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Abstract

Control of gene expression is fundamental at every level of cell function. Promoter-proximal pausing and divergent transcription at
promoters and enhancers, which are prominent features in animals, have only been studied in a handful of research experiments in plants.
PRO-Seq analysis in cassava (Manihot esculenta) identified peaks of transcriptionally engaged RNA polymerase at both the 50 and 30 end of
genes, consistent with paused or slowly moving Polymerase. In addition, we identified divergent transcription at intergenic sites. A full
genome search for bi-directional transcription using an algorithm for enhancer detection developed in mammals (dREG) identified many
intergenic regulatory element (IRE) candidates. These sites showed distinct patterns of methylation and nucleotide conservation based on
genomic evolutionary rate profiling (GERP). SNPs within these IRE candidates explained significantly more variation in fitness and root
composition than SNPs in chromosomal segments randomly ascertained from the same intergenic distribution, strongly suggesting a
functional importance of these sites. Maize GRO-Seq data showed RNA polymerase occupancy at IREs consistent with patterns in cassava.
Furthermore, these IREs in maize significantly overlapped with sites previously identified on the basis of open chromatin, histone marks,
and methylation, and were enriched for reported eQTL. Our results suggest that bidirectional transcription can identify intergenic genomic
regions in plants that play an important role in transcription regulation and whose identification has the potential to aid crop improvement.
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Introduction
Gene expression in plants is a highly regulated process control-
ling the production of coding and noncoding RNA molecules.
Proper regulation of expression is central to the development and
phenotypic plasticity. The dynamics of transcriptional regulation
have been extensively studied in several model organisms, in-
cluding humans, yeast, and fruit flies (Jennings 2013). These
studies have revealed a complex network of molecular elements
that orchestrate gene expression patterns and thereby shape the
transcriptional landscape of each organism. Failure in gene regu-
lation control can have detrimental effects on development and
lead to disease or other disorders (Adelman and Lis 2012).

Nascent RNA sequencing techniques such as Global nuclear
Run-On sequencing (GRO-seq) (Core et al. 2008) or Precision nu-
clear Run-On sequencing (PRO-seq) (Kwak et al. 2013; Mahat et al.
2016) have been used to map and quantify transcriptionally en-
gaged polymerase density. These techniques have identified
promoter-proximal pausing of Polymerase II (Pol II) and bi-
directional transcription (Sigova et al. 2013) as widespread

phenomena in metazoans (Rennie et al. 2018). The pausing of

elongating Pol II occurs shortly after the Pre-Initiation Complex is

assembled and initiation has occurred (Adelman and Lis 2012).

Promoter-proximal pausing has been suggested as a mechanism

to tune the expression of specific genes in response to external

regulatory signals and might also play a role in stabilizing the

open chromatin state around promoter regions (Adelman and Lis

2012).
Enhancers are key eukaryotic regulatory elements that control

spatiotemporal gene expression and are especially important

during development (Weber et al. 2016). Studies in mammals

have shown that enhancers produce short unstable RNAs known

as eRNAs (Kim et al. 2010, 2015). While the specific role of eRNAs

is not clear, the presence of eRNAs supports a more unified

model of transcription initiation between enhancers and pro-

moters (Li et al. 2013; Core et al. 2014; Sigova et al. 2015).
Only a few studies on a limited number of species (Erhard et al.

2015; Hetzel et al. 2016; Zhu et al. 2018) have investigated whether

bidirectional transcription at promoters and enhancers is present
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also in plants. GRO-seq analysis in Arabidopsis seedlings showed
little support for this phenomenon (Hetzel et al. 2016). Similarly,
Zhu et al. (2018) also concluded that transcription would be unidi-
rectional in Arabidopsis. Prominent 30 accumulation of RNA poly-
merase was observed in both maize and Arabidopsis. These data
suggest that gene regulation in plants may have diverged from
what is observed in other eukaryotes, reflecting a different evolu-
tionary approach to gene regulation within the plant kingdom
(Hetzel et al. 2016). A recent study, however, used Arabidopsis
mutants defective in nuclear RNA decay to characterize
Arabidopsis transcription (Thieffry et al. 2020). They found that
divergent transcription at genes was uncommon but not absent.
In addition, they found evidence of bidirectional transcription at
intergenic regions that share many of the mammalian enhancer
region signatures.

The objective of this study was to characterize nascent tran-
scription in cassava (Manihot esculenta) and maize (Zea mays), and
to reveal if promoter-proximal pausing and bidirectional tran-
scription at intergenic regions are present in these species. To do
so, we quantified nascent transcription in cassava and maize us-
ing PRO-seq and re-analyzed a maize GRO-seq dataset (Erhard
et al. 2015). We showed that cassava’s nascent transcriptome
contains features of transcriptional regulation that were not pre-
sent or detected in previous plant experiments, including
promoter-proximal pausing and bidirectional transcription at
intergenic regions. We used the bidirectional transcription pro-
files at intergenic regions to identify intergenic regulatory ele-
ments (IREs) in both cassava and maize. Most importantly, in
cassava, we demonstrated that these intergenic regions contrib-
uted disproportionately to the SNP heritability of several complex
agronomic traits. Similarly, we found that the IRE candidates in
maize were enriched in eQTLs and co-localized with previously
identified enhancers.

