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Leprosy reactions are acute inflammatory episodes that complicate the course of

a Mycobacterium leprae infection and are the major cause of leprosy-associated

pathology. Two types of leprosy reactions with relatively distinct pathogenesis and clinical

features can occur: type 1 reaction, also known as reversal reaction, and type 2 reaction,

also known as erythema nodosum leprosum. These acute nerve-destructive immune

exacerbations often cause irreversible disabilities and deformities, especially when

diagnosis is delayed. However, there is no diagnostic test to detect or predict leprosy

reactions before the onset of clinical symptoms. Identification of biomarkers for leprosy

reactions, which impede the development of symptoms or correlate with early-onset,

will allow precise diagnosis and timely interventions to greatly improve the patients’

quality of life. Here, we review the progress of research aimed at identifying biomarkers

for leprosy reactions, including its correlation with not only immunity but also genetics,

transcripts, and metabolites, providing an understanding of the immune dysfunction

and inflammation that underly the pathogenesis of leprosy reactions. Nevertheless, no

biomarkers that can reliably predict the subsequent occurrence of leprosy reactions from

non-reactional patients and distinguish type I reaction from type II have yet been found.
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INTRODUCTION

Leprosy
Leprosy, also known as Hansen’s disease, is an age-old disease, and patients with leprosy have
been ostracized by their communities and families throughout history (1–3). Leprosy is an
infectious disease caused byMycobacterium leprae (M. leprae), an acid-fast, rod-shaped bacillus that
preferentially infects macrophages (histiocytes) in the dermis and Schwann cells (SCs) in peripheral
nerves (4). Thus, the disease mainly affects the skin and the peripheral nerves; however, mucosa of
the upper respiratory tract and eyes are also affected (5). Nerve damagemay result in a lack of ability
to feel pain, potentially leading to the loss of extremities from repeated injuries or infection due to
unnoticed wounds. Therefore, leprosy is the second most severe humanmycobacterial disease after
tuberculosis (6). Nerve damage occurs due to direct invasion of SCs byM. leprae and the subsequent
host immune response resulting in inflammation; however, the precise mechanism is still unclear
(6).Mycobacterium lepromatosis (M. lepromatosis) is a comparatively new bacterium which causes
severe form of leprosy, namely diffuse lepromatous leprosy (DLL), through nerve invasion and
extensive skin ulcerations (7).
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The clinical manifestations of leprosy depend on the
magnitude of the host immune response to M. leprae, and
can be classified based on decreasing immune responses as
tuberculoid (TT), borderline tuberculoid (BT), mid-borderline
(BB), borderline lepromatous (BL), and lepromatous (LL) (8).
LL is characterized by low or limited cell-mediated immune
responses to M. leprae, with a lack of M. leprae-specific T cells,
increased regulatory T cells, and high levels of M. leprae-specific
antibodies, allowing the proliferation of M. leprae within and
around macrophages (8). In contrast, TT features a vigorous
pro-inflammatory Th1 and Th17 immune response, leading to
elimination or containment of M. leprae in granulomas and
collateral damage of the host cells, mimicking autoimmunity (8,
9). The majority of patients are classified as the three borderline
types, BT, BB, and BL, which exhibit a relatively unstable
immunological state (8). Comparatively simpler methods for
classification of leprosy include paucibacillary and multibacillary
forms. Literally, paucibacillary patients are those with a small
number of skin lesions (<5 skin lesions) and a low bacillary
load, whereas multibacillary patients are those with numerous
infiltrated skin lesions (>5 skin lesions) displaying high
bacillary loads (10). In 1980s, the WHO recommended a 6-
month multidrug therapy (MDT) for paucibacillary and a 12-
month MDT for multibacillary cases (https://www.who.int/lep/
resources/9789290226383/en/).

Leprosy Reactions
Leprosy reactions (LRs) are acute nerve-destructive
inflammatory episodes that complicate the course of M.
leprae infection and are the major cause of leprosy-associated
disabilities. Currently, there is no diagnostic test to detect or
predict LRs before the onset of clinical symptoms. Similar
inflammatory reactions (called paradoxical reactions) occur
in other mycobacterial diseases, such as tuberculosis and
Mycobacterium ulcerans infection (Buruli ulcer) during
the natural course of infection or following antibiotic
treatment (11, 12). However, the incidence and severity
of these reactions are much higher in leprosy (13–16).
LRs may occur before, during, or even after the successful
completion of MDT, and up to 50% of leprosy patients
experience at least one LR during their lifetime (15, 16). The
timing of LRs has implications for the clinical diagnosis,
adherence to MDT, and differentiation of relapse or re-
infection. Immunomodulatory drugs, such as steroids, are
required to treat LRs, and high doses are often required over
prolonged periods, potentially contributing to morbidity
(15, 16).

Two types of LRs with relatively distinct clinical and
pathological features can occur: type 1 reaction (T1R; also
known as reversal reaction) and type 2 reaction (also known
as erythema nodosum leprosum; ENL). T1R is characterized by
acute inflammation in pre-existing leprosy lesions in the skin
and peripheral nerves, resulting in edema, which is sometimes
accompanied by ulcerative lesions (16, 17). Although edema
of the hands, feet and face can also be a feature of LRs,
systemic symptoms are unusual (16, 17). Involvement of the
peripheral nerves leads to a loss of function of both sensory and

motor nerves with tenderness and pain. A nerve abscess may
rarely occur in T1R, causing swelling, tenderness and ultimately
nerve impairment (16, 17). The diagnosis of T1R is usually
made clinically, but a skin biopsy is sometimes performed to
support the diagnosis. The histological features of T1R include
edema with disorganization of the granuloma and widespread
infiltration of inflammatory cells, consisting of lymphocytes,
epithelioid cells, and giant cells (17). Once it lacked standardized
tool for assessing reactions, now a reaction clinical severity
scale has been used to measure clinical features and treatment
outcomes (18).

In contrast to T1R, ENL is a systemic inflammatory
response characterized by neutrophil infiltration, activation of
the complement system, extravascular deposition of immune
complex, and secretion of pro-inflammatory cytokines in both
skin lesions and peripheral blood (15, 19, 20). The Erythema
Nodosum Leprosum International STudy (ENLIST) Group has
defined a severity scale for assessing ENL and collected data on
its clinical features to improve evidence-based treatments for
ENL (21, 22). Skin lesions of ENL often show a perivascular
infiltrate of neutrophils in the dermis and subcutaneous tissues
with erythematous lesions with tender papules or nodules, and
may ulcerative and become necrotic often accompanied by fever
and malaise (15, 23). Peripheral edema of the limbs and face is
common in patients with ENL, and the number of neutrophils in
a skin biopsy diminishes with the age of the lesion (15, 24).

