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The hedgehog pathway in
hematopoiesis and
hematological malignancy

Tucker Lemos and Akil Merchant*

Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles,
CA, United States
The Hedgehog (HH) pathway is a promising therapeutic target in hematological

malignancies. Activation of the pathway has been tied to greater chances of

relapse and poorer outcomes in several hematological malignancies and

inhibiting the pathway has improved outcomes in several clinical trials. One

inhibitor targeting the pathway via the protein Smoothened (SMO), glasdegib,

has been approved by the FDA for use with a low dose cytarabine regiment in

some high-risk acute myeloid leukemia patients (AML). If further clinical trials in

glasdegib produce positive results, there may soon be more general use of HH

inhibitors in the treatment of hematological malignancies.While there is clinical

evidence that HH inhibitors may improve outcomes and help prevent relapse, a

full understanding of any mechanism of action remains elusive. The bulk of

AML cells exhibit primary resistance to SMO inhibition (SMOi), leading some to

hypothesize that that clinical activity of SMOi is mediated through modulation

of self-renewal and chemoresistance in rare cancer stem cells (CSC). Direct

evidence that CSC are being targeted in patients by SMOi has proven difficult to

produce, and here we present data to support the alternative hypothesis that

suggests the clinical benefit observed with SMOi is being mediated through

stromal cells in the tumor microenvironment.This paper’s aims are to review

the history of the HH pathway in hematopoiesis and hematological malignancy,

to highlight the pre-clinical and clinical evidence for its use a therapeutic target,

and to explore the evidence for stromal activation of the pathway acting to

protect CSCs and enable self-renewal of AML and other diseases. Finally, we

highlight gaps in the current data and present hypotheses for new

research directions.
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Introduction

The Hedgehog pathway was originally described by

Nüsslein-Volhard and Wieschaus in reference to a mutant

drosophila phenotype that produced a spiky embryo (1). It is

one of several critical embryonic body patterning pathways and

its role in development has been extensively studied and

characterized since its original discovery. Its expression is

limited in most healthy adult tissues.

The oncological relevance of the pathway was independently

realized by Kinzler et al. when they discovered a gene that had a

fifty-fold amplification in some human gliomas (2). It was later

discovered that this Glioma-associated oncogene family (GLI1,

GLI2, and GLI3) was the mammalian homolog for the HH-

responsive transcription factor cubitus interuptus (Ci) (3, 4).

The link between aberrant activation of the pathway and

tumorigenesis is not limited to gliomas; it has been

implicated in many cancers including basal cell carcinoma,

breast cancer, gastric cancer, pancreatic cancer, and various

hematological malignancies (5–7). This paper will be limited

to the last of these, but for a review of the HH pathway in

cancer generally see Skoda et al., 2018 and Scales and de

Sauvage 2009 (8, 9).
Canonical hedgehog signaling

A simplified schema of the activation of the Hedgehog

signaling pathway (see Figure 1) principally focuses on four

families of proteins: the Hedgehog ligands, the transmembrane

protein Patched (PTCH), the transmembrane protein

Smoothened (SMO), and the Gli family of transcription

factors (Gli1, Gli2, Gli3) (8).
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There are three different HH ligands, Indian hedgehog

(IHH) which is expressed in early hematopoietic tissues (10)

and has a role in modulating chondrocyte development (11),

Desert hedgehog (DHH) which regulates development of the

peripheral nerves (12) and is essential to spermatogenesis (13),

and Sonic hedgehog (SHH). SHH is the most widely expressed

and best studied of the HH ligands, being involved in embryonic

body patterning.

In the absence of the ligand, PTCH is localized to the base of

the primary cilium (PC), where it inhibits SMO activity, likely by

preventing SMO modification via cholesterol (14, 15). We have

shown that human blood and bone marrow cells have primary

cilia and mediate hedgehog signaling (16). The canonical

activation of the signaling cascade is caused by the binding of

a HH ligand to PTCH (17, 18) upon which both are internalized,

and SMO moves from vesicles in the cytosol to the PC (19–21),

joining the other members of the pathway: the GLI family and

the machinery responsible for processing it (22). The

translocation of SMO modulates the post-translational

processing of GLI2 and GLI3 in the PC: allowing GLI2 to act

as an activator and preventing GLI3 from being processed into

its strong repressor form (23, 24). Another protein, Suppressor

of Fused (SUFU), which normally acts to inhibit GLI activators

and sequester them in the cytosol (25–27), allows them to travel

to the nucleus, where they upregulate PTCH and GLI1 (28),

creating both positive and negative feedback loops to tightly

control the downstream signal. The activator forms of GLI1 and

GLI2 set off a signaling cascade, reaching downstream targets

such as MYCN (29), BCL-2 (30) and VEGF-A (31), many of

which are associated with oncogenesis.