Materials and methods
Plant materials and nuclei isolation
Cassava accession “Nase 3” (synonymous with “IITA-TMS-
IBA30572” and “Migyera”) cuttings were grown in tubes contain-
ing enriched medium. Tubes were placed in growth chambers
with 12 hours of light at 30�C for 6 weeks before tissue collection.
Stem and leaves of approximately 25 gr were ground with liquid
nitrogen to a fine powder using a mortar and pestle. The resulting
powder was transferred to a coffee grinder containing cold 1X
NIB buffer. We then used the CelLytica PN Plant nuclei isolation/
extraction kit (Sigma-Aldrich) following the instructions for the
“Highly pure preparation of Nuclei.” The resulting solutions were
frozen in liquid N2 and stored at �80�C. Most of the nuclei extrac-
tion protocol took place in a cold room (4�C) with all reagents on
ice. A fraction of the nuclei preparations were stained with DAPI
(40,6-diamidino-2-phenylindole) and visualized under a fluores-
cence microscope to test for concentration and nuclei integrity.

Maize inbred line B73 seeds were put into growth chambers.
Shoots were collected 9 days after germination. Around 10 grams
of plant tissue were ground with liquid nitrogen to a fine powder.
Five grams of ground tissue were transferred into 50 ml fresh SEB
extraction buffer (2.0% PVP, 10%TKE, 500 mM sucrose, 4 mM sper-
midine, 1 mM spermine, 2.5% b-mercaptoethanol), incubated on
ice for 20 minutes, and then filtered through 2 layers of 100um
nylon mesh. Triton X-100 was then added to a final concentration
of 0.5% and incubated on ice for another 10 minutes. Then the ly-
sate was centrifuged at 2000 rcf for 15 minutes at 4�C and the su-
pernatant was recovered. The pellet was suspended in another

25 ml SEB extraction buffer and centrifuged again at 2000 rcf for
15 minutes. We added 10 ml nuclei storage buffer (50 mM Tris-Cl,
50% glycerol, 5 mM MgCl2, 0.1 mM EDTA, 0.5 mM DTT) in the pel-
let and centrifuged at 2000 rcf for 5 minutes at 4�C. This step was
repeated using 1 ml nuclei storage buffer. Finally, the pellet was
resuspended and stored in 105 ml nuclei storage buffer. The proto-
col was conducted in a cold room (4�C).

Pro-seq library preparation and sequencing
The PRO-seq protocol was performed as described by Mahat et al.
(2016). Briefly, nuclei isolation washed away endogenous nucleo-
tides, halting elongating RNA polymerases bound to chromatin.
Precision run-on reactions were performed in the presence of
equimolar amounts of unaltered ATP and GTP, as well as biotin-
11-CTP and biotin-11-UTP (Perkin-Elmer). Notably, this two-
biotin run-on will produce polymerase profiles with slightly re-
duced (� 2–4 bp) resolution compared to a more typical four-
biotin run-on, given that RNA polymerases will primarily stall
when incorporating the modified CTP and UTP (Kwak et al. 2013).
RNA was extracted and base-hydrolyzed with NaOH. Hydrolyzed,
biotin-labeled nascent RNAs were passed through a RNase-free
P-30 spin column (Bio-Rad) and then enriched using M-280 strep-
tavidin Dynabeads (Invitrogen). T4 RNA ligase 1 (NEB) was used
to attach a 30 RNA adaptor containing a six-nucleotide unique
molecular index (UMI) for the removal of duplicate sequences
produced by PCR (50-/5Phos/NNNNNNGAUCGUCGGACUGUA
GAACUCUGAAC/Inverted dT/-30). After a second biotin-
enrichment, RNAs were submitted to RNA 50

Pyrophosphohydrolase (RppH, NEB) treatment for 50 de-capping,
and then 50 phosphorylation with T4 polynucleotide kinase (T4
PNK, NEB), before ligation of the 50 RNA adaptor (50-
CCUUGGCACCCGAGAAUUCCA-30). Reverse transcription was
performed with SSIII RT (Invitrogen) after a third biotin-
enrichment. The cDNAs produced were PCR amplified for 13
cycles with Phusion polymerase (NEB) and size selected (120–
400 bp) before sequencing. This protocol generated strand-
specific libraries with every read starting from the 30 end of the
RNA. The RNA adapters used are TruSeq-compatible and librar-
ies were reverse transcribed and amplified using primers from
the Illumina TruSeq small RNA sequencing kit. Amplified librar-
ies were assessed for quality on a bioanalyzer prior to sequencing
on a HiSeq2500 with 100 bp single reads.

