r, ε)[γ(Y)(k)]
1−2ε

2r .

Lemma A5. As N → ∞:

E


[

∑
k≤N

( fk + h)

]2
 = σ2N + O(1).

Proof. First we examine the definition of the variance σ2. The first term in (A4),

‖ f0 + h‖2
2 ≤ (‖ f0‖2 + h)2 < ∞,
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is finite by Lemma A3. For the series in (A4), let, for k ≥ 0,

φk = log

P(Xk, Yk|Xk−1
bk/2c, Yk−1

bk/2c)

P(Yk|Yk−1
bk/2c)

 ,

and write,

E( f0 + h)( fk + h) = E( f0 + h)( fk − φk) +E( f0 + h)(φk + h). (A5)

For the first term in the right-hand side above, we can bound, for any ε > 0,

|E( f0 + h)( fk − φk)|
(a)
≤ ‖ f0 + h‖2‖ fk − φk‖2

≤ [‖ f0‖2 + h]‖ fk − φk‖2

(b)
≤ AC1(2, ε)

[
γ(X,Y)(bk/2c)

] 1
4−

1
2 ε

+ AC2(2, ε)
[
γ(Y)(bk/2c)

] 1
4−

1
2 ε

,

where (a) follows by the Cauchy-Schwarz inequality, and (b) follows by Lemmas A3 and A4, with
A = ‖ f0‖2 + h < ∞. Therefore, taking ε > 0 small enough and using the assumptions of Theorem A1,

|E( f0 + h)( fk − φk)| = O(k−12+24ε) = O(k−3), as k→ ∞. (A6)

For the second term in (A5), we have that for any r > 0, ‖φk‖r < ∞, uniformly over k ≥ 1 by
stationarity. Also, since f0, φk are measurable with respect to the σ-algebras generated by (X0

−∞, Y0
−∞)

and (X∞
bk/2c, Y∞

bk/2c), respectively, we can apply ([19], Lemma 7.2.1) with p = r = s = 3, to obtain that

|E( f0 + h)(φk + h)| ≤ 10‖ f0 + h‖3‖φk + h‖3α(bk/2c)1/3,

where α(k) = α(X,Y)(k) = O(k−48), as k→ ∞, by assumption. Therefore, a fortiori,

E( f0 + h)( fk + h) = O(k−3),

and combining this with (A6) and substituting in (A5), implies that σ2 in (A4) is well defined and finite.
Finally, we have that as N → ∞,

E


[

∑
k≤N

( fk + h)

]2
 = NE( f0 + h)2 + 2

N−1

∑
k=0

(N − k)E( f0 + h)( fk + h)

= Nσ2 − 2
N−1

∑
k=1

kE( f0 + h)( fk + h)− 2N
∞

∑
k=N

E( f0 + h)( fk + h)

= σ2N + O(1),

as required.

Proof of Lemma 1. Lemma A5 states that the limit,

lim
n→∞

1
n

Var

(
− log

(P(Xn
1 , Yn

1 |X0
−∞, Y0

−∞)

P(Yn
1 |Y0
−∞)

))
. (A7)
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exists and is finite. Moreover, by Lemma A4, after an application of the Cauchy-Schwarz inequality,
we have that as n→ ∞,

E


[

∑
k≤n

∣∣∣∣∣log

(
P(Xk, Yk|Xk−1

1 , Yk−1
1 )

P(Yk|Yk−1
1 )

)
− log

(
P(Xk, Yk|Xk−1

−∞ , Yk−1
−∞ )

P(Yk|Yk−1
−∞ )

)∣∣∣∣∣
]2
 = O(1),

therefore,

1
n

{
Var

(
− log P(Xn

1 |Yn
1 )

)
−Var

(
− log

(P(Xn
1 , Yn

1 |X0
−∞, Y0

−∞)

P(Yn
1 |Y0
−∞)

))}
= o(1).

Combining this with (A7) and the definition of σ2, completes the proof.

Proof of Theorem A1. Note that we have already established the fact that the expression for the
variance converges to some σ2 < ∞. Also, in view of Lemma A1, it is sufficient to prove the theorem
for {S̃(t)} instead of {S(t)}, where:

S̃(t) = ∑
k≤t

( fk + h), t ≥ 0.

This will be established by an application of ([19], Theorem 7.1), once we verify that
conditions (7.1.4), (7.1.5), (7.1.6), (7.1.7) and (7.1.9) there are all satisfied.