Further complexity in transducing this signal comes from its

significant overlap and crosstalk with other developmental

pathways, especially WNT and NOTCH (32).
BA

FIGURE 1

A representation of the canonical HH signaling in the presence and absence of a HH ligand. (A) With the ligands absent, PTCH prevents SMO
from translocating to the primary cilium. In the absence of SMO, the full-length forms of GLI2 and GLI3 are phosphorylated by PKA, and then
processed into their repressor forms, which inhibit downstream transcription. (B) When ligands are present, they are bound by PTCH and both
are internalized and degraded. This allows the translocation of SMO to the tip of the primary cilium, where it processes the full-length forms of
the GLI proteins into their activator forms, which then promote transcription of downstream targets in the nucleus. Created in BioRender.
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Modes of HH signaling

The HH pathway has been shown to regulate proliferation,

apoptosis, and angiogenesis, therefore it is not surprising that

activation of HH signaling is a common factor in many cancers.

Signaling in this context can be broken up into four types, based

on the activity of the Hh ligand (see Figure 2), though these types

are not necessarily mutually exclusive.
Type I –ligand independent

Type I signaling occurs when the pathway is constitutively

active without regard to the presence or absence of a HH ligand.

This is often caused by loss of function mutations in the PTCH

gene that produce a protein unable to prevent SMO from

activating the pathway, as first demonstrated by patients with

nevoid basal cell carcinoma syndrome, or Gorlin syndrome (33).

These individuals carry an ineffective copy of the PTCH gene

and are at an elevated risk of developing various tumors,

especially basal cell carcinomas (BCCs) (34, 35). Alternatively,

activating mutations in SMO are often found in spontaneous

BCC, and rarely in other tumor types (36–38).

Constitutional activation can also be effected by mutations to

other elements of the signaling pathway, such as gain of function

mutations inSMOthatcounteract inhibitionbyPTCHdemonstrated

in sporadicBCCs (36), loss of theGLI3 suppressor viamethylation in

AML (39) and inactivation of SUFU inmedulloblastoma (40).
Type II – autocrine/juxtacrine

Type II signaling occurs when the pathway is activated by

ligands that are produced by the tumor cell itself, or by other

nearby tumor cells. This self-targeted increase in HH expression

has been observed in a variety of tumors, including but not

limited to those of the digestive tract, brain, and lung (41–45).
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Type IIIa – paracrine

Type III signaling occurs when the pathway is activated by

ligands produced by other, functionally distinct cells. Type IIIa

refers specifically to tumor cells producing ligands to induce HH

signaling in non-malignant cells. This was first demonstrated in

epithelial tumor cells that produced HH ligands but relied on the

pathway being activated in nearby stromal cells rather than

binding the ligands themselves (46–48). The stromal cells, upon

binding HH, upregulate other signaling factors such as insulin-

like growth factor (IGF) and Wnt (46), which can stimulate

tumor growth both directly and by creating a tumor

promoting microenvironment.

Type IIIa signaling has also been demonstrated to act in a

tumor-suppressing manner in some solid cancers, further

complicating our understanding of this pathway (49).
Type IIIb – reverse paracrine

Type IIIb signaling refers to paracrine signaling that occurs

in a reverse manner, with stromal cells stimulating tumor growth

through secretion of HH ligands, which activate the pathway in

tumor cells. This signaling pattern has been demonstrated most

clearly in B-cell malignancies (50, 51) and multiple myeloma

(52). Though this mode of signaling has been almost exclusively

tied to hematological malignancies, there is evidence of stroma-

produced HH ligands in some gliomas (53).
Signaling in cancer stem cells

Hedgehog signaling in cancer stem cells is of particular

interest and may employ any of the modes discussed above.