Analysis of NGS data
Processing and read alignment
The fastq files were scanned for any residual adapter sequence
(50-TGGAATTCTCGGGTGCCAAGG -30) using fastx_clipper from
the FASTX_toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), and
the 30 molecular barcode was removed. Reads were trimmed to a
maximum length of 36 bp, and the reverse complement was cal-
culated because the HiSeq apparatus starts sequencing from the
50 end. All downstream alignments were performed using
Bowtie2 (Langmead and Salzberg 2012). Because the PRO-seq
method is not exclusive to transcripts produced by the nuclear
RNA Polymerase II, the reads were aligned to the chloroplast ge-
nome to eliminate organellar transcripts. The remaining reads
were mapped to the M. esculenta reference genome v6.1, the maize
genome AGPv4 or the Arabidopsis genome TAIR10 (www.phyto
zome.com). Low-quality alignments were filtered and only reads
mapping once to the genome were considered for further analysis
(Supplementary Table S1). Bedtools (Quinlan and Quinlan 2014)
was used to get bedgraph files reporting only the number of 30

end reads at each position. Finally, bigwig files were obtained

2 | G3, 2021, Vol. 11, No. 11

Deleted Text: &hx2019;
Deleted Text: Additionally
Deleted Text: intergenic regulatory element
Deleted Text: &hx2009;
Deleted Text: -
Deleted Text: -
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: u
Deleted Text:  
Deleted Text: -
Deleted Text: run 
Deleted Text: l
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: '
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: '
Deleted Text: &hx2019;
Deleted Text: &hx2009;bp
Deleted Text:  - 
Deleted Text: &hx2019;
http://hannonlab.cshl.edu/fastx_toolkit/
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: <italic>Manihot</italic> 
http://www.phytozome.com
http://www.phytozome.com
Deleted Text: &hx2019;


from the bedgraph files using kentUtils (https://github.com/
ENCODE-DCC/kentUtils).

Pro-seq read distribution
The percentage of the cassava genome transcribed was calculated
using bedtools (Supplementary Figure S1A). A saturation curve,
which calculates the number of unique positions covered as a
function of read depth was obtained using the bed-metric scripts
(https://github.com/corcra/bed-metric.git) (Supplementary Figure
S1). Normalized BigWig files representing the mapped reads were
used to visualize each strand of the genome separately in the
Integrative Genomics Viewer (IGV) (Thorvaldsdottir et al. 2013). The
Metagene plots, histograms, peak scanning, and gene expression
values were generated using the HOMER software (Heinz et al.
2010) and meta-gene maker (https://github.com/bdo311/meta
gene-maker). Since the cassava genome is not readily available to
work with HOMER, feature annotations were created separately,
and the HOMER config files were modified. We approximated the
transcription start site (TSS) as the beginning of the 50 UTR because
the cassava genome annotation lacked precise TSS annotations.
The same approach was used for Arabidopsis and Maize genomes.

Quantifying pausing and divergent transcription
Genes were ranked based on their pausing index. The pausing in-
dices were calculated as previously described (Chen et al. 2015;
Williams et al. 2015). Pausing index is defined as the ratio of PolII
signal density near a gene promoter to signal density within the
gene body. Specifically, the average coverage in the promoter re-
gion (100 upstream of the TSS to 300 downstream of the TSS) di-
vided by the average coverage of the gene body (300 bp
downstream of the TSS to the Polyadenylation site, PAS).
Divergent transcription indices were calculated similarly by tak-
ing the average coverage of the upstream promoter region (from
1 kb upstream of the TSS to the TSS) in the antisense strand (with
respect to the gene) divided by the average coverage of the TSS
proximal region (300 bp upstream the TSS to 300 bp downstream
the TSS) in the sense strand. We modeled the degree of
promoter-proximal pausing and divergent transcription as mea-
sured by these indices using different factors including gene
length, gene expression measured in RPKM (Reads per Kb of genic
region per million mapped reads), cDNA length and number of
exons using a linear model.

GERP and methylation data
The GERP scores for conservation were calculated using different
species from the Malpighiales clade, including rubber (H. brasilien-
sis), jatropha (Jatropha curcas), castor bean (Ricinus communis), wil-
low (Salix purpurea), flax (Linum usitatissimum), and poplar (Populus
trichocarpa) as previously described by Ramu et al. (2017). Whole-
genome methylation data for cassava was available from Wang
et al. (2015).

Genomic partitioning in cassava
Genomic Partitioning is a method to explore the genetic architec-
ture of complex traits (Yang et al. 2011; Speed et al. 2017). In this
step, we calculated the heritability contribution from the IREs in
the cassava genome and compared it with a random set of DNA
regions of similar size and occupying a similar distribution across
the cassava chromosomes.