ENL affects numerous organ systems and is a painful
inflammatory complication of leprosy (25). Impairment of nerve
function presents in over 50% of ENL (15, 23). Both large and
small joints are frequently affected in ENL (23), and painful
lymphadenopathy occurs in 15% of ENL cases (26). Testicular
tenderness and severe inflammation occur in 13.5% of male ENL
patients (23, 27). Nasal involvement occurs in 8% of ENL patients
and may lead to septal perforation (28). In addition, there are
occasional reports of pulmonary infiltrates associated with ENL
(29). Ocular inflammation is also reported in 5% of cases, and
ENL is associated with iridocyclitis, episcleritis, and scleritis
(30). Furthermore, hemophagocytic syndrome (31), secondary
amyloidosis (32), nephrotic syndrome, and glomerulonephritis
(33) are also associated with ENL.

Borderline leprosy is immunologically unstable and more
prone to developing LRs (8). T1R reflects a sudden shift toward
Th1 immune responses and is most frequently associated with
BT, BB, or BL, characterized by CD4+ T cell infiltration in
skin and nerve lesions, resulting in nerve damage (34). ENL
reactions primarily occur in patients with LL or BL with
large bacterial burdens and reflect increased cell-mediated and
humoral immune responses to M. leprae components (34).
Although the precise mechanisms of the reactions-associated
nerve damage are unclear, it may involve immune injury due
to the release of inflammatory cytokines or activity of CD8+
cytotoxic T lymphocytes (CTLs), ischemia due to edema within
the perineural sheath, apoptosis, and demyelination (6, 35, 36).

In addition to T1R and ENL, Lucio’s reaction is a rare
reactional state seen in patients with DLL, characterized by
recurrent multiple and extensive areas of ulcerations affecting the
extremities (37).
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Neuropathy is often irreversible if the diagnosis and
intervention of LRs are delayed beyond 6 months following
symptoms (35). Therefore, identifying diagnostic and predictive
biomarkers for LRs is essential, allowing for precise diagnosis and
timely interventions to significantly improve patient prognosis
and quality of life (QOL). As the clinical manifestations of
leprosy are mirrored by the host immune response against M.
leprae, leprosy is also considered a human immunoregulatory
disease; thus, host immune-associated biomarkers have been
extensively explored for their potential to correlate with and
predict the disease state. Below, we review the progress of studies
aiming to identify host-biomarkers for LRs, providing further
understanding of LR pathogenesis (Figure 1). Literatures were
handed search through PubMed (http://pubmed.ncbi.nim.nih.
gov) from November 1, 2020, using keywords including leprosy
reactions; reversal reactions; ENL; biomarkers. To be noted, out
of numerous published studies of LRs, only a small part have
provided scientifically accurate data (15). And no correlate seen
in LRs yet fulfill the requirement of specificity and sensitivity for
diagnosis biomarkers.

PATHOGENESIS AND POTENTIAL
BIOMARKERS FOR T1R

T Cell-Mediated Hypersensitivity
T1R is induced by T cell-mediated hypersensitive reactions
that predominantly occur in the borderline forms of leprosy
(38). Hypersensitivity indicates that the host immune system
has responded to the pathogen or its derivatives in a way that
ultimately damages the host, as opposed to protecting it. Both
CD4+ helper T (Th) cells and CD8+ CTLs contribute to tissue
damage in T1R (39, 40). The immune response to M. leprae
is initiated following the colonization of the nasal mucosa,
potentially of the nasal cavity, and subsequent phagocytosis
by antigen-presenting cells (APCs), such as dendritic cells and
macrophages. The APCs then migrate to the regional lymph
nodes, where they present the antigen on its surface via major
histocompatibility complex (MHC) class II molecules to naïve
CD4+ Th cells.

CD4+ Th cell activation occurs following the binding of the T
cell receptor (TCR) and the CD4 co-receptor to the antigen-MHC
class II complex of APCs (signal one). In addition, CD28 on the
surface of CD4+ Th cells binds to B7 molecules (CD80/CD86)
on the surface of the APC (signal two). Once APCs bind to CD4+
Th cells, they release interleukin (IL)-12 (signal three), a cytokine
that dictates naïve CD4+ Th cell differentiation into a mature
type 1 Th cell (Th1). At this point, the CD4+ Th cell becomes an
effector cell and can release the cytokine IL-2, which contributes
to the proliferation of both CD4+ Th cells (autocrine) and
other cells (paracrine). Interferon-γ (IFN-γ) is also secreted by
APCs, inducing Th1 proliferation and macrophage activation
(41). Activated macrophages release proinflammatory cytokines,
such as tumor necrosis factor (TNF)-α, IL-1β, and IL-6, which
cause leakiness in the endothelial barrier, enhancing immune
cell migration into the area, all of which leads to local edema,
redness, and warmth (41, 42). Activatedmacrophages also secrete

FIGURE 1 | Pathogenesis of leprosy reactions. Schematic representation of

the current understanding of pathogenesis of T1R and ENL. (A) T1R occurs

due to overactive CD4+ T cell-mediated cellular immune responses. Activated

macrophages release proinflammatory cytokines, such as TNF-α, IFN-γ, IL-1β,

IL-6, lysosomal enzymes, and reactive oxygen species which cause leakiness

in the endothelial barrier and tissue injury, enhancing immune cell migration

into the area. (B) ENL is associated with formation of immune complexes,

increased CD4+/CD8+ T cell subset ratio in both peripheral blood and skin,

and recruitment of neutrophils. Activated macrophages in concert with

neutrophils and T cells secret high levels of pro-inflammatory cytokines.

lysosomal enzymes, complement components, and reactive
oxygen species into the exposed area, all of which contribute to
tissue injury (41, 42). Similarly, Th1 cells and T cell-mediated
hypersensitivity contribute to damage of the myelin sheath
around nerve fibers in multiple sclerosis (43) and intestinal
mucosa inflammation in inflammatory bowel disease (IBD) (44).

Naïve CD4+ Th cells can also differentiate into Th17
cells in response to IL-6 and transforming growth factor
(TGF)-β secreted by APCs (45–47). Following activation, Th17
cells produce and secrete IL-17, which facilitates neutrophil
recruitment (45). Furthermore, CD8+ CTLs contribute to tissue
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damage via direct cytotoxicity (39, 40). CD8+ CTLs recognize
antigens bound to MHC class I molecules, present on all
nucleated cells of the body (48). Following antigen recognition
via the TCR, effector CD8+CTLs release perforin and granzymes
from intracellular granules (48). Perforin perforates the target cell
membrane to form pores, allowing granzymes to enter the cell
and induce apoptosis (48).

