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Protein–protein interaction (PPI) plays an extremely remarkable role in the growth, reproduction, and metabolism of all lives. A
thorough investigation of PPI can uncover the mechanism of how proteins express their functions. In this study, we used gene
ontology (GO) terms and biological pathways to study an extended version of PPI (protein–protein functional associations) and
subsequently identify some essential GO terms and pathways that can indicate the difference between two proteins with andwithout
functional associations.The protein–protein functional associations validated by experiments were retrieved from STRING, a well-
known database on collected associations between proteins from multiple sources, and they were termed as positive samples. The
negative samples were constructed by randomly pairing two proteins. Each sample was represented by several features based on
GO and KEGG pathway information of two proteins. Then, the mutual information was adopted to evaluate the importance of
all features and some important ones could be accessed, from which a number of essential GO terms or KEGG pathways were
identified. The final analysis of some important GO terms and one KEGG pathway can partly uncover the difference between
proteins with and without functional associations.

1. Introduction

Protein is the material foundation of all living things [1].
Protein–protein interaction (PPI) plays an extremely sig-
nificant role in the growth, reproduction, and metabolism
of any life, even in a single cell [2, 3]. Proteins can be
easily clustered in three methods: (I) homology of protein
subunits, (II) stability of interactions, and (III) combination
mode of subunits [4–6]. By connecting related proteins,
PPI initiates the action of various functional or structural
proteins in every single cell [4]. Given that proteins influence
different biological processes, even in single cells, conducting
a study on PPI to further determine protein functions and life
activities is a relevant endeavor.

PPI has been thoroughly studied both in experimental
and computing scenarios. To study PPI via experiments,

coimmunoprecipitation, Western blot, and yeast two-hybrid
systems are generally adopted [7, 8]. As for computational
methods, several algorithms have been developed to iden-
tify PPI, and the two main ones are the topology-free
approaches and the graph-based approaches, which are based
on distances between proteins and specialized clustering
techniques, respectively [9, 10]. Some other computational
methods predict PPIs from protein sequences using machine
learning. Jansen et al. developed a Bayesian network to inte-
grate multiple genomic features to predict PPIs [11]. Shen et
al. trained a support vector machine classifier using conjoint
triad features derived from sequences [12]. Pan et al. first used
latent Dirichlet allocation model to extract latent topic fea-
tures from the conjoint triad features, then the learned topic
features were fed into a random forest classifier to predict
PPIs [13]. Hashemifar et al. trained a deep learning model
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to predict PPIs using evolutionary information with random
projection and data augmentation [14]. In addition, with the
development and innovation of computational technologies,
the use of updated algorithms has allowed researchers to
predict and study PPIs conveniently and accurately alongside
the utilization of different databases and methods.

Gene ontology (GO) is a bioinformatic concept that was
originally proposed to unify the representation of genes and
gene products of many species [15, 16]. The ontology covers
three main domains, namely, (I) cellular component, (II)
molecular function, and (III) biological process, which can
easily cluster all genes and gene products with a directed
acyclic graph (DAG) [16]. For convenience, the ontological
domains are widely used in computational biology to avoid
redundancy of different annotations of a single functional or
structural gene [17, 18]. GO terms, which have been updated
given the development of biological science, can summarize
the specific role of genes and their products in living cells,
and they are regarded as powerful tools in computational
biology science [16]. Different kinds of PPIs are also included
in the various terms of GO annotations.The specific locations
or functions of PPIs in cells have been investigated to easily
describe and distinguish the several kinds of GO terms. The
GO annotations contain informative signals for PPIs. For
example, Patil and Nakamura trained a machine learning
classifier to infer PPIs using features derived from sequence
similarity, shared GO terms and domains [19]. Ben-Hur et
al. used a kernel method to integrate sequences, GO annota-
tions, local network properties and homologous interactions
for predicting PPIs [20]. Stefan et al. generated features for
proteins from GODAG; then, the extracted features were fed
into a random forest classifier to predict PPIs [21]. However,
these studies only adopted the GO annotations to construct
the model for predicting PPIs. They did not analyze which
GO annotations were highly related to the determination
of PPIs. In addition, genes can be clustered into several
biological pathways. Some essential pathways may be highly
related to PPIs.