Field-evaluated phenotypes and germplasm
We analyzed data from the IITA cassava breeding program in
Nigeria, including a fraction (689 clones, i.e., genetically unique

individuals, each of which is clonally propagated) of the Genetic
Gain (GG) collection, which comprises 709 elite and historically
important clones. Along with these, we analyzed 2302 clones de-
veloped as the cycle 1 of IITA’s Genomic Selection (GS) breeding
program. In total, 3011 clones were used as the source for pheno-
types. For further details on the populations used, see Wolfe et al.
(2016b, 2017). We analyzed 5 traits: Dry matter content (DM),
mean cassava mosaic disease severity (MCMDS), root number
(RTNO), shoot weight (STWT), and fresh yield (FYLD). The pheno-
typing trials used in this study have been described before and all
phenotype data is provided in Supplementary Table S2.

Genotype data
Genotyping-by-sequencing (GBS) libraries were prepared as de-
scribed previously (Elshire et al. 2011). Marker genotypes were
called using the TASSEL-GBS discovery pipeline (Glaubitz et al.
2014) using the M. esculenta genome assembly v6.1 (www.phyto
zome.net). The GBS markers were combined with the Cassava
HapMap v2.0 variants from 241 deep-sequenced cassava acces-
sions (Ramu et al. 2017) to impute variants on all clones to whole-
genome sequence level in a single step with IMPUTE2 (Howie
et al. 2009, 2011). The imputation procedure was performed as in
Lozano et al. (2017) where the number of haplotypes used as the
reference panel was set to 400, the effective population size (Ne)
to 1000, and the imputation window to 5 Mb. The resulting
Oxford files were converted into the Plink (Chang et al. 2015) bi-
nary format. In total, 3 million variants with a quality info score
higher than 0.3 and Minor Allele Frequency (MAF) >0.01 were
obtained for the 3011 individuals used in this study.

Variance component estimation
Genomic partitioning analyses are imprecise in highly related pop-
ulations because of high LD between partitions. We mitigated this
problem by eliminating markers from the rest of the genome (ROG)
in high LD with the 9665 cassava IREs (markers were removed that
had allelic r2 > 0.9 and were closer than 100 kb to IRE markers). We
also built 10 random sets of 9665 regions with the same average
length and approximate distribution in the genome as these ele-
ments. As with the IREs, random sets were forced to be outside any
annotated gene (Supplementary Figure S2), and markers from the
ROG in close physical distance and high LD were removed.

Genomic relationship matrices (GRMs) were calculated for fo-
cal (i.e., either IREs or random sets) and ROG genomic partitions
using the software LDAK5 following the ideas of Speed et al.
(2017). Briefly, LDAK5 relationship matrices control short-range
LD by assigning marker weights. Markers residing in low LD
regions will have higher weights and are assumed to contribute
more than markers in high LD regions. The LDAK5 model also
assumes that a SNP’s heritability depends on its MAF, using an a

value set to �0.25 as suggested in Speed et al. (2017). Finally,
LDAK5 considers genotyping uncertainty as higher-quality ob-
served markers that should contribute more than poorly imputed
markers. GRMs were calculated for the IREs partition and the
ROG partition. Separate analyses used GRMs based on the ten
random sets. Python scripts for these analyses can be accessed at
the GitHub repository associated with this article.

The model fit to calculate the variance components was speci-
fied in matrix notation as:

Y ¼ Xb þ Zloc:yrl þ Zg þ Zh þ e

where Y represents a vector with raw phenotypic observa-
tions, b represents the intercept and X is a vector of ones. The
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random effects include a single intercept for each location-year
combination in which phenotypic trials took place and where l �
N(0, Ir2

l) where I is the identity matrix and r2
l is the associated

variance component. The genetic variance components include g
and h where g � N(0, GRMFr

2
g) and h � N(0, GRMRr2

h). These two
terms have a known covariance structure calculated using
LDAK5 for the focal (GRMF) or ROG (GRMR) partitions. The inci-
dence matrices Zloc.yr, and Z relate observations to the levels of
trials and clones, respectively. Variance components were esti-
mated using the “emmremlMultikernel” function implemented
in the “EMMREML” R package (Akdemir and Okeke 2015).

Colocalization of eQTLs with regulatory element
candidates identified by GRO/PRO-seq/dREG in
maize
We used a list of 61k eQTLs found in maize kernels. The identifi-
cation of the eQTLs was performed using the B73 maize reference
genome AGPv2. We then uplifted the position of the eQTLs to
AGPv3 and then AGPv4 using Crossmap (Zhao et al. 2014). We re-
moved all the eQTLs positioned within 3k of any gene. Using this
criterion we ended up with 7271 intergenic eQTLs. This dataset
was compared with the enhancer candidate regions identified by
dREG using bedtools intersect (Quinlan and Quinlan 2014) where
we consider as a match any overlap with 50% or more of the en-
hancer sequence. We also generated 10 k random sets of inter-
genic regions with the same size distribution as the enhancer
candidates identified by dREG. Using this set we calculated the
empirical distribution of regions matching to eQTLs just by
chance.