Antigen Responsiveness
As described above, T1R occurs due to overactive T cell-mediated
cellular immune responses upon recognition and presentation
of M. leprae antigens by APCs. APCs recognize M. leprae
molecules via pattern recognition receptors (PRRs), such as toll-
like receptors (TLRs) (49). In leprosy, cell surface heterodimers
of TLR1/TLR2 and TLR6 recognize molecular patterns of M.
leprae, such as peptidoglycan (PGN) and lipoarabinomannan
(LAM), mediating APC activation (50–52). In leprosy lesions,
TLR2 was shown to mediate SC apoptosis, contributing to nerve
injury characteristic of T1R (53). Furthermore, a study of 21
Nepalese patients demonstrated that TLR2 and TLR4 expression
is associated with T1R, and corticosteroid treatment reduced
gene and protein expression of TLR2 and TLR4 (54).

Consistent with a role of TLRs in T1R, polymorphisms in
TLR genes influence the risk of acquiring leprosy and developing
T1R, putatively due to their role in APC responsiveness to M.
leprae. In a cohort of Ethiopian patients, a single nucleotide
polymorphism (SNP) in TLR2 (597C > T) was associated with
protection against T1R, while a 280-bp microsatellite marker was
associated with an increased risk of T1R (55). In addition, the
TLR4 SNP (1530G > T) is more frequently seen in individuals
with T1R (56). A cohort of 238 Nepalese patients found that the
non-synonymous polymorphism rs5743618 of TLR1 (I602S) was
protective against T1R (57). The I602S SNP of TLR1 inhibits
surface trafficking of the TLR1/TLR2 dimer, resulting in hypo-
responsiveness to mycobacteria, suggesting a potential protective
mechanism againstM. leprae (58, 59). In addition, theMHC gene
region carries major susceptibility for leprosy and LRs in different
populations, with both protective and risk alleles (60, 61).

Pro-inflammatory Cytokines
Compared with non-reactional patients, enhanced Th1 responses
and macrophage activation in T1R is demonstrated by a pro-
inflammatory Th1 cytokine profile, including IFN-γ, TNF-α,
IL-1β, IL-6, IL-2, soluble IL-2 receptors, IL-12, TGF-β, and
inducible nitric oxide synthase (iNOS), in the blood, skin,
and nerves (62–64). Therefore, these cytokines are potential
predictive biomarkers for LRs. Monitoring serum cytokines in
newly diagnosed leprosy cases before starting therapy and during
reactional episodes indicates that elevated serum TNF-α, IFN-γ,
and IL-1β levels predict T1R development (65, 66). An analysis
of 27 plasma factors also revealed increased plasma IL-6 levels
in both T1R and ENL compared to patients with non-reactional
leprosy (67). IL-6 promotes cell-mediated immune reactions by
stimulating IL-17 production and inhibiting regulatory T cells
(Tregs) (68).

TNF-α

The pro-inflammatory cytokine TNF-α belonging to the TNF
superfamily (TNFSF) is increased in the skin, serum, and
nerves during T1R (69–71). Genome-wide association studies
(GWAS) showed that SNPs in the TNFSF15-TNFSF8 locus are
associated with excessive inflammatory responses in T1R (72),
but effects may vary with age (73). GWAS also identified T1R-
specific associations with variants of leucine rich-repeat kinase
2 (LRRK2), which may cause pro-inflammatory responses (74).
Interestingly, peripheral nerve damage due to inflammation
in T1R and neuroinflammation in Parkinson’s disease share
overlapping genetic control of pathogenicity (75).

IFN-γ, iNOS

In T1R lesions, IL-12 is consistently expressed, IL-4 is absent, and
IFN-γ producing CD4+ Th cells and CD8+ CTLs are selectively
increased during M. leprae clearance and concomitant tissue
damage (39, 40). Th1 cell activation and IFN-γ production are
critical for an efficient immune response against M. leprae (42).
IFN-γ enhances M. leprae antigen presentation by increasing
MHC and co-stimulatory molecule expression and activates the
antimicrobial response (76). IFN-γ is crucial for macrophage
plasticity, as it polarizes naïve M0 macrophage to M1 pro-
inflammatory macrophages, which produce cytokines and iNOS
(41). iNOS generates reactive nitrogen radicals involved in
mycobacteria killing (41), and high levels of iNOS are identified
in skin biopsies from T1R lesions (63). Another study found
that the macrophage activation marker, neopterin, is a useful
biomarker in monitoring T1R patients during corticosteroid
therapy (77).

TGF-β

IFN-γ also activates the vitamin D-antimicrobial pathway,
inducing antimicrobial peptide (e.g., cathelicidin) production,
phagosome maturation, and autophagy (78). Importantly, IFN-
γ and downstream vitamin D-dependent antimicrobial genes
are preferentially expressed in TT and T1R skin lesions (79–
81). Furthermore, the vitamin D-antimicrobial pathway is
mediated via the vitamin D receptor (VDR), expressed by
macrophages in response to TLR1 and TLR2 stimulation (82).
Genotyping analysis identified an association of two functional
VDR polymorphisms with leprosy phenotypes, including a
missense M1T polymorphism (rs2228570; also known as FokI)
of a VDR isoform associated with T1R (83). In addition, serum
vitamin D3 levels and VDRmRNA expression correlate with the
complexity and severity of LRs (84). Activated macrophages also
produce the multifunctional cytokine TGF-β, and high levels of
TGF-β have been identified in T1R biopsies (71). TGF-β and
TNF-α can act synergistically to cause detachment and lysis of
SCs, potentially contributing to SC killing and peripheral nerve
damage in T1R (85). Together, these studies demonstrate the
potential of pro-inflammatory cytokines as candidate biomarkers
for leprosy phenotypes; however, more studies are needed.
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Pro-inflammatory Chemokines, Enzymes,
and Growth Factors
C-X-C motif chemokine ligand 10 (CXCL10; also known as
IP-10) is a pro-inflammatory chemokine that promotes T cell
chemotaxis to sites of tissue inflammation (86). CXCL10 is
produced by macrophages, T cells, and keratinocytes upon
stimulation by IFN-γ. CXCL10 mRNA levels in the skin and
protein levels in serum are elevated during T1R compared
to before T1R (87). In addition, circulating CXCL10 levels
decrease following treatment (88, 89). The CC chemokines,
such as “regulated upon activation, normal T cell expressed
and secreted” (RANTES; also known as CCL5) and monocyte
chemoattractant protein-1 (MCP-1), recruit monocytes and
lymphocytes to the lesion. Expression of both RANTES and
MCP-1 is elevated in the skin lesions of T1R compared
to non-reactional leprosy (90), suggesting a role of these
chemokines in the activation of monocytes and T cells in
T1R lesions.