In this study, we investigated an extended version of
PPI (protein–protein function associations) by using GO
terms and KEGG pathways. Considering the fact that few
PPI studies with computational methods investigated which
GO terms were highly related to the determination of PPIs,
the purpose of this study was to identify key GO terms or
KEGG pathways that can indicate the difference between two
proteins with and without functional associations. We first
extracted protein–protein functional associationswith exper-
iment validations reported in Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) [22, 23], a well-
known database on collected associations between proteins,
as the positive samples, and then we randomly selected
proteins to constitute the negative samples. Considering that
the random selection of negative samples may influence
the results, 10 sets of negative samples were constructed,
thereby constituting 10 datasets, each of which contained
the same positive samples. Each protein–protein functional
association was encoded into a vector by using the GO terms
and KEGG pathways.Then, mutual information was adopted
to evaluate the importance of all features in each dataset.

From the feature lists, in which features were ranked in
the decreasing order of their importance, some important
featureswere identified, and their correspondingGO terms or
KEGG pathways were obtainable. Finally, we analyzed some
most important GO terms and one KEGG pathway to partly
uncover the difference between proteins with and without
functional associations.

2. Materials and Methods

2.1. Materials. All human protein–protein functional asso-
ciations used in this study were retrieved from STRING
(http://www.string-db.org/, version 9.1) [22, 23], a well-
known public database on several collected associations
between proteins from various organisms.These associations
have been derived from the following four sources: (I)
genomic context, (II) high-throughput experiments, (III)
(conserved) coexpression, and (IV) previous knowledge.
To obtain the human protein–protein functional associa-
tions in this database, we downloaded a file named “pro-
tein.links.detailed.v9.1.txt.gz” and then extracted lines start-
ing with “9606” (i.e., the code of human in STRING). A total
of 2,425,314 human protein–protein functional associations
involving 20,770 proteins were accessed. The purpose of this
study is to identify some important GO terms or KEGGpath-
ways that can indicate the difference between two proteins
with and without functional associations. Thus, we refined
the 20,770 proteins as follows: (1) utilize CD-HIT [24] to dis-
card similar proteins such that the similarity between any two
remaining proteinswas less than 0.25 and (2) exclude proteins
whose GO term or KEGG pathway information was not
available, fromwhichwe obtained 8,916 proteins.The derived
proteins can comprise 588,154 human protein–protein func-
tional associations. Furthermore, we selected 70,392 human
protein–protein functional associations among the above-
mentioned associations. The “Experimental” scores of these
associations are larger than zero, meaning that they are
validated by solid experiments. These associations involved
6,623 human proteins. For convenience, these associations
were termed positive associations in this study and are
provided in Supplementary Material S1.

To extract the difference between positive associations
and any two proteins without functional associations, some
negative associations are necessary. Given that negative asso-
ciations are substantially more than the positive ones, we
constructed 211,176 differing pairs of proteins, which were
thrice as many as positive associations, and each of them was
produced as follows: (1) random selection of two different
proteins from 6,623 proteins, and (II) these two proteins
cannot comprise an association reported in STRING. The
obtained negative and positive associations constituted a
dataset. Considering that the produced negative associations
may influence the results, we randomly produced 10 sets
of negative associations. Each of the sets, together with the
positive associations, constituted a dataset, thus producing
10 datasets, which were denoted as 𝐷𝑆1, 𝐷𝑆2, . . . , 𝐷𝑆10. By
analyzing these datasets, some essential information for
protein–protein functional associations can be discovered.
The whole procedures are illustrated in Figure 1.

http://www.string-db.org/
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Figure 1: The whole procedures for analyzing protein–protein functional associations based on gene ontology (GO) and KEGG pathways.
The raw 2,425,314 human PPIs were retrieved from STRING and refined by excluding similar proteins and selecting those validated by
experiments, resulting in 70,392 PPIs. 6,623 proteins were involved in investigated PPIs and used to construct ten sets of protein pairs, each of
which combined with 70,392 PPIs to constitute ten datasets. Each sample was represented by GO and KEGG features, which were evaluated
by mutual information, producing ten feature lists, from which we extracted most important features, corresponding to 134 GO terms and
one KEGG pathway.