CSCs have been implicated as an important part of
B C DA

FIGURE 2

An illustration of the types of aberrant HH signaling. (A) In type I signaling, the Hh pathway is active despite the absence of the Hh ligand. (B) In
type II or autocrine signaling tumor cells both produce and bind the ligands. (C) In type IIIa or paracrine signaling tumor cells produce ligands
that activate HH signaling in the stroma, which in turn produces a more favorable niche for the tumor cells or cancer stem cells. (D) In type IIIb
or reverse paracrine signaling the stroma produce ligands to activate HH signaling in the tumor cells. Created in BioRender.
frontiersin.org
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understanding the response of various cancers to therapy. CSCs

are a subset of slowly dividing cells that exist within a tumor that

can proliferate, differentiate and reconstitute a heterogenous

tumor (54). They are resistant to conventional chemotherapy

due to their relatively slow growth and have been consistently

implicated as a cause of relapse in many difficult to treat tumors.

CSCs have been shown to be supported and maintained by HH

signaling in a variety of tumors, such as CML (55), MM (52) and

AML (56, 57). In some cases autocrine signaling between

differentiated tumor cells and cancer stem cells has been

demonstrated while in other cases paracrine signaling between

cancer stem cells and the tumor microenvironment has been

implicated. For a thorough review of the role of HH signaling in

CSCs, see Cochrane et al., 2015 (54).
A possible requirement for stromal
HH signaling in normal and
malignant hematopoiesis

Conflicting data for the role of HH in
normal hematopoiesis

Before exploring the HH pathway in hematologic

malignancies it is helpful to understand what is known about

the HH signaling in normal hematopoiesis.

Early studies showed increased hematopoietic stem cell

(HSC) proliferation when SHH was added in vitro (58). A role

for HH signaling in HSC differentiation was further supported

by studies in zebrafish models (59).

The strongest evidence of the HH pathway’s role in HSC

renewal comes from mouse models. Trowbridge et. al., found

that mice hemizygous for Ptch (increasing HH pathway activity)

had significantly increased numbers of HSC progenitor cells and,

further, the prolonged HH signaling could exhaust the ability of

HSCs to self-renew (60). Our group has shown that loss of Gli1

transcription factor is associated with decreased cell cycling of

HSC and delayed recovery of myelopoiesis after radiation or

chemotherapy. These mice had no loss of steady state bone

marrow chimerism in transplantation experiments,

demonstrating that Gli1 is likely only required for the burst of

proliferation required during stress hematopoiesis (61).

While studies of Ptch and Gli1 suggest an important role of

HH signaling in hematopoiesis, gene deletion studies of Smo, the

central hub of hedgehog signaling, have been less clear. Dierks

et al. reported that mice fetal liver cells lacking one or both

copies of Smo were unable to retain their in vitro colony-forming

potential in replating experiments, while cells hemizygous for

Ptch were far more successful than the wildtype in forming

colonies after being replated (62). In transplantation

experiments, they showed that loss of Smo delayed

engraftment kinetics, however, long-term, steady-state
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hematopoiesis does not require Smo, as no difference was

observed between the number of HSCs, B-cells, or other cell

types in mice transplanted with Smo knockout fetal liver HSCs

(62). In contrast, Zhao et al. used conditional Smo knockout

mice crossed with Vav-Cre mice, which results in conditional

knockout of a Smo in the HSC compartment, to show that mice

with Smo deficient HSCs had significantly lower rates of blood

reconstitution after transplantation, demonstrating a

requirement of Smo for HSC renewal (55). Hofmann et al. and

Gao et al. both independently found that, using the same

conditional Smo allele, this time crossed with an inducible

Mx-1-Cre strain, Smo was dispensable for normal

hematopoietic function (63, 64). Studies with human HSCs

found no reduction in differentiation capacity with inhibiting

Smo, both in vitro with human HSCs and in vivo with the

hematopoietic compartments of mice transplanted with HSCs

from human cord blood (65).

We have hypothesized that these seemingly contradictory

results may be due to different patterns of Cre expression in Vav-

Cre and Mx-1-Cre models (66). While both systems are active in

the primitive stem cell compartment, Vav-cre shows additional

activity in bone marrow stroma and endothelial precursors. An

in-depth review of the various HSC-targeting Cre systems can be

found in Joseph et al., 2016 (67). The differences in the two

models are demonstrated in the similarly difficult issue of

determining the role of Wnt/b-catenin signaling in HSCs,

where the Vav-Cre model also indicated a requirement for b-
catenin for normal HSC function and the Mx-1-Cre model

revealed that it was dispensable (68). Therefore, a HSC

extrinsic requirement for Hedgehog and Wnt signaling

pathways in bone marrow stroma, but not intrinsic to HSCs

themselves could explain this discrepancy.
Evidence for stromal signaling

We propose that, rather than targeting the bulk tumor,

glasdegib and other Smo inhibitors are instead acting on

stromal cells that promote tumor growth and reconstitution

through maintenance of a hospitable niche.

In preclinical models, Smo inhibitors are not directly

cytotoxic, but seem to reduce proliferation and self-renewal

(55, 60, 69). This is borne out in clinical trials, where the

addition of glasdegib to chemotherapy did not improve CR

rates. Rather, the effects of glasdegib appear to increase the

overall survival (OS) of patients by reducing relapse. One

plausible mechanism for this observation is that glasdegib is

targeting the leukemic stem cells that mediate relapse. However,

direct evidence that SMO inhibitors act on CSC in a cell

autonomous fashion are lacking. Meanwhile, evidence from

animal vav-Cre models discussed above suggest that loss of

Smo in the stroma leads to a loss of HSC self-renewal. This
frontiersin.org
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suggests the possibility that Smo inhibitors could act on the bone

marrow stroma and thus modulate CSC self-renewal.

Indeed, evidence for such a mechanism can be found in

studies on the interaction of HH and retinoid signaling in

multiple myeloma. In an elegant series of studies Ghiaur et al.

were able to show that stromal production of the enzyme CYP26

can inactivate retinoic acid signaling, preventing differentiation

and functionally expanding HSC self-renewal capacity (70).

They further demonstrated that stromal production of CYP26

dependent on Smo activity. In a follow up study using a mouse

model there were able to show that stroma-specific knockout of

Smo sensitizes otherwise refractory multiple myeloma to

bortezomib (71).
Preclinical data supporting the HH
pathway as a therapeutic target in
hematologic malignancies

As HH is a common driver of tumorigenesis and chemo-

resistance, inhibition of the pathway presents a clear target for

therapy. HH components have been found to be aberrantly

activated in a variety of hematological malignancies, and further,

can often be implicated as markers of a poor prognosis in

patients, in AML (57, 69) and in CML (65). In this section we

summarize the preclinical studies in several tumor types that

have demonstrated potential clinical applications of

HH inhibitors.
Chronic myeloid leukemia

Chronic myeloid leukemia (CML) is a hematological

malignancy that results when HSCs acquire the fusion

oncogene BCR-ABL, leading to constitutive activation of the

ABL tyrosine kinase. The advent of tyrosine kinase inhibitor

(TKI) therapy has dramatically improved the prognosis of this

disease; the treatment is able to consistently effect cytogenic and

molecular level responses in early chronic-phase patients (72).

CML is often used as an exemplar of a CSC-driven cancer and

until recently TKI therapy was considered a lifelong requirement

due to CSC-driven reconstitution of the disease upon the end of

the treatment (73, 74). Although, recent evidence and practice

has moved towards ending TKI therapy in select patients who

have achieved deep-molecular responses, only half of these

patients maintain their response after discontinuing TKI

therapy and many never achieve the deep responses needed to

attempt discontinuation (75). Therefore, for these patients or

those who develop TKI resistant mutations, further treatment

options are needed. One of these candidates has been HH

inhibitors, as the pathway has been shown to be aberrantly

activated in CML patients. There is increased expression of the
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pathway in progenitor cells, which becomes more pronounced as

the disease progresses (55, 62, 65).

In vitro and in vivo experiments have returned promising

results with HH inhibitors, with treatments reducing the

proliferative and self-renewal capacity of CML cells.

Dierks et al. used a viral transgenic model of BCR-ABL in

murine bone marrow to show that treatment with cyclopamine,

a SMO inhibitor, caused a significant decrease in colony-forming

potential and a reduction of the percentage of BCL-ABL+

myeloid progenitors (62). Using the same model, Zhao et al.

demonstrate that cells with elevated levels of Numb, a cell

determinant that is upregulated in SMO knockout cells, have

reduced colony-forming potential. They show that treatment

with a SMO inhibitor can reduce the colony number in murine

models, in primary human CML, and in the imatinib-resistant

T315I mutant of the disease (55).