Cyclooxygenase-2 (COX-2) is overexpressed during
inflammation, and COX-2 expression is regulated by growth
factors and cytokines, such as IL-1β, IL-6, and TNF-α (91). In
skin biopsies from leprosy patients, foamy macrophages express
COX-2, and expression is significantly higher in LL compared
to TL (92). In addition, in T1R lesions, micro-vessels, nerve
bundles, and isolated nerve fibers express COX-2, as well as
vascular endothelial growth factor (VEGF) (93). VEGF and the
endothelial cell receptor KDR (also known as VEGFR-2) are also
overexpressed by granuloma cells, vascular endothelium, and the
overlying epidermis in T1R (94). VEGF enhances prostaglandin
(PG) production through COX-2 stimulation and PG synthase
expression, causing vascular changes leading to tissue edema
characteristic of T1R and potential nerve damage (93). Selective
COX-2 inhibitors are currently used in several inflammatory
conditions (95), and may be considered for T1R treatment to
reduce acute symptoms and prevent long-term nerve damage
(93). Th17 cells and γδ T cells.

Th17 cells are a distinct lineage of Th cells that play an
important role in protection against intracellular pathogens (96).
Human naïve CD4+T cells differentiate into Th17 cells following
exposure to IL-6, IL-1β, TGF-β, and IL-23 (46). Activated Th17
cells secrete the cytokines IL-17A, IL-17F, and IL-22, which
induce epithelial cell production of IL-6, IL-1β, CXCL2, and
CXCL8, attracting and activating inflammatory cells at the site
of infection (46). The correlation of Th17 responses with the
clinical forms of leprosy is similar to that of Th1 cells, indicating
a role of Th17 cells in an effective immune response against
M. leprae (9, 97, 98). M. leprae antigen-stimulated peripheral
blood mononuclear cells (PBMCs) from patients with T1R and
ENL showed significantly higher mRNA levels of IL17A, IL17F,
IL23, IL6, and IL21 than those derived from patients with TT
and LL (99). M. leprae-stimulated PBMCs from patients with
LRs exhibited a significantly higher frequency of CD4+IL-17+
T cells compared to those from non-reactional patients (99).
Within granulomas, IL-17A and TGF-β are also abundant in
biopsies from patients with T1R and ENL compared to those
from patients with TT and LL (99). IL-17F also increases upon
the development of T1R (97).

The association of Th17 cells with PB leprosy and increased
Th17 activity during LRs suggest that patients with a greater
frequency of Th17 cells acquire resistance toM. leprae. Moreover,
due to reciprocal development pathways for Th17 cells and
anti-inflammatory Tregs (100), decreased numbers of Tregs
in favor of Th17 cells may be a plausible mechanism for LR
development. Th17 cells may also contribute to host defense
against leprosy by secretion of the antimicrobial cytokine IL-
26 (101, 102). IL-26 mRNA levels are higher in TT and
T1R lesions compared to LL lesions, and IL-26 colocalizes
to the greatest extent with CD4+ T cells, presumably Th17
cells (101).

γδ T cells are also a main source of IL-17 and IFN-γ in many
diseases (103). γδ T cells composed 25–35% of the CD3+ T
cells within granulomatous skin lesions of patients with T1R
compared to just 5% in lesions of patients with other forms of
leprosy (104). More recently, γδ T cells were demonstrated to
be significantly enriched in the peripheral blood of patients with
T1R and ENL compared to those with TT and LL (105).

Anti-inflammatory Factors
Levels of the anti-inflammatory cytokine IL-10 are higher in
patients with LL, consistent with hyporesponsiveness (106–
108). Conversely, a reduction in the relative levels of IL-10
may correlate with the conversion of unresponsive T cells in
LL/BL patients to activated pro-inflammatory T cells in LRs
(107). In a BT-like murine model of leprosy, IL-10 suppression
significantly augmented M-leprae-specific CD4+ and CD8+ T
cell infiltration and permitted CD4+ T cells to penetrate and
fragment nerve tissue (109). Furthermore, IL-10-production by
M. leprae-stimulated PBMCs is reduced at the onset of T1R (110),
suggesting that the breakdown of IL-10-mediated tolerance
may be a general mechanism for T1R. Another study showed
reduced expression of Treg-associated genes (FOXP3, LAG3)
and IL-10 during the onset of T1R (110). It is hypothesized
that the ratio of pro-inflammatory cytokines, such as IFN-
γ, TNF-α, CXCL-10, IL-6, and IL-17, to anti-inflammatory
cytokines, such as IL-10, may provide early and more accurate
indicators for T1R rather than the absolute cytokine levels (88,
89, 110).

Acute-Phase Proteins and Cortisol
APPs are a highly conserved class of proteins that play an
essential role in the innate immune response by marking a
pathogen for phagocytosis, a process called opsonization (111).
APPs are secreted primarily by hepatocytes stimulated with
TNF-α and IL-6 during the acute phase reaction/response,
characterized by fever and activation of peripheral leukocytes,
especially neutrophils (112). The most prominent APPs include
C-reactive protein (CRP), which is used as a biomarker
for inflammation, mannose-binding lectin (MBL), which
activates complement by the lectin pathway, the coagulation
factor fibrinogen, and the apolipoprotein serum amyloid
protein A (SAA) (113). In addition to APPs, components
of the complement system (e.g., C3b, C4b, and iC3b) and
immunoglobulins opsonize molecules to promote phagocytosis
(114). Notably, terminal complement complex (TCC) and iC3b
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of the complement system are valuable for the stratification of
leprosy patients with or without T1R (115).

The stress hormone cortisol, which increases blood sugar
levels and suppresses Th1-mediated immune responses (116), is
elevated in T1R patients (117). In the skin, cortisol concentration
is regulated by a reversible enzyme shuttle that deactivates
cortisol by converting it to cortisone and vice versa (118). The
activity of this enzyme shuttle is regulated by numerous factors,
including cytokines (118). One potential mechanism for the
development of LRs is a breakdown of the cortisol-cortisone
enzyme shuttle, resulting in large fluctuations in cortisol
concentration at the site of inflammation that requires exogenous
steroids to regain balance (118). Thus, the cortisol-cortisone
enzyme shuttle may be a biomarker for T1R and be useful
for treatment customization. Consistent with this hypothesis,
prednisolone treatment downregulates the expression of the gene
encoding 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2),
which deactivates cortisol to cortisone, in the skin lesions of
patients with T1R (119).

Lipid Metabolites and Related Genes
A characteristic feature of LL is the accumulation of lipid
droplets within M. leprae-infected macrophages, resulting in
a foamy or xanthomatous appearance (120, 121). M. leprae
infection induces lipid droplet formation by modifying the
expression of host genes responsible for lipid metabolism, such as
adipose differentiation-related protein (ADRP) and perilipin and
hormone-sensitive lipase (HSL) (121–123). Specifically,M. leprae
infection upregulates ADRP and downregulates HSL expression,
suggesting ADRP andHSL as potential biomarkers for LRs (123).