For each n ≥ 0, let ηn = fn + h, where fn is defined in (A3) and h is the conditional entropy rate.
First we observe that by stationarity,

E[ηn] = E
[

log

(
P(Xn, Yn|Xn−1

−∞ , Yn−1
−∞ )

P(Yn|Yn−1
−∞ )

)]
+ H(X|Y)

= E
[

log P(X0, Y0|X−1
−∞, Y−1

−∞)
]
+ H(X, Y)−E

[
log P(Y0|Y−1

−∞)
]
− H(Y)

= 0, (A8)

where H(X, Y) and H(Y) denote the entropy rates of (X, Y) and Y , respectively [2]. Observe that in
the notation of Lemma A2, ηn = η

(X,Y)
n − η

(Y)
n , and ηn` = η

(X,Y)
n` − η

(Y)
n` . By Lemma A2, parts 3 and 4,

there exist a constant C, independent of n such that

‖ηn‖4 ≤ C < ∞, (A9)

and,
‖ηn − ηn`‖4 = O(`−11/2). (A10)

In addition, from Lemma A5 we have,

E
{(

∑
n≤N

1
σ

ηn

)2
}

= N + O(1). (A11)

From (A8)–(A11) and the assumption that α(X,Y)(d) = O(d−336), we have that all of the
conditions (7.1.4), (7.1.5), (7.1.6), (7.1.7) and (7.1.9) of ([19], Theorem 7.1) are satisfied for the random
variables {ηn/σ}, with δ = 2. Therefore, {S̃(t) ; t ≥ 0} can be redefined on a possibly richer
probability space, where there exists a standard Brownian motion {B(t) ; t ≥ 0}, such that as t→ ∞:

1
σ

S̃(t)− B(t) = O(t1/2−λ), a.s.

By Lemma A1, this completes the proof.
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Appendix B. Recurrence Times Proofs

In this appendix, we provide the proofs of some of the more technical results in Section 3. First we
establish the following generalisation of ([2], Lemma 16.8.3).

Lemma A6. Suppose (X, Y) is an arbitrary source-side information pair. Then, for any sequence {tn} of
non-negative real numbers such that ∑n 2−tn < ∞, we have:

log
P(Yn

1 |Y0
−∞, X0

−∞)

P(Yn
1 |Y0
−∞)

≥ −tn, eventually a.s.

Proof. Let B(X0
−∞, Y0

−∞) ⊂ Yn denote the support of P(·|X0
−∞, Y0

−∞). We can compute,

E
( P(Yn

1 |Y0
−∞)

P(Yn
1 |Y0
−∞, X0

−∞)

)
= E

(
E
( P(Yn

1 |Y0
−∞)

P(Yn
1 |Y0
−∞, X0

−∞)

∣∣∣Y0
−∞, X0

−∞

))

= E

 ∑
yn

1∈B(X0
−∞ ,Y0

−∞)

P(yn
1 |Y0
−∞)

P(yn
1 |Y0
−∞, X0

−∞)
P(yn

1 |Y0
−∞, X0

−∞)


≤ 1.

By Markov’s inequality,

P
[

log
( P(Yn

1 |Y0
−∞)

P(Yn
1 |Y0
−∞, X0

−∞)

)
> tn

]
= P

[ P(Yn
1 |Y0
−∞)

P(Yn
1 |Y0
−∞, X0

−∞)
> 2tn

]
≤ 2−tn ,

and so, by the Borel-Cantelli lemma,

log
P(Yn

1 |Y0
−∞)

P(Yn
1 |Y0
−∞, X0

−∞)
≤ tn, eventually a.s.,

as claimed.

Proof of Theorem 8. Let K > 0 arbitrary. By Markov’s inequality and Kac’s theorem,

P(Rn(X|Y) > K
∣∣ Xn

1 = xn
1 , Yn

1 = yn
1 ) ≤

E
(
Rn(X|Y)

∣∣ Xn
1 = xn

1 , Yn
1 = yn

1

)
K

=
1

KP(xn
1 |yn

1 )
.

Taking K = 2cn /P(Xn
1 |Yn

1 ), we obtain,

P
(
log[Rn(X|Y)P(Xn

1
∣∣ Yn

1 )] > cn
∣∣ Xn

1 = xn
1 , Yn

1 = yn
1
)

= P
(
Rn(X|Y) > 2cn

P(Xn
1 |Yn

1 )

∣∣∣Xn
1 = xn

1 , Yn
1 = yn

1

)
≤ 2−cn .