Glasdegib, vismodegib and sonidegib, three SMO inhibitors,

have all been found to significantly decreased progenitors in

samples from blast crisis patients and chronic phase patients,

while having no significant effect on the colony-forming

potential of normal cord blood samples (65, 69). SMOi effect

against CML is thought to be mediated, it part, through

preventing hedgehog mediated quiescence of cancer stem cells.

Transduction of progenitors with an inactive version of GLI2 led

to abrogated cell-cycle dormancy, indicating that the pathway

may be integral to maintaining this mechanism of

chemoresistance (65).

In mice models, downregulation of the pathway through

either inhibition or knockout of Smo increases survival, even in

some TKI-resistant forms of the disease. Meanwhile, constitutive

activation of Smo via the SmoM2 mutant allele, survival time

significantly decreased when compared to control mice (55, 76).

Transplant experiments with BCR-ABL+ Smo -/- fetal liver cells

have shown that Smo was required for reconstitution of CML

CSCs and thereby of the disease (62). Smo inhibition via either

glasdegib or sonidegib, combined with TKI therapy drastically

reduces engraftment and preventing serial transplantation,

implying that Smo inhibition could potentially be combined

with TKI to enhance their therapeutic activity (65, 69).

Taken together, these studies have formed a rationale for

trials combining SMO inhibitors with TKI therapy, both as a

treatment option in rare forms of TKI-resistant forms of the

disease and to increase rates of complete eradication of

the disease.
Acute myeloid leukemia

Acute myeloid leukemia (AML) has been one of the most

promising targets of HH inhibition therapy, either with Smo

inhibitors or with further downstream inhibitors of GLI1 and

GLI2 activators.
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High level activation of HH signaling is found in a subset of

AML patients, is associated with progression of myelodysplastic

syndrome (MDS) to AML, and with reduced rates of overall

survival of AML patients (57, 77–79). The SMOi glasdegib

achieved FDA approval based on a Phase 2 clinical trial and a

review of pre-clinical data can help illuminate potential

mechanisms of action for this observed benefit. Potential

therapeutic mechanisms of HH inhibitors include down-

regulation of pro-survival or apoptotic pathways, loss of CSC

dormancy, or modulation of chemo-resistance.

The most straightforward mechanism is the pathway’s

ability to regulate cell survival and apoptosis through

downstream targets such as AKT. HL-60/RX, a radiation-

resistant form of the AML model HL-60 cell-line, had elevated

expression of GLI-1 and SMO compared to normal HL-60 cells

(80). Inhibition of the pathway using a Smo inhibitor

(sonidegib), sensitized the HL-60/RX to radiation. In addition,

inhibiting Smo reduced expression of elements in the PI-3K/

AKT pathway, downregulating apoptosis (81) and has been

linked to aberrant activation of HH signaling in other cancers

(82). These results are supported by RNA-seq data, which shows

that relapsed/refractory AML patients are associated with higher

expression of GLI1 and PI3K (56).

Another area where malignant HH signaling could enhance

tumor chemoresistance is through the maintenance of malignant

progenitor populations in dormancy. As chemotherapy is cell

cycle selective, the slowed division of CSCs allows them to

survive treatment, after which they can reconstitute the disease

(83). Direct evidence connecting this effect to HH signaling is

evident in AML, where cells treated with SMO inhibition

(glasdegib) showed significantly fewer dormant CD45+ cells

and were sensitized to Ara-C treatment (84).

HH signaling can also effect drug resistance to both cytotoxic

and targeted chemotherapy via glucuronidation of the

therapeutic molecules. Zahreddine et al., 2014, observed

increased GLI1 levels upon relapse of patients (85). Other

studies have found that patients with increased evidence of

HH activity showed greater resistance to Ara-C and to the

anti-viral drug ribavirin, which is being clinically evaluated as

a therapy targeting the oncogenic eukaryotic translation

initiation factor eIF4E (86). In GLI1-elevated patients, there

was a decrease of ribvarin-bound eIF4E that could be reversed

upon Smo inhibition. Further, GLI1 knockdown reduced levels

of UGT1A, a drug- glucuronidating enzyme, and mass-spec

analysis revealed that both Ara-C and ribavirin were

glucuronidated in drug-resistant cells. Both the resistance and

glucuronidation were reversed upon SMOi (85). In stabilizing

UGT1A, GLI1 activation can be directly tied to drug-resistance

via glucuronidation.