There is close crosstalk between inflammatory and immune
pathways and lipid mediators derived from polyunsaturated
fatty acids, such as the omega-6 fatty acid arachidonic acid
(AA) and the omega-3 fatty acids eicosapentaenoic acid
and docosahexaenoic acid (124). Omega-3 and omega-6 fatty
acid-derived lipid mediators are involved in regulating M.
leprae-specific inflammatory and immune responses (125).
AA is primarily metabolized into pro-inflammatory lipid
mediators, such as 2-series PG, thromboxane, and 4-series
leukotrienes, by cyclooxygenases and lipoxygenases (124). In
contrast, some omega-3 and omega-6 fatty acids synthesize lipid
mediators with anti-inflammatory and pro-resolution functions,
including lipoxins, resolvins, protectins, and maresins (126, 127).
Current evidence suggests that specialized pro-resolving lipid
mediators (SPMs) are involved in the down-regulation of the
innate and adaptive immune responses against M. leprae and
that alteration in the homeostasis of pro-inflammatory lipid
mediators and SPMs is associated with dramatic shifts in leprosy
pathogenesis (128).

Serum metabolomic studies of patients with LRs identified
40 perturbed metabolites in T1R, with 71 dysregulated
metabolites mapping to inflammatory lipid mediator pathways
(98). Leukotriene B4 (LTB4) is released during the acute-phase
response, inducing the recruitment and activation of neutrophils,
monocytes, and other leukocytes at the site of inflammation and
pro-inflammatory cytokine production (129). Consistent with
the severe local inflammatory response in T1R, LTB4 levels are

significantly higher in T1R compared with non-T1R patients
(98, 124). As Th17 cells express LTB4 and its receptors, it is
speculated that higher levels of LTB4 in T1R are due to the
migration of Th17 cells (125, 130). PGD2 also acts as a pro-
inflammatory mediator, regulating events such as Th2 cytokine
production and leukocyte migration, and is present at higher
levels in T1R compared with non-T1R patients (125).

PGE2 is an eicosanoid that causes vasodilation, attracts
immune cells, and induces IL-10 synthesis; thus, PGE4
may limit non-specific inflammatory damage, favoring M.
leprae persistence in MB patients through downregulation
of macrophage functions (131). Consistent with an anti-
inflammatory role of PGE2, non-T1R patients exhibit higher
levels of PGE2 compared with T1R patients (98, 125). Reduced
PGE2 levels in T1R indicate enhanced Th1 immune responses
(125, 128).

Lipoxin A4 (LXA4) is neuroprotective, and higher levels of
LXA4 are observed in non-reactional leprosy patients, suggesting
that LXA4 preserves nerve function in leprosy (125). Similarly,
resolvin D1 (RvD1) is an anti-inflammatory lipid mediator that
suppresses the synthesis of LTB4 while favoring LXA4 synthesis.
Resolvins also inhibit neutrophil infiltration, support an M2
macrophage phenotype switch, enhance bacterial phagocytosis,
induce Treg differentiation and consequent IL-10 production,
and inhibit Th1 and Th17 cell functions (132). Higher levels of
RvD1 are observed in non-T1R patients compared with those
developing T1R (98, 125). As LXA4 and RvD1 are predominant
in non-reactional leprosy patients, it is speculated that they play
a role in the maintenance of the disease, avoiding exacerbated
inflammatory responses, which could be deleterious for both the
pathogen and host (98, 125). Consistent with this hypothesis,
patients with high bacterial load (e.g., LL and BL patients)
exhibit the highest levels of LXA4 and RvD1 (98, 125). Together,
these findings suggest that alterations in the homeostasis of
pro-inflammatory lipid mediators and SPMs could cause the
Th1-mediated pathology observed in T1R (128).

Similar to serum metabolites, urine metabolites are easily
accessible from a non-invasive body fluid. Exploratory
metabolomic analysis of a prospective cohort of Nepalese
leprosy patients with and without LRs showed that cross-
sectional urinary metabolic signatures at the time of T1R
diagnosis distinctly differed from those before LRs (133). Thus,
urine metabolites may also predict the onset of LRs. While the
above-mentioned correlates are frequently reported in TIR, none
of them has been firmly established as a reliable biomarker to be
able to diagnose T1R on its own.

Host Transcriptomes
Host transcriptomic biomarkers reflect actively ongoing immune
responses and may be used to profile LRs. Transcriptomic
analysis of skin tissue, whole blood, and PBMCs of leprosy
patients has identified several differentially expressed genes
characteristic of LRs (110, 134, 135). In agreement with a
Th1 pro-inflammatory cytokine profile, expression of pro-
inflammatory cytokine genes was up-regulated in independent
studies assessing mRNA expression in whole blood and M.
leprae-stimulated PBMCs (110, 134, 135). Monitoring whole
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blood transcriptomics of a leprosy patient before, at onset, and
after T1R treatment revealed that IFN-inducible transcripts,
VEGF, and CTL response-associated genes, including granulysin,
perforin, and granzymes A and B, were up-regulated during T1R
(110). In contrast, Treg-associated genes were down-regulated,
and there was only minimal detection of IL-4 and IL-13 (110).
A unique 44 gene signature, including genes associated with
AA metabolism, was identified in M. leprae antigen-stimulated
PBMCs from patients with T1R (135) and both T1R and ENL
exhibited increased gene expression of C1q (134).

M. leprae and Its Derivatives
In addition to host-derived biomarkers, a few studies have
investigated the components or derivatives of M. leprae for
leprosy diagnosis and monitoring of treatment efficacy (136–
139). Specifically, M. leprae antigenic determinants have been
demonstrated in dermal macrophages and SCs during T1R (38).
A study of patients with slit-skin smear negative, single lesion,
PB leprosy demonstrated an association between T1R and the
presence of M. leprae DNA in skin lesions (138). In particular,
expression of the M. leprae-specific genes accA3 and hsp18
was higher in biopsies from T1R patients compared with those
from non-reactional leprosy patients (136, 140). Interestingly,
M. leprae genome displays gene decay significantly and contain
large numbers of pseudogenes and non-coding regions (141).
Our lab has shown that RNA transcripts are generated from M.
leprae pseudogenes and non-coding regions (52, 120, 142), and
these transcripts could be a valuable biomarker for the disease
phenotype (139).

PATHOGENESIS AND RELATED
BIOLOGICAL AGENTS AS BIOMARKERS
FOR ENL

ENL primarily affects individuals with BL and LL leprosy but may
also occur in a small percentage of individuals with BB leprosy
(143). Approximately 10% of patients with BL leprosy and up to
50% of those with LL leprosy will develop ENL (143). The risk
for ENL in patients with BL leprosy and a bacteriological index
(BI) ≥4 is 5.2 times greater than patients with BL leprosy and
a BI <4 (144). ENL may share some disease mechanisms with
T1R; however, ENL pathogenesis appears much more complex,
and the underlying mechanisms for ENL remain unclear.