2.2. Representation of Protein–Protein Function Associations.
GO terms [16] and KEGG pathways [25] are always used to
elucidate and describe molecular functions, cellular compo-
nents, and biological and signal processes of genes. From
Gene Ontology Consortium [16], 17,916 GO terms were
retrieved. Accordingly, a protein 𝑝 can be encoded as

V�퐺�푂 (𝑝) = [𝑔�푝1 , 𝑔�푝2 , . . . , 𝑔�푝17916]T , (1)

where

𝑔�푝�푖 = {{{
1 𝐼𝑓 𝑝 is annotated by the i-th GO term

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (2)

For two proteins 𝑝1 and 𝑝2 that comprised either a positive
association or a negative association 𝑃 = (𝑝1, 𝑝2), because
therewas no order information in𝑃, i.e., (𝑝1, 𝑝2)was identical
to (𝑝2, 𝑝1), it was not appropriate to simply combine the
features of p1 and p2. To exclude the order information of 𝑃,
we adopted the following scheme that has been used in some
studies [26, 27]. For 𝑃 = (𝑝1, 𝑝2), it was encoded into a vector
by using VGO(𝑝1) and VGO(𝑝2) as follows:

𝑉GO (𝑃) = VGO (𝑝1) ⊗ VGO (𝑝2) = [𝑔�푝11
+ 𝑔�푝21 , 𝑔�푝11 − 𝑔�푝21  , . . . , 𝑔�푝117916
+ 𝑔�푝217916, 𝑔�푝117916 − 𝑔�푝217916]T .

(3)

Moreover, according to KEGG [25], there were 279
pathways, based on which the protein 𝑝 can be represented
by

Vpathway (𝑝) = [𝑘�푝1 , 𝑘�푝2 , . . . , 𝑘�푝279]T , (4)

where
𝑘�푝�푖
= {{{

1 𝐼𝑓 𝑝 is annotated by the i-th KEGG pathway

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(5)

Similarly, 𝑃 = (𝑝1, 𝑝2) can be encoded into

𝑉pathway (𝑃) = Vpathway (𝑝1) ⊗ vpathway (𝑝2) = [𝑘�푝11
+ 𝑘�푝21 , 𝑘�푝11 − 𝑘�푝21  , . . . , 𝑘�푝1279 + 𝑘�푝2279, 𝑘�푝1279 − 𝑘�푝2279]T .

(6)
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By integrating the GO term andKEGG pathway informa-
tion of proteins into 𝑃 = (𝑝1, 𝑝2), each association can be
finally encoded as

𝑉 (𝑃) = 𝑉GO (𝑃) ⊕ 𝑉pathway (𝑃) = [ 𝑉GO (𝑃)
𝑉pathway (𝑃)] . (7)

A total of 36,390 features were used to represent each positive
association or negative association. The information of each
GO term or KEGG pathway was contained by these two
features.

2.3. Feature Evaluation with Mutual Information. As men-
tioned in Section 2.2, several features were used to represent
each protein–protein functional association. However, not all
are highly related to sufficiently determine the differences
between positive and negative associations, i.e., not all GO
terms and KEGG pathways can be used to mark the asso-
ciations. Here, we adopted the mutual information (MI) of
each feature and target (class labels of samples) to evaluate the
importance of each feature.The evaluations use the following
equation to access the relationship between the two variables
of 𝑥 and 𝑦:

𝐼 (𝑥, 𝑦) = ∬𝑝 (𝑥, 𝑦) log 𝑝 (𝑥, 𝑦)
𝑝 (𝑥) 𝑝 (𝑦)𝑑𝑥𝑑𝑦, (8)

where 𝑝(𝑥) and 𝑝(𝑦) are the marginal probabilistic density
of variables 𝑥 and 𝑦, while 𝑝(𝑥, 𝑦) is their joint probabilistic
density.

Given a dataset in which each sample is represented by𝑁 features, after the MI values of all features were calculated,
features were sorted by their MI values in decreasing order,
thereby producing a feature list named MaxRel feature list,
which is formulated as

𝐿 = [𝑓1, 𝑓2, . . . , 𝑓�푁] , (9)

where 𝑓�푖 represents a feature in the dataset.
To quickly implement the program of MI, we adopted

the program of minimum redundancy maximum relevance
(mRMR) method [28], which integrates the MI program.
This program has been applied in solving several complicated
biological problems [26, 29–45].

3. Results

3.1. Results of the Feature Evaluation. As mentioned in Sec-
tion 2.2, each association in the 10 datasets was represented
by 36,390 features.We calculated theMI value of each feature
in each of the datasets 𝐷𝑆1, 𝐷𝑆2, . . . , 𝐷𝑆10. Subsequently, ten
MaxRel feature lists could be accessed. A part of these 10 lists
is provided in Supplementary Material S2.

3.2. Extracting Important GO Terms and KEGG Pathways.
Features with high ranks (large MI values) in the MaxRel
feature list are more important than those with low ranks
(small MI values). For the MI value, we set 0.01 as the
threshold to select important features in each MaxRel feature

Table 1: Number of selected features in each MaxRel feature list.