Results
To investigate nascent RNA profiles in plants, we generated PRO-
seq libraries in cassava and maize seedlings. To complement our
study we re-analyzed previously published GRO-seq datasets
available in maize and Arabidopsis (Supplementary Table S1). For
clarity, the four main libraries used through this study will be re-
ferred to as PRO-cassava, PRO-maize, GRO-maize (Erhard et al.
2015), and GRO-arabidopsis (Hetzel et al. 2016).

Polymerase accumulation around coding
segments differs between plant species
We explored the accumulation of engaged RNA polymerase
around the gene bodies of maize, cassava, and Arabidopsis by
mapping reads generated by GRO/PRO-seq to the reference ge-
nome of each species. In agreement with Hetzel et al. (2016), GRO-
arabidopsis lacked 50 pausing (Figure 1A) and, instead, showed
accumulation of engaged polymerases at the 30 end of each gene
(Figure 1B). Analysis of PRO-maize showed 30 pausing (Figure 1D)
and a small accumulation of reads at the TSS (Figure 1C). That
accumulation was consistent with GRO-maize, and thus general-
ized between the two techniques (Supplementary Figure S3). In
contrast, PRO-cassava showed a clear pattern of both 50

(Figure 1E) and 30 pausing (Figure 1F). Out of the 24,532 genes that
were expressed in cassava, 16,605 had a Pausing Index (PI) higher
than two (Supplementary Figure S4, see Materials and Methods).
While all three plant species demonstrated polymerase accumu-
lation at the 30 end of genes, each displayed a unique accumula-
tion pattern in the promoter-proximal region. Unlike mammals,
bi-directional transcription is uncommon among plant pro-
moters (Figure 1), though several cassava genes exhibiting this
behavior were identified (Supplementary Figure S5).

Polymerase mapping in noncoding regions
identifies intergenic regulatory elements (IRE)
candidates in cassava
We mapped PRO-seq peaks outside coding regions (more than
3 kb from the 50 UTR or 30 UTR of any gene) in the cassava ge-
nome. We identified �2000 peaks in intergenic regions using
Homer’s (Heinz et al. 2010) Chip-seq peak finder. The regions
identified showed a clear bi-directional transcription, similar to
that observed in mammalian and other metazoan enhancers
(Supplementary Figure S6). Given the resemblance of these ele-
ments to mammalian enhancers, we used discriminative
regulatory-element detection (dREG) (Danko et al. 2015), a support
vector regression algorithm trained to detect enhancers and pro-
moters from GRO-seq mapped reads. We annotated 34,000 of
these regions across the cassava genome of which 16,800 were lo-
cated in intergenic regions, and 9665 were at least 1 kb away from
any gene. This set of 9665 regions, which we refer to as IREs
(Supplementary File S1), showed a clear bidirectional pattern of
transcription (Figure 2, A and B, Supplementary Figure S7). We
believe that these regions are enriched with enhancers and other
regulatory elements.

Three independent lines of evidence supported the biological
activity of these IRE regions. First, using DNA methylation data
previously generated in the cassava cultivar TME7 (Wang et al.
2015), we observed profiles in the three DNA contexts, CG, CHG,
and CHH, around the 9665 cassava IRE regions distinct from genic
and random regions across the genome (Figure 2C). Second,
genomic evolutionary rate profiling (GERP) (Cooper et al. 2005;
Davydov et al. 2010; Ramu et al. 2017) of the IRE showed lower
conservation of these regions than of random sequences across
the genome, whereas coding regions are conserved (Figure 2, D
and E). This low conservation agrees with observed patterns in
mammals (Villar et al. 2015) where enhancers, unlike promoters,
are rarely conserved and evolve rapidly.

Finally, to test the functional relevance of the plant IREs, we
estimated the percentage of the SNP heritability (Speed et al.
2017) attributable to these regulatory element candidates as
compared to randomly ascertained genomic regions with the
same intergenic distribution. We set up genomic partitions (Yang
et al. 2011; Gusev et al. 2014) separating the focal partition from
the ROG partition, where the focal partition was either the IRE
candidates or the random regions. We used 3011 cassava clones
(i.e., genetically unique individuals, but each clonally propagated
for replicated evaluation) of the NextGen Cassava Breeding
Project (Wolfe et al. 2017) evaluated for four quantitative agro-
nomic traits: dry matter content (DM), fresh yield (FYLD), number
of roots (RTNO), and shoot weight (SHTWT), and one disease trait
whose genetic architecture is controlled primarily by a single re-
sistance locus (Wolfe et al. 2016a): MCMDS. GRM for each parti-
tion was calculated using LDAK5, following recommendations
made by Speed et al. (2017). For each partition, we fit a model esti-
mating variances of effects distributed according to ROG and fo-
cal GRMs. The percentage of phenotypic variance explained by
markers inside IRE regions was higher than random regions for
all quantitative agronomic traits but not for the disease resis-
tance trait (Figure 2F). There is no standard significance test for
contrasting the alternative enhancer candidate hypothesis to the
null model random set hypothesis (Deniz Akdemir, pers. comm.).
Repeated sampling of the null model, however, shows non-
overlap of its distribution of variance component estimates with
the point estimate of the alternative for all four quantitative ag-
ronomic traits. We only sampled the null model ten times,