Averaging over all xn
1 ∈ X n, yn

1 ∈ Yn,

P
(
logRn(X|Y)P(Xn

1 |Yn
1 ) > cn) ≤ 2−cn ,

and the Borel-Cantelli lemma gives (i).
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For (ii) we first note that the probability,

P
(
log[Rn(X|Y)P(Xn

1 |Yn
1 , X0

−∞, Y0
−∞)] < −cn

∣∣ Yn
1 = yn

1 , X0
−∞ = x0

−∞, Y0
−∞ = y0

−∞
)

(A12)

is the probability, under P(Xn
1 = ·|Yn

1 = yn
1 , X0

−∞ = x0
−∞, Y0

−∞ = y0
−∞), of those zn

1 such that

P(Xn
1 = zn

1 |X0
−∞, Yn

−∞) <
2−cn

Rn(x0
−∞ ∗ zn

1 |yn
−∞)

,

where ‘∗’ denotes the concatenation of strings. Let Gn = Gn(x0
−∞, yn

−∞) ⊂ X n denote the set of all
such zn

1 . Then the probability in (A12) is,

∑
zn∈Gn

P(zn
1 |x0
−∞, yn

−∞) ≤ ∑
zn∈Gn

2−cn

Rn(x0
−∞ ∗ zn

1 |yn
−∞)

≤ 2−cn ∑
zn∈X n

1
Rn(x0

−∞ ∗ zn
1 |yn
−∞)

.

Since both x0
−∞ and yn

−∞ are fixed, for each j ≥ 1, there is exactly one zn
1 ∈ X n, such that

Rn(x0
−∞ ∗ zn

1 |yn
−∞) = j. Thus, the last sum is bound above by,

|X |n

∑
j=1

1
j
≤ Dn,

for some positive constant D. Therefore, the probability in (A12) is bounded above by Dn2−cn , which is
independent of x0

−∞, yn
−∞ and, by assumption, summable over n. Hence, after averaging over all

infinite sequences x0
−∞, yn

−∞, the Borel-Cantelli lemma gives (ii).
For part (iii) we have, eventually, almost surely,

log

[
Rn(X|Y)

P(Xn
1 , Yn

1 |Y0
−∞, X0

−∞)

P(Yn
1 |Y0
−∞)

]

= log

[
Rn(X|Y)

P(Xn
1 |Yn

1 , X0
−∞, Y0

−∞)P(Yn
1 |X0

−∞, Y0
−∞)

P(Yn
1 |Y0
−∞)

]

= log[Rn(X|Y)P(Xn
1 |Yn

1 , X0
−∞, Y0

−∞)] + log

[
P(Yn

1 |X0
−∞, Y0

−∞)

P(Yn
1 |Y0
−∞)

]
≥ −2cn,

where the last inequality follows from (ii) and Lemma A6, and we have shown (iii).

Proof of Corollary 1. If we take cn = εnβ in theorem 8, with ε > 0 arbitrary, we get from (i) and (iii),

lim sup
n→∞

1
nβ

log[Rn(X|Y)P(Xn
1 |Yn

1 )] ≤ 0, a.s. (A13)

and lim inf
n→∞

1
nβ

log

[
Rn(X|Y)

P(Xn
1 , Yn

1 |X0
−∞, Y0

−∞)

P(Yn
1 |Y0
−∞)

]
≥ 0, a.s. (A14)

Hence, to prove (a) it is sufficient to show that as n→ ∞,

log P(Xn
1 |Yn

1 )− log

[
P(Xn

1 , Yn
1 |X0

−∞, Y0
−∞)

P(Yn
1 |Y0
−∞)

]
= O(1), a.s.,

which is exactly Lemma A1 in Appendix A.
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To prove (b), taking β = 1 in (A13) and (A14), it suffices to show that

lim
n→∞

{
1
n

log P(Xn
1 |Yn

1 )−
1
n

log
(P(Xn

1 , Yn
1 |X0

−∞, Y0
−∞)

P(Yn
1 |Y0
−∞)

)}
= 0, a.s.

However, the first term converges almost surely to −H(X|Y) by the Shannon-McMillan-Breiman
theorem, as in (2), and the second term is,

− 1
n

n

∑
i=1

log P(Xi, Yi|Xi−1
−∞, Yi−1

−∞ ) +
1
n

n

∑
i=1

log P(Yi|Yi−1
−∞ ),

which, by the ergodic theorem, converges almost surely to,

−E[log P(X0, Y0|X0
−∞, Y0

−∞)] +E[log P(Y0|Y0
−∞)] = H(X, Y)− H(Y) = H(X|Y).

This completes the proof.
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