The FLT3 internal tandem duplication mutation (FLT3-

ITD) appears in 25% of cases of AML and has a significant
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negative prognostic impact (87, 88). FLT3-ITD patient samples

and cell lines have increased expression of GLI2, and FLT3-ITD

transgenic mice show rapid progression frommyeloproliferation

to acute leukemia when crossed with SmoM2 transgenic mice

that have constitutive HH activation (89). These data suggest

that FLT3 and HH signaling can cooperate to drive leukemic

progression, although the precise mechanisms of interaction

between these pathways have not been worked out (89).

Complicating matters further, several recent papers have

shown varied mechanisms of SMO-independent upregulation of

GLI activators, all of which are inherently resistant to SMO

inhibition. GLI1 upregulation has been shown to be integrated

with PI3K independent of SMO (90). We have reported on

SMO-independent activation of the pathway caused by loss of

GLI3 expression associated with hypermethylation of the GLI3

locus. This leads to loss of GLI3R transcriptional repression and

unopposed HH target activation through GLI1 and GLI2 (39).

Further work has found that primary AML cells from some

patients with high GLI1 expression will have reduced

proliferation and self-renewal capacity when treated with the

GLI1 and GLI2 inhibitor GANT61 but not when treated with

SMOi (57). These data suggest that SMOi alone may not be

adequate to target HH activation in AML and that direct GLI

inhibitors may be required.
Chronic lymphocytic leukemia and acute
lymphoblastic leukemia

While myeloid malignancies have been the main target of

investigation for HH inhibition therapies, there is also preclinical

evidence that patients diagnosed with lymphoid leukemias may

also find clinical benefit in inhibition of this pathway.

As in AML and CML, both acute and chronic lymphoid

leukemias seem to respond to HH inhibitors. In B-cell ALL,

cancer stem cells that were treated with a Smo inhibitor showed

decreased self-renewal potential (91), a result mirrored by the subset

of GLI1 rich T-cells when they were treated with either a GLI or

SMO inhibitor (92). In T-ALL specifically, there is evidence that

inactivating mutations of PTCH speed progression of NOTCH-

induced disease, and restoration of WT PTCH activity can induce

apoptosis in PTCH mutant T-ALL cells in vitro.

In B-cell chronic lymphoblastic leukemia (CLL), HH

activation increases proliferation and resistance of CLL cells

and is associated with progression of the disease (93, 94). As in

other malignancies, GLI1 upregulation is tied to a worse

prognosis and predicts response of cells to HH inhibition (95,

96). Inhibition of HH signaling via SMOi can sensitize GLI1

positive B-CLL cells to chemotherapy and induce higher rates of

apoptosis (95). However, many cases show primary resistance to

SMOi (96), in which case a response requires alternative
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therapies, such as targeting downstream of SMO with GANT61

(93, 94, 97).

As in AML, finding different ways to target the HH pathway

should be considered to properly account for tumors resistant to

SMO inhibition. This could be in the form of new Smo inhibitors

that can be effective against resistant mutants of the protein or in

pursuing direct inhibitors of GLI activators such as GANT61.
Clinical data

The wealth of preclinical data on normal and aberrant HH

signaling has guided our interpretation of clinical trials of HH

inhibitors. The first FDA-approved HH inhibitor was the SMO

inhibitor GDC-0449 (vismodegib, Genentech) for use in

relapsed or advanced basal cell carcinomas (BCCs) in 2012

(109). Approval of vismodegib has since been followed by

FDA approval of LDE-225 (sonidegib, Novartis) for advanced

BCCs in 2015 (110).

Within the scope of hematological malignancies, PF-

04449913 (glasdegib, Pfizer) is currently the only FDA-approved

HH inhibitor. In 2018, glasdegib was approved for use in newly

diagnosed cases of acute myeloid leukemia in combination with

low dose cytarabine (LDAC) for patients that are not candidates

for intensive induction chemotherapy (111).

Several SMO inhibitors have been tested in clinical trials for

hematological malignancies, as summarized in Table 1.

Vismodegib clinical trials have been run in myelofibrosis,

multiple myeloma, and select lymphatic malignancies, but none

of them demonstrated the efficacy required to encourage further

study. An early phase 1 trial of Sonidegib combined with AZA in

various myeloid malignancies, (NCT02129101) did not see

decreased remission rates (108). However, especially in AML

patients, the trial found increases in both OS and rates of SD. A

later phase II trial was stopped early due to lack of efficacy

(NCT01826214). Two other SMO inhibitors IPI-926 (Sardegib)

and BMS-833923 were studied in myelofibrosis and CML,

respectively. Sardegib treatment of myelofibrosis patients did

show modest clinical activity, however it failed to reach pre-

specified endpoints for clinical efficacy. Specifically, several

patients had reductions in spleen size and/or GLI1 levels in the

BM. (NCT01371617) (106). BMS-833923 was added to dasatinib

in CML with the intention of reducing self-renewal capacity of

CML stem cells. The study showed some efficacy, with 3 out of 10

dasatinib-resistant chronic phase CML patients demonstrating

clinical benefit with one patient achieving a complete cytogenetic

response. However, the addition of BMS-833923 did not seem to

affect the potential for self-renewal as measured by colony forming

culture assays, in contrast to in vitro study (70) and there was no

observed clinical response in advanced CML patients or ALL

patients. (NCT01218477) (104).
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Glasdegib phase I trials

Glasdegib is an oral, selective HH inhibitor that binds SMO

(112) Clinical trials have been limited to the study of its effect of

myeloid malignancies: Japanese phase I NCT 02038777 (99), US

and Europe phase I NCT 00953758 (98) and a study in

myelofibrosis (NCT 02226172)

The Japanese trial tested doses of 25, 50, and 100mg. In the

AML group (n=7), there was 1 complete remission and four

patients who achieved stable disease; in the MDS group there

was one marrow complete remission and two patients who

achieved stable disease. Further, GLI1 was found to be

significantly downregulated in patients who were in the 50 or

100mg treatment group (99).

These results are mirrored in the American and Italian trial,

which tested for doses ranging from 5 to 600mg. In the AML

group (n=28), 16 showed some possible biological activity: 1

patient had complete remission, four had partial remission, four

had a minor response, and seven achieved stable disease. 3 of 6

MDS patients achieved stable disease, with two of those showing

hematological improvement, 2 of 7 myelofibrosis patients

demonstrated some clinical improvement and the one enrolled

CMML patient also achieved stable disease. One patient out of

five with CML achieved a partial cytogenetic response (98).

Martinelli et al. found a maximum tolerated dose of 400mg daily,

however 100mg was suggested as the phase 2 dose based on

tolerability and target inhibition (98).
Bright Aml 1003

BRIGHT AML 1003 (NCT 01546038) examined the use of

Glasdegib in various combinations for AML or high-risk MDS.

The Phase Ib/II study, tested glasdegib 100mg in combination

with standard “7+3” induction chemotherapy (ICT) for fit

patients and glasdegib in combination with LDAC for unfit

patients unable to tolerate high dose chemotherapy.

For fit patients, the 1003 study was a single arm, phase II of

glasdegib 100mg daily plus ICT with CR rate as the primary

endpoint (102). Although the trial failed to meet the prespecified

CR rate, relapse rates and overall survival (OS) was significantly

improved in risk groups when compared to expected outcomes

by European LeukemiaNet category (113). This pattern of

decreased relapse rate without an effect on CR is characteristic

of a CSC targeting agent, as one would expect a drug targeting

CSCs to not affect the bulk tumor, but rather to inhibit the

surviving CSCs ability to self-renew and reconstitute the disease.

Patients ineligible for intensive induction therapy on the

1003 study were randomized to LDAC alone or LDAC in

combination with glasdegib in an open label design. CR rates

and survival at one year was significantly increased in the

glasdegib combination, with acceptably low toxicity (102).
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TABLE 1 List of clinical trials of SMO inhibitors in hematological malignancies (from clinical trials.gov).

Trial ID Phase Disease HH
agent

N Outcome
measure

Treatments Outcomes Publication
or Status

NCT 953758 I AML Glasdegib 47 First cycle DLT 5, 10, 20, 40 and 80,
120, 180, 270, 400, 600
mg/day

DLT determined: MTD 400mg/day (98)

NCT 2038777 I AML Glasdegib 49* First cycle DLT 25, 50 and IOOmg/day No DLT (99)

NCT 1546038 Ib AML Glasdegib 52 MTD and RP2D A: w/ LDAC, B: w/