4 | G3, 2021, Vol. 11, No. 11

Deleted Text: &hx2018;
Deleted Text: &hx2019;
Deleted Text: &hx2018;
Deleted Text: EMMREML&hx2019; 
Deleted Text: ,
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: u
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: intergenic regulatory element
Deleted Text:  (IRE) 
Deleted Text: ,
Deleted Text: Genomic 
Deleted Text: Evolutionary 
Deleted Text: Rate 
Deleted Text: Profiling 
Deleted Text: ,
Deleted Text: mean cassava mosaic disease severity (
Deleted Text: )
Deleted Text: Genomic relationship matrices (
Deleted Text: )
Deleted Text: were 


creating ten random kernels because the two-GRM one-step

model was computationally intensive. Assuming independence

among the four agronomic traits, the probability that all null

models across all traits would explain less variance than the al-

ternative, under the null hypothesis that random sets explain the

same variance as IRE, would be (1/11)̂4¼ 6.83e-5. In fact, root

number and fresh root yield are strongly correlated [0.65 to 0.80,

(Okeke et al. 2017)] but are both uncorrelated to dry matter con-

tent and shoot weight. Thus, a conservative P-value for the hy-

pothesis that IRE explains more variance in quantitative

agronomic traits than random sets would be (1/11)̂3¼ 7.51e-4.

IRE in maize co-localize with previously reported
enhancer candidates
In an attempt to extend our observations to other plants, we ana-

lyzed existing GRO-maize data similarly to our PRO-cassava data.

We identified 4135 (Supplementary File S2) IREs using dREG and

again observed a clear pattern of bi-directional transcription

(Figure 3, A, and B). Our PRO-maize libraries were not used to

identify enhancer candidates due to their lower number of

mapped reads, an issue that affects the overall detection power

of dREG (Supplementary Table S1). When enhancer candidates

were identified using GRO-maize, however, PRO-maize reads

aligned to those candidates also showed strong signal
(Supplementary Figure S8).

It is unknown whether dREG can accurately predict plant
enhancers. The traditional way to identify enhancer candidates
is based on open chromatin sites as assessed by DNase-seq or
ATAC-seq, together with histone modification marks. To test if
dREG was able to tag previously reported enhancer candidates in
maize, we analyzed the transcription pattern of 1495
(Supplementary File S3) enhancer candidates identified in a sepa-
rate maize study (Oka et al. 2017) using an approach that inte-
grated genome-wide methylation data, chromatin accessibility
(DNase-seq), and histone marks (H3K9ac). Metaplots of the GRO-
maize reads mapped against these candidates also showed bi-
directional transcription (Figure 3, C and E). Moreover, 519
(Supplementary File S4) of the 1,495 IRE (�35%) showed signifi-
cant levels of bi-directional transcription and were independently
identified by dREG (Figure 3, D and F).

To further characterize the IRE identified by dREG and explore
whether they house more phenotypically relevant variants, we
compared our results to a list of previously identified expression
Quantitative Trait Loci (eQTLs) in maize kernels (Liu et al. 2017).
We expected that IRE would be enriched with intergenic eQTLs,
as enhancers regulate messenger RNA expression levels. We
found that 372 out of the 4135 intergenic enhancer candidates

Figure 1 Accumulation of Pro-seq reads around the Transcription Start Site and Polyadenylation sites of three different plant species. Metaplot of GRO/
PRO-seq signal from annotated genes normalized for reads per bp per gene in Arabidopsis thaliana (GRO-seq, n¼ 28,775) (A, B), Zea mays (PRO-seq,
n¼ 38,943) (C, D) and M. esculenta (PRO-seq, n¼ 31,895). Reads were aligned to the TSS and the PAS in both sense (yellow) and antisense (green) directions
relative to the direction of gene transcription (E, F). Prominent promoter-proximal pausing is shown in M. esculenta, and to some degree in maize, but it is
not present at all in Arabidopsis as previously reported (Hetzel et al. 2016). Accumulation of RNA polymerase at the 30 end of the genes is a common
feature in the three plant species.
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(8.9%) identified in our study matched with eQTLs reported by
Liu et al. (2017). To create a null distribution of the overlap, we
calculated the empirical distribution of eQTL matches against
10,000 random sets of 4135 random intergenic regions with the
same size as our IREs (Supplementary Figure S9). The observed
overlap (8.9%) was far outside the range of this null distribution
(mean <1%).