Immune Complexes
A longstanding theory is that immune complexes and type
III hypersensitivity reactions are involved in ENL pathogenesis
(145). Type III hypersensitivity occurs following inadequate
clearance of deposited immune complexes (also known as
antigen-antibody complexes), leading to an inflammatory
response and attraction of leukocytes (145). Consistent with
this theory, skin biopsies of ENL patients show deposition
of complement proteins and immunoglobulins in the dermis,
similar to an Arthus reaction (146). In addition, patients
with active ENL exhibit lower circulating C1q protein levels,
but higher C1q gene expression in both skin lesions and

peripheral blood, compared with non-reactional LL patients
(134, 147), suggesting the consumption of C1q in the formation
of immune complexes. Therefore, circulating C1q has potential
as a diagnostic biomarker for ENL. A study of 109 non-related
leprosy patients in Brazil reported an increased risk of ENL
in patients with a deficiency in the complement protein C4B
(C4B∗Q0), potentially leading to abnormal immune responses
due to inadequate immune complex clearance (148). Moreover,
circulating immune complexes against phenolic glycolipid-1
(PGL-1) and major cytosolic proteins of M. leprae are found
in patients with ENL (149). Although these studies show
the presence of immune complexes in ENL, this may be an
epiphenomenon, and the causative role of immune complexes in
ENL pathogenesis remains unclear (15).

Neutrophils
Neutrophils contribute to the early phases of leprosy
pathogenesis by phagocytosing M. leprae and releasing pro-
inflammatory mediators and are considered a histological
hallmark of ENL (150). A study of ENL patients showed that
neutrophils composed 30% of skin biopsies within 72 h after
ENL onset but composed only 1.6% after 9–12 days (150).
Higher neutrophil-to-lymphocyte ratios (NLRs) are significantly
associated with systemic inflammation and reflect non-specific
acute inflammatory responses mediated by neutrophils (151).
In a study of 123 patients with leprosy, including 56 with T1R
and 42 with ENL, patients with ENL had the highest NLR, and
the NLR had a sensitivity of 81% and specificity of 74% for ENL
diagnosis (134).

It has recently been shown that PGL-I interacts
with complement receptor 3 (CR3) on macrophages,
polymorphonuclear neutrophils and dendritic cells (152).
This binding of CR3 by PGL-I triggers Syk tyrosine kinase,
inducing calcineurin-dependent nuclear translocation of the
transcription factor NFATc, eventually rewiring host cytokine
responses in leprosy (152). PGL-I that triggers this pathway upon
CR3 binding sustains IL-1β production by macrophages, IL-10
by polymorphonuclear neutrophils, and IL-2 by dendritic cells,
which coordinately regulates neutrophils infiltration in ENL
patients (152).

Endothelial cell expression of the leukocyte-endothelial cell
adhesion molecule E-selectin is promoted by IL-1β and IFN-
γ following activation of TLR2 and Fc receptors, allowing for
neutrophil adherence and migration to sites of inflammation
(153, 154). E-selectin is expressed in a vascular pattern, and
expression is highest in ENL skin lesions compared to non-
reactional LL leprosy (153). Furthermore, transcriptomic analysis
of leprosy skin lesions identified ENL-specific neutrophil and
endothelial cell gene networks involved in vasculitis associated
with tissue injury (155). Consistent with a role of this pathway in
ENL, the effective ENL treatment thalidomide inhibits E-selectin-
mediated neutrophil recruitment (153).

Resting neutrophils express low levels of the cell surface
receptor CD64 (FcγRI); however, stimulation by gram-negative
bacteria increases expression (156). CD64 is also an early
biomarker and predictor of severity for ENL (157, 158).
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Circulating and in situ neutrophils in ENL, but not non-
reactional leprosy, express CD64 (157, 158). CD64 upregulation
in ENL may occur due to the release of fragmented components
of M. leprae after initiating MDT (157, 158). Neutrophils
produce the majority of TNF-α and IL-8 associated with tissue
damage in ENL (159), consistent with the role of CD64
in the upregulation of pro-inflammatory cytokine production
(157, 158). Thalidomide suppresses neutrophil TNF-α secretion,
suggesting another mode of action for this treatment (159).

Neutrophil IL-10 receptor 1 (IL-10R1) was recently proposed
as a potential biomarker and target for ENL treatment (160). A
recent study found that in contrast to neutrophils from non-
reactional leprosy patients, a subpopulation of neutrophils in
the circulation and skin lesions of ENL patients exclusively
expressed IL-10R1, enabling response to IL-10 (160). IL-10R1
expression on ENL neutrophils was further increased during
thalidomide treatment (160). In addition, neutrophils from
ENL but not non-reactional leprosy patients secreted detectable
levels of inflammatory cytokines ex vivo, which was blocked
by the addition of IL-10 (160). Expression of IL-10R1 by
ENL neutrophils may reflect a compensatory mechanism to
regulate inflammation during ENL; however, the causative role
of neutrophils in ENL has yet to be determined (15).

T Cells
Some studies showed that ENL, like T1R, is induced primarily
by a T cell-mediated immune response (15, 161). CD8+ clones
derived from LL lesions secrete large amounts of IL-4 and
minimal IFN-γ (162, 163). In response to M. leprae or M. leprae
antigens, lesion-derived CD8+ T cells do not proliferate and
limit the proliferation and cytokine secretion of bystander T cells
(162, 163). Thus, CD8+ T cells may induce M. leprae-specific
T cell anergy (162, 163). In contrast, TT skin lesions display
a predominance of CD4+ T cells that secrete high amounts
of IFN-γ (164, 165). Likewise, there is an increase in CD4+
T cells and a decrease in CD8+ T cells in both the skin and
blood of patients with ENL compared with non-reactional LL
patients (166, 167), supporting the involvement of T cells in
ENL. However, these early studies need to be re-evaluated in the
context of CD4+CD25+ Tregs.

Similar to T1R, Th17 and γδ T cells are significantly enriched
in the peripheral blood of patients with ENL compared with non-
reactional leprosy patients (99, 105) (see section 2.5), suggesting
a role for these T cells in ENL. In addition, studies reported
reduced Treg levels in circulation and in situ in ENL but not
T1R (106, 168). As Tregs suppress Th1 cells, the reduction of
Tregs may explain the higher proportion of effector T cells in
ENL (169).