Dataset Number of selected features
DS1 154
DS2 154
DS3 153
DS4 155
DS5 149
DS6 150
DS7 155
DS8 152
DS9 153
DS10 153

2 0 1 0 1 3 2 1 2
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Figure 2: Distribution of 158 selected features: 146, 2, 1, 2, 3, and 4
feature/s in 10, 9, 8, 7, 6, and less than 6 feature sets derived from 10
datasets, respectively.

list, thus producing 10 feature sets denoted as 𝐹1, 𝐹2, . . . , 𝐹10.
The numbers of selected features in these sets are listed
in Table 1. In the tabulation, the sizes of the 10 feature
sets are nearly the same. After the features in these 10 sets
were combined, 158 features were obtained (Supplementary
Material S3). The obtained number (i.e., 158) did not differ
much from the size of each feature set, which indicates that
the majority of the 158 features were included in each set. In
particular, among the 158 features, 146 features were included
in all 10 feature sets, while 2, 1, 2, 3, and 4 feature/s were
included in nine, eight, seven, six, and less than six feature
sets (Figure 2), respectively. Considering that the negative
associations in each of the 10 datasets somewhat differed, we
predicted that the random selection of negative PPIs will not
have a strong influence on the selection of the 158 features; i.e.,
the features can effectively determine the difference between
positive and negative associations. Figure 3 shows a heat map
ofMI values of the 158 features in the 10 datasets. In the figure,
the MI values of each of the 158 features in the 10 datasets are
nearly the same. Similarly, the distributions of the MI values
of the 158 features in the 10 datasets are nearly the same,
which validates the above-mentioned results. Subsequently,
an extensive investigation to further uncover the mechanism
of proteins with function associations was conducted.

A careful checking showed that the important 158 features
were derived from 134 GO terms and one KEGG path-
way (Supplementary Material S4). To further evaluate their
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X-axis represents ten datasets; Y-axis represents 158 features.
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Figure 4: The distribution of the rating scores of 134 selected GO
terms.

importance, we adopted a calculation technique called rating
score measurement for each GO term. In this paper, the
rating score is expressed as the sum of MI values of the
related features in the 10 MaxRel feature lists. The scores
are also provided in Supplementary Material S4. The rating
score for the KEGG pathway (hsa03010) was 0.107, while the
distribution of rating scores for 134 GO terms is illustrated in
Figure 4.

3.3. Analysis of the Importance of Selected Features. As men-
tioned in Section 3.2, we finally selected 158 features that
were deemed to be highly related to PPIs. To confirm such
conclusion, we did the following test. For each of ten datasets
mentioned in Section 2.1, each sample in the dataset was
represented by these 158 features. And we also randomly
constructed 100 feature sets, each of which consisted of 158
features. Samples in𝐷𝑆1 were represented by features in each
of these feature sets to comprise 100 datasets. The classic
classification algorithm, random forest (RF) [44, 46–50], was
performed on all above-mentioned datasets, evaluated by
tenfold cross-validation. The predicted results were counted
as Matthews correlation coefficient (MCC) [40, 44, 47, 51–
53], which are shown in Figure 5. It can be observed that the
RF with selected 158 features yielded the MCCs between 0.55
and 0.60, while the RF with randomly selected 158 features
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Figure 5: The performance of the random forest (RF) on ten
datasets, in which samples were represented by selected 158 features
or randomly selected 158 features, evaluated by tenfold cross-
validation. The box plot indicates the distribution of MCCs yielded
by RF with randomly selected 158 features and the circles represent
the MCCs yielded by RF with selected 158 features on ten datasets.
It is clear that based on selected 158 selected features, RF produced
much better performance, implying the strong associations between
these features and PPIs.

generated the MCCs around 0.23. Clearly, the selected 158
features can capture the essential properties of PPIs, thereby
providing more powerful distinguishing ability. Investigation
on these features can help uncover the mechanisms of PPIs.

4. Discussion

As mentioned in Section 3.2, 134 GO terms and one KEGG
pathway were regarded important in determining the differ-
ence between positive and negative associations.This section
gave a detailed analysis on them.