We also compared the IRE regions in maize to the DNase-seq-
peaks found by Oka et al. (2017) in both husk and V2 inner stem
(V2-IST) tissues. The husk and V2-IST have 4196 and 4529 inter-
genic open chromatin sites (3 kb away from any gene) and they
share 3206 common sites. We found 682 and 750 common
regions in husk and V2-IST, respectively, relative to our 4135 IREs

(Supplementary Figure S10). We expect that the intersection
would be larger if the DNase-seq had been performed in the same
tissue, genetic background, and developmental stage as the GRO-
maize. As previously demonstrated, the open chromatin space in
maize varies greatly among different tissues (Rodgers-Melnick
et al. 2016). Finally, we compared the levels of eQTL enrichment
among the categories defined by the intersection of the open
chromatin data and our IRE candidates. For both husk and V2-
IST tissues, a marginally larger percentage of eQTL-IRE colocali-
zation occurred when the IREs identified with dREG were located
within open-chromatin regions (Supplementary Figure S10). This,
however, has the caveat that tissues were not matched between
experiments.

Figure 2 IREs in cassava have a particular methylation pattern, are evolutionary less conserved and explain more phenotypic variance than expected
for several agronomic traits. (A) Pro-seq reads mapping around cassava IREs. Reads were sorted by strand and the normalized reads were plotted around
the center of each candidate. (B) Heatmap representation of reads mapping to the enhancer candidate regions. The regions are sorted based on dREG
scores. (C) Cassava methylation patterns for the three methylation contexts (CG, CHH, and CHG) were plotted around the genic regions, IREs, and a set
of random sequences. The random set has the same number and length distribution as the IREs. Genomic regions were scaled (0–100%) for
visualization. (D) GERP scores and corresponding tree lengths (E) were also plotted around the IREs (dREG), Genes, and random set of regions. (F)
Genomic Partitioning of complex agronomic traits (DM: Dry matter content; FYLD: Fresh yield; RTNO: Root number; SHTWT: Shoot weight) and a
disease trait (CMD: Severity of Cassava Mosaic Disease). Relationship matrices were calculated using SNP markers within the enhancer candidate
regions using the LDAK5 model and variance components were estimated using EMMREML.
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Discussion
The nascent transcriptome of cassava, as revealed by PRO-seq,

showed features of transcriptional regulation that were not pre-

sent or detected in previous plant experiments, including

promoter-proximal pausing and the presence of bidirectional

transcription at IRE.

Promoter-proximal pausing
We note that plants, like yeast, lack the Negative ELongation

Factor (NELF), which is likely required for a kinase-regulated re-

lease of paused Pol II (Narita et al. 2003). Thus, this enrichment of

Pol II around the TSS may reflect a related maturation check-
point observed in fission yeast (Booth et al. 2018).

We found that the patterns of transcripts around the TSSs
were strikingly different in Arabidopsis, maize, and cassava. In
rice, Joly-Lopez et al. (2020) mapped PRO-seq reads around
protein-coding genes and, similar to cassava, found a clear pat-
tern of promoter pausing and accumulation of transcription at
the 30 end of the genes. While these differences might be due to
issues in their genome annotations, independent studies in
Arabidopsis have shown contradictory results when analyzing
GRO-seq data, some studies supporting its presence (Liu et al.
2018; Zhu et al. 2018) at least in a portion of the genes while

Figure 3 Enhancer candidates previously identified in Maize produce eRNAs. (A) GRO-seq reads (Erhard et al. 2015) mapping around maize IRE IREs
detected by dREG. Reads were sorted by strand and the normalized reads were plotted around the center of each candidate (n¼ 4135). (B) Heatmap
representation of reads mapping to the IREs. The regions are sorted based on dREG scores. (C) GRO-seq reads were mapped to the regions previously
identified as enhancer candidates by Oka et al. (2017) based on methylation, histone marks, and chromatin accessibility (n¼ 1495). (E) A portion of the
enhancer candidates (n¼ 519) reported by Oka et al. were also identified by dREG using just the GRO-seq reads. Heatmaps showing the GRO-seq signal of
the regions in (C) and (E) are shown in (D) and (F), respectively.
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others did not find evidence of it (Hetzel et al. 2016). We think
that these discrepancies have to be reconciled with more repli-
cates in different plant species, tissues, and conditions.

Intergenic regulatory elements (IRE)
IRE regions were shown in cassava to have low levels of evolu-
tionary conservation, a bi-directional pattern of transcription,
and a specific DNA methylation profile. It is worth mentioning
that PRO-seq cannot differentiate between Pol II and other poly-
merases (i.e., Pol IV/V). Some of the transcriptional activity ob-
served in the IREs might be driven by RNA polymerase dependent
DNA methylation (RdDM). Thus, we expect the IRE regions to not
only capture enhancers but also regulatory RNAs (mirRNAs,
lnRNAs, and iRNAs) and transposons. This would partially ex-
plain the high methylation profiles and low evolutionary conser-
vation at the IRE sites.