Cytokines, Chemokines, and Enzymes
Although the clinical presentations of T1R and ENL are distinct,
they share similar pro-inflammatory cytokine profiles during
disease progression. In ENL, enhanced Th1 responses to M.
leprae and macrophage activation are reflected by elevated
expression of IFN-γ, TNF-α, IL-1β, IL-2, and IL-6 in the affected
tissues and serum (170–172). Most studies found that high
TNF-α serum levels correlated with ENL, and levels decreased

significantly during thalidomide treatment (173). Consistent with
this finding, the primary mechanism of action of thalidomide
is TNF-α suppression, although other mechanisms may apply
(174). The chimeric anti-TNF-α monoclonal antibody infliximab
is also effective for the treatment of ENL, further supporting an
important role of TNF-α in ENL pathogenesis (175). High serum
IFN-γ levels also correlate with ENL (173), and intradermal
injection of IFN-γ is associated with an increased frequency
of ENL (176). Furthermore, although thalidomide reduces ENL
frequency, it also eliminates IFN-γ-mediated bacillary killing
(176). Most studies suggest a prognostic role of IL-1β for
ENL (65, 177). IL-6 promotes cell-mediated immune reactions,
notably by stimulating IL-17 and inhibiting Tregs (68). A study
found independent associations of two IL-6 polymorphisms,
rs1800795 and rs2069840, with ENL (178), which influence IL6
expression and correlate with circulating IL-6 levels, respectively
(179). Thus, IL-6 is also implicated in ENL pathogenesis and is
a potential predictive biomarker for ENL. IL-17 increases upon
ENL onset and thalidomide suppresses Th17 responses (9, 47),
supporting a role of Th17 cells in the immunopathogenesis
of ENL.

In contrast to T1R, a predominant Th2 cytokine profile has
been observed in ENL with increased expression of IL-6, IL-8,
and IL-10 and sustained production of the Th2 cytokines IL-4
and IL-5 (180), indicating a role of humoral immunity in ENL.
In a cohort of 6 cases each of T1R and ENL, increased expression
of IL-10 was observed in ENL, but not T1R (65). IL-7 is a key
regulator of B cell development and proliferation and is essential
for the survival of naïve and memory T cells, especially CD4+
memory cells (181, 182). Elevated circulating IL-7 levels were
detected in ENL (67), implicating a role for both B cell- and T
cell-mediated immunity in ENL.

C-C motif chemokine ligand 11 (CCL11), a chemokine
produced by monocytes, has also been identified as a
potential plasma marker of ENL (67). CCL11 is a potent
chemoattractant for eosinophils and Th2 lymphocytes (183).
Global transcriptional profiles of PBMCs also revealed CCL2,
CCL3, and CCL5 as potential biomarkers for ENL (134). Matrix
metalloproteinases (MMPs) are a family of proteolytic enzymes
responsible for extracellular matrix (ECM) remodeling and
regulation of leukocyte trans-ECM migration, an important
step in inflammatory processes as well as infectious diseases
(184). MMPs are produced by skin cells, such as keratinocytes,
Langerhans cells, and dermal fibroblasts (184). Serum MMP-9
levels are elevated in patients with LRs, and MMP mRNA levels
are higher in skin biopsies of patients with LRs, especially in ENL,
and correlated with skin biopsy IFN-γ and TNF-α levels (185).

Humoral Immunity
Antibodies (Abs) against M. leprae are the main players in the
humoral immune response involved in leprosy pathogenesis. The
role of humoral immune responses in immune defense against
intracellular pathogens such as M. leprae is generally thought
to be irrelevant. Instead, Ab production at the site of infection
may contribute to the immunopathology and tissue injury
observed in leprosy, as ENL pathogenesis has been attributed
to Abs and immune complex deposition (see section 3.1). ENL
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patients exhibit elevated IgG1-secreting B cells (186), with lower
concentrations ofM. leprae-specific IgG1 and IgG3 (187). As LRs
are initiated byM. leprae antigens and bacterial load is associated
with anti-M. lepraeAb levels (188), Ab levels at the time of leprosy
diagnosis have been evaluated as predictive biomarkers of LRs.
High levels of anti-PGL-1 Abs at diagnosis or after treatment have
been associated with a higher risk of developing LRs, especially
ENL (189). MB patients who subsequently developed ENL had
increased levels of IgM, IgG1, and C3d before ENL onset,
suggesting that they are potential biomarkers for ENL (190).

Leprosy Infectious Disease Research Institute Diagnostic-1
(LID-1) is a fusion protein of ML2331 and ML0405 recognized
by M. leprae-specific Abs, and persistently high levels of anti-
LID-1 Abs might be a useful tool to predict ENL (188, 191, 192).
In addition, in a study of 452 non-reactional leprosy patients at
diagnosis, baseline serum anti-LID-1 Ab levels were elevated in
patients with a high BI and predicted the development of ENL
with a sensitivity of 71% and specificity of 80% (191). In another
study, serum anti-LID-1 Ab levels were associated with LRs as
well as neuritis of leprosy (192). Furthermore, elevated levels of
Abs against LAM, a polysaccharide antigen present in M. leprae,
are associated with the development of T1R (193).

Negera et al. demonstrated an increase in activated memory B
cells in untreated patients with ENL, suggesting a role of memory
B cells in the pathology of ENL (194). Untreated ENL patients
also exhibited a reduction in the number of tissue-like memory
B cells (TLM) compared to LL patients (194). Furthermore, the
study found that the percentage of total B cells in peripheral blood
was not significantly different between patients with LL and ENL;
however, treatment significantly reduced the proportion of B cells
from 9.5% to 5.7% in patients with ENL, suggesting that the
depletion of B cells could be an effective treatment for ENL (194).

APPs and Procoagulant Factors
APPs have also been proposed as potential biomarkers for
ENL. Serum pentraxin-3 (PTX-3) levels are higher in MB
patients before the onset of acute ENL, persist during LR,
and are reduced by thalidomide (195). PTX-3 binds with
high affinity to the complement component C1q, which
could explain why C1q levels in the circulation are inversely
correlated with ENL progression (134, 147). CD64 expression
on neutrophils correlates positively with PTX-3 serum levels in
ENL, suggesting that CD64/PTX-3 exacerbates inflammation in
ENL patients (195). PTX-3 also colocalizes with the neutrophilic
marker myeloperoxidase (MPO) in ENL lesions, and the high
expression of PTX-3 in ENL could result from high neutrophil
numbers (195).

SAA and CRP, systemic markers of inflammation, are elevated
in ENL, indicating active inflammatory responses (196). In
addition, serum concentrations of TNF-α and CRP are positively
correlated (197). At high concentrations, CRP can enhance
the acute inflammatory process in ENL, favoring increased
macrophage activation and phagocytosis, contributing to the
elimination of damaged cells and bacilli, and modulating the
proportion of T cell subsets (197). Using serum proteome
analysis with two-dimensional gel electrophoresis and mass

spectrometry, another acute-phase protein, α-acid glycoprotein
(AGP), was found to be increased in the serum of untreated
ENL patients (198). AGP levels decreased to normal levels
after treatment with MDT and thalidomide (198). Furthermore,
an LL patient who progressed into ENL exhibited a stage-
dependent increase in AGP, supporting the use of AGP levels as a
biomarker for ENL (198). Serum proteome analysis of patients
with ENL also showed a significant increase in an isoform of
the haptoglobin α2 chain compared with non-reactional leprosy
patients (199).