4.1. Analysis of Key GO Terms. Analyzing above-mentioned
134 GO terms one by one is difficult. Here, we selected
the most important 21 GO terms with rating scores larger
than 0.5 for detailed analysis, which are listed in Table 2.
21 GO terms can be clustered into three groups: cellular
component, molecular function, and biological process [15].
The distribution of the aforementioned 21 GO terms on these
three groups is shown in Figure 6. Eleven GO terms are
clustered into cellular component, three terms intomolecular
function, and seven terms into biological process. All these
GO terms can be proven or inferred as associated with PPIs
in published literature, as to be discussed below.

Cellular Component GO Terms. As described above, eleven of
the 21 GO terms clustered as cellular components refer to the
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Table 2: Information of most important 21 GO terms.

GO term ID GO term Rating score Group
GO:0044260 cellular macromolecule metabolic process 0.688 Biological process
GO:0043170 macromolecule metabolic process 0.640 Biological process
GO:0044428 nuclear part 0.618 Cellular component
GO:1901363 heterocyclic compound binding 0.600 Molecular function
GO:0032991 protein-containing complex 0.593 Cellular component
GO:0097159 organic cyclic compound binding 0.591 Molecular function
GO:0031981 nuclear lumen 0.590 Cellular component
GO:0044238 primary metabolic process 0.589 Biological process
GO:0003676 nucleic acid binding 0.583 Molecular function
GO:0090304 nucleic acid metabolic process 0.569 Biological process
GO:0071704 organic substance metabolic process 0.556 Biological process
GO:0044237 cellular metabolic process 0.552 Biological process
GO:0005634 nucleus 0.549 Cellular component
GO:0044446 intracellular organelle part 0.547 Cellular component
GO:0044424 intracellular part 0.537 Cellular component
GO:0044422 organelle part 0.536 Cellular component
GO:0070013 intracellular organelle lumen 0.529 Cellular component
GO:0005622 intracellular 0.523 Cellular component
GO:0043233 organelle lumen 0.521 Cellular component
GO:0031974 membrane-enclosed lumen 0.514 Cellular component
GO:0006139 nucleobase-containing compound metabolic process 0.506 Biological process
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Figure 6: Distribution of 21 GO terms on three groups: cellular
component, molecular function, and biological process.

part of a single cell and its specific extracellular environment,
taking account for more than 52% of selected GO terms
[16]. Comparing with molecular function and biological
process as other two GO categories, which mostly reflect
the indirect and functional relationships between different
proteins, cellular component reflects the direct interactive
relationships. Thus, the enrichment of functional clustered
GO terms in such GO category indicated that subcellular
localization and regional protein distribution may contribute
more to the distinction of positive and negative associations.
Direct PPIs which take the majority of all PPIs relied on
the direct molecular interactions between proteins. The
participants of most positive associations must share similar

physical subcellular localizations, while those of the negative
ones do not have to. Therefore, comparing to molecular
function and biological process, it is quite reasonable for the
cellular component category of GO terms to take themajority
of all the enriched biological processes contributing to the
recognition of positive PPIs.

The cellular component GO term with the highest rating
score was GO: 0044428, describing the nuclear part of the
eukaryotic cells, involving in chromosomes housing and
replicating. Such processes involve multiple effective PPIs,
like Esc2 and Rad51 [54, 55].Therefore, the functional enrich-
ment of genes involved in such cellular component may be
more probable to participate in an actual PPI, contributing
to the recognition of positive PPIs. Similarly, GO: 0031981,
describing the nuclear lumen region, and GO: 0005634,
describing amore general region of the cell, nucleus, may also
involve in multiple PPIs. It has been widely reported that the
nucleus region involvesmultiple subgroup of PPIs, regulating
the expression and replication of genes [56–58]. Therefore,
having nucleus as one of the busiest regions in cells, genes
identified in such regionmay actually tend to be participating
in certain PPIs.

Apart from the nucleus region of the cell, accord-
ing to our results, we also identified that cellular regions
associated with functional organelles may also be related
to PPIs. GO: 0044422, describing the organelle part of
cells, GO: 0070013, describing intracellular organelle lumen,
GO:0044446, describing the intracellular organelle part,
and GO:0043233, describing organelle lumen, have all been
screened out as the potential cellular components thatmay be
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associated with positive PPIs [59]. Similar with the nucleus
regions, comparing to extracellular matrix and other intra-
cellular regions, the organelles and its related biochemical
reactions space involve inmore actually interacting PPIs [59–
61]. Therefore, PPIs that locate in such region tend out to
actually happen, indicating that these GO terms contribute
to describing an effective gene cellular component features of
genes that actually participate in PPIs.

Apart from such specific GO terms, we also identi-
fied some more general ones, like GO: 0032991 (protein-
containing complex), GO: 0044424 (intracellular part),
GO: 0005622 (intracellular), and GO: 0031974 (membrane-
enclosed lumen). They all describe the regions that enrich
significant biological processes of the cells. Therefore, actual
PPIs tend to enrich in such region, revealing the specific PPI
distribution pattern in the eukaryotic cells.

Molecular Function GO Terms. Three molecular function
associated GO terms were extracted. The top GO term was
GO: 1901363, describing heterocyclic compound binding.
According to recent publications, various PPIs can actually
be functional enriched in the heterocyclic compound bind-
ing, like the interactions between PDK1 and AKT in the
eukaryotic cells [62, 63]. Therefore, genes that participate in
such molecular function may tend to be more probable to
actually contribute to PPIs. Similarly, the other molecular
function GO term, named GO: 0097159, which describes
organic cyclic compound binding, also involves various PPIs,
like interactions among TBK1, PDPK1, and AURKA [64].
As for the last term, GO: 0003676, it describes the nucleic
acid binding. As analyzed above, the nucleus region, where
nucleic acid binding processes mostly occur, can distinguish
the positive and negative PPIs due to its relative high inter-
action frequency [56–58]. Therefore, it is quite reasonable to
speculate that such molecular function GO term may also be
related to PPIs.

Biological Process GO Terms. Apart from above-mentioned
cellular component and molecular function associated GO
terms, we also identified a group of functional enrichment
results that can be clustered into the biological processes
cluster. All these GO terms describe effective metabolic
processes in the cells. GO: 0044260 andGO: 0043170 describe
the macromolecule metabolic processes. According to recent
publications, such metabolic processes involve various PPIs,
like the interactions in mTOR signaling pathways [65]. Apart
from that, GO: 0044238, describing the primary metabolic
process, has also been confirmed to contribute to PPIs.
Considering the normal anabolic and catabolic processes,
all involving functional PPIs [66–68], it is quite reasonable
for genes participating in such biological processes to also
participate in effective PPIs. The following three GO terms,
GO: 0090304 (nucleic acid metabolic process), GO: 0006139
(nucleobase-containing compound metabolic process), and
GO: 0071704 (organic substancemetabolic process),may also
contribute to PPIs, considering that the nucleus region has
been discussed to be quite significant for PPIs [56–58] and
proteins turn out to be one of the major subgroups of organic
substance in eukaryotic cells; these three GO terms may also

actually contribute to the identification of PPIs. As for the
remaining GO term, GO: 0044237, it describes a general
concept of all the cellular metabolic processes. Considering
the analyses listed above, metabolic processes in the cells
enrich various actual PPIs and are reasonable to be predicted
and screened out as a potential identifier for positive PPIs.

On the basis of the analyses, all 21 GO terms are involved
in different aspects of PPI, and they can be used to mark
proteins with functional associations. For the remaining GO
terms shown in Supplementary Material S4, it is anticipated
that they also have associations with PPIs.

4.2. Analysis of Other GO Terms and KEGG Pathways. As
for other GO terms extracted in this study, although not so
relevant with PPIs as such GO terms described in Section 4.1,
some of them have also been reported to be functionally
related to certain PPIs. For instance, GO: 0006807, describing
nitrogen compound metabolism, has been widely reported
to be functionally related to compound-protein interactions
but not protein–protein interactions [69, 70]. However, when
extensively studying biological processes of such GO term,
we found out that various specific PPIs are just like the
interactions between the protein products of TIMP1 and
MMP2 [71]. Therefore, in this study, some identified GO
terms have not been directly reported to contribute to the
PPIs. However, by digging deep into the actual biological
processes, molecular functions and cellular components of
them, we actually found that various novel identified PPIs are
associated with these GO terms.

Furthermore, one KEGG pathway hsa03010 was obtained
in our study. It describes the ribosome associated pathway.
Considering that genes/proteins that participate in such
pathway may interact with each other, forming the complex
of ribosome, such KEGG pathway, may also contribute to the
distinction of positive and negative PPIs.

5. Conclusions

This study investigated protein–protein functional associa-
tions based on GO terms and KEGG pathways. By using
mutual information, we identified important GO terms and
KEGG pathways that can describe the difference between
actual associations and pairs of proteins without associations
and help understand the mechanisms of protein interactions.
A possible future research direction is to further use theseGO
terms and KEGG pathways to build a computational method
for inferring novel associations between proteins, enriching
the biological functional annotation of proteins.
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