Most importantly, we showed that the IRE identified in the
cassava genome contributed disproportionately to fitness and
root composition variation. The only trait evaluated that did not
show this behavior was a disease trait. This was expected as
plant disease resistance is often conditioned by genes that cause
recognition of infection rather than by differential expression
(Jones and Dangl 2006). In contrast, fitness-related quantitative
traits can be strongly affected by gene regulation (Kremling et al.
2018). These results suggest that the IRE identified in the cassava
genome causally affect plant phenotypes by modulating gene
transcription. Thus, the identification of these regions shows an
important new way forward in prioritizing genomic regions for
use in crop improvement.

In mammals, there are various enhancer states enriched with
different histone marks: poised or inactive enhancers, primed
enhancers, and active enhancers (Meng and Bartholomew 2018).
Previous evidence suggests transcription at enhancer sites might
even be a signature of an enhancer active state (Kim et al. 2010;
Andersson et al. 2014). While we believe we have unique and
valuable data to contribute to this discussion we cannot at this
stage definitively answer the question of whether one type of
identification (open chromatin vs GRO/PRO-seq dREG) leads to a
superset or subset of sites relative to the other. We clearly show,
however, that bi-directionally transcribed regions in maize have
the characteristic of active enhancers of affecting gene transcrip-
tion.

Recently, Ricci et al. (2019) did an extensive annotation of long-
range trancriptional cis-regulatory elements (CREs) in the maize
genome using ATAC-seq and histone marks. They identified that
1% of the maize genome were Accessible Chromatin Regions
(ACRs), and 32% of those were >2 kb away from the nearest gene.
We found that 31% of the regions identified in our study using
dREG/PRO-seq co-located with distal ACRs identified in the afore-
mentioned research. The same research also tried to capture spe-
cific CRE-gene loops using Hi-C, and we found that 17% of the
distal edges of the loops identified also co-located with the IRE
found here.

The ability of PRO-seq to detect functional intergenic regions
has also been explored in rice. While building a fitness conse-
quence map of the rice genome Joly-Lopez et al. (2020) observed
that putative enhancers identified using PRO-seq/dREG (similar
to this study) shared “enhancer-type characteristics” including
enrichment for open chromatin sites, asymmetrically co-located
H3K27ac marks and enrichment for DNA motifs found in open
chromatin sites. We believe that the results in cassava, maize,
and rice are evidence that, even though the IREs identified using

dREG/PRO-seq might be capturing signals from other polymer-
ases, IREs are enriched for real CREs.

Transcription of genomic enhancers was first described in
1992 (Tuan et al. 1992), but the lack of adequate technology pre-
vented further research on the subject until the late 2000’s (Kim
and Shiekhattar 2015; Long et al. 2016). While direct functions
have been proposed for eRNAs as regulators of gene expression
in metazoans (Chen et al. 2015; Kim and Shiekhattar 2015) there
has been no evidence of this in plants to date. Previous work in
Arabidopsis did not identify eRNAs (Hetzel et al. 2016), leading the
authors to state that “if plants have enhancer elements, they
rarely, if at all, produce transcripts.” Based on supporting re-
search (Simpson et al. 1985; Shannon et al. 1991; Zhu et al. 2015;
Weber et al. 2016), however, we believe the existence of plant
enhancers is likely commonplace and independent of whether or
not they are transcribed. Zhu et al. (2015) provided supporting evi-
dence for this statement when they tested a small portion of
nearly 10,000 enhancer candidates in A. thaliana: they validated
10 of the 14 enhancer candidates tested using a reporter assay.
None of the Arabidopsis GRO-seq data, however, displayed strong
evidence of transcription in the regions identified by Zhu et al.
(2015) (Supplementary Figure S11).

The results reported herein cassava and maize suggest that
plant transcriptional regulation may be more similar to that of
mammals and other metazoans than previously thought. The
lack of transcription previously observed in putative Arabidopsis
enhancers may have been the result of different growth condi-
tions, tissues, or even low read depth. Recent research, however,
has shown that bidirectional transcription could be observed in
113 noncoding regions in Arabidopsis when using exosome
mutants (Thieffry et al. 2020).

Furthermore, the genome size of Arabidopsis is very small.
Maize, cassava, and rice have much greater noncoding space,
allowing for the identification of IRE whose expression is not con-
founded by that of nearby genes. The identification of intergenic
transcribed enhancers in cassava, maize, and rice but not in
Arabidopsis is consistent with the functional space hypothesis
proposed by Mei et al. (2018) that predicts more functional geno-
mic segments (e.g., enhancers and other regulatory elements)
outside of genes in species with larger genomes. This hypothesis
has recently been supported in a study that analyzed CRES in 13
plant species, where distal CRES were most abundant in larger
and more complex genomes (Lu et al. 2019).
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