Hemostatic disorders are frequently associated with acute
and chronic infections, as exemplified by platelet functions,
blood coagulation, and fibrinolysis, and are intimately correlated
with immune responses (200). Leprosy patients can develop
hemostatic abnormalities, such as atypical lipid clot mass
formation during serum harvesting, deep thrombophlebitis, and
pulmonary embolism (201). Patients with ENL have prolonged
activated partial thromboplastin times, high fibrinogen and
platelet titers, and platelet activation (202, 203). Procoagulant
profiles of 40 reactional and non-reactional MB leprosy patients
identified components of neutral lipids in the leprosum clot
highly enriched in fibrin, inter-α-trypsin inhibitor family
heavy chain-related protein (IHRP), and the complement
components C3 and C4 (204). Among these components, plasma
fibrinogen levels were increased in patients developing ENL;
thus, demonstrating its potential as a predictive biomarker of
ENL (204).

Host Genetics
Several host genetic polymorphisms have also been identified
as risk or protective factors for ENL. In a study in Bangladesh,
a non-synonymous polymorphism of TLR1, rs4833095, which
causes a substitution of asparagine to serine (N248S) in the
external recognition site, was identified as protective against
ENL (205). MBL is involved in pathogen recognition and
clearance by the innate immune response (206). MBL activates
the complement pathway by co-opting MBL-associated serine
proteases (MASPs) (207), cleaving the complement proteins C2
and C4 and inducing opsonization (207). Alleles of the C4B gene
are also associated with LL and ENL susceptibility (148). Natural
resistance-associatedmacrophage protein 1 (NRAMP1)mediates
the transportation of divalent metals (208), and an exon 3’UTR
SNP 274C/T in its encoding gene (SLC11A1) is associated with
LRs. In a Brazilian study, the presence of the “C” allele on this
SNP was a risk factor for T1R and protective against ENL (209).
Nucleotide-binding oligomerization domain-containing protein
2 (NOD-2) recognizes bacterial molecules and stimulates an
immune response (210). SNPs in the NOD-2 gene are strongly
associated with LRs (211). Together, these findings support a role
for innate immunity in ENL pathogenesis.

PROSPECTIVE

Potential biomarkers, including genetic, serological,
metabolomic, and transcriptomic correlates, for LRs (Table 1)
have been continuously proposed as scientists unravel the
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TABLE 1 | Correlates in T1R and ENL.

Correlates T1R ENL

Host genetic correlates

TLR1 (57, 205) + +

TLR2 (53–55) +

TLR4 (54, 56) +

TNFSF15-TNFSF8 (72, 73) +

LRRK2 (74) +

VDR (83) + +

IL-6 (178) +

C4B (148) +

NRAMP-1 (209) + +

NOD-2 (211) + +

Circulating proteomic correlates

TNF-α (65, 173) + +

IFN-γ (65, 173) + +

IL-1β (65, 177) + +

IL-6 (67) + +

neopterin (77) +

CXCL-10/IP (67, 87–89) +

γδ T cells ratio (105) + +

IL-10 (65, 110) + +

CRP (117, 196, 197) + +

iC3b (115) +

LTB4 (98, 124) +

PGD2 (125) +

PGE2 (98, 125) +

RvD1 (98, 125) +

C1q (134, 147) + +

Immune complex against PGL-1 and MCP (15) +

NLR (212) +

CD64/FcγRI (157, 158) +

IL-10R1 (160) +

CD4: CD8 ratio (166, 167) +

IL-7 (67) +

CCL-11 (67) +

Anti-LAM (193) +

anti-LID-1 (188, 191, 192) +

PTX-3 (195) +

SAA (196) +

AGP (198) +

Fibrinogen (204) +

Proteomic correlates in skin and nerve tissues

TNF-α (69–71, 185) + +

iNOS (63) + +

TGF-β (71, 99) + +

CXCL-10/IP (87) +

CCL-5/RANTES and MCP-1 (90) +

COX-2 (93) +

VEGF and KDR (94) +

IL-17A (99) + +

IL-17F (97) +

γδ T cells ratio (104) +

(Continued)

TABLE 1 | Continued

Correlates T1R ENL

11β-HSD2 (119) +

e-selectin (153) +

CD64/FcγRI (157, 158) +

IL-10R1 (160) +

CD4:CD8 ratio (166, 167) +

MMP-9 (185) +

Host transcriptomic correlates

IL-26 (101) +

IL-10 (110) +

VEGF (110) +

IFN-inducible genes (OAS1/2, GBP1/5, IFI44,

IFI44L, IFIT5, IFIH1) (110)

+

Cytotoxic T cell response-associated genes (GNLY,

GZMA/B, PRF1) (110)

+

Treg-associated genes (FOXP3, LAG3) (110) +

A 44 gene signature (135) +

C1q (134) + +

CCL-2, CCL-3, and CCL-5 (134) +

Urinary metabolic signatures (133) +

Correlates found in T1R and ENL, including genetic, serological, metabolomic, and

transcriptomic factors. (): reference No.; +: implicated. Comparative more important

correlates are bolded.

mystery of LR pathogenesis, which appears to be jointly
determined by pro- and anti-inflammatory host immune
responses. However, conflicting data among studies are
common, possibly due to the low number of new leprosy
cases, inappropriate controls, significant patient heterogeneity,
inconsistent sampling, and various research methods. Therefore,
future studies may better focus on biomarker signatures
that contain multiple correlates (e.g., the ratio between pro-
and anti-inflammatory cytokines, gene transcripts, and cell
numbers). Such biomarker signatures should be more reliable
than monitoring the absolute levels of a single correlate. For
establishment of host genetic biomarkers, genotype profiling and
relevant GWAS data may be used to calculate the polygenic risk
score to estimate a patient’s liability to LRs. Also, interdisciplinary
research of medicine, bioinformatics, and mathematics would
merit the construction of tangible algorithms for referring those
proposed biomarkers, which should be as practical as possible.
Furthermore, for serum and tissue biomarkers, future studies
should better compare both inter-individual and intra-individual
longitudinal levels, as some biomarkers may vary considerably
inter-individually, and the latter may be useful to monitor
and customize treatments. As many studies suffered from
low number of new leprosy cases, multi-national cooperation
and multi-center joint research is needed to overcome the
limitation. Finally, since areas hyperendemic for leprosy are
mostly seen in less-developed countries, the development of
biomarkers suitable for field-friendly diagnostic tools and
telemedicine should be prioritized, which would require
collaborative development of medicine, engineering materials
science, and communication engineering. In near future, cell
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phone applications using artificial intelligence to help recognize
leprosy and LRs skin based on images uploaded by patients may
even become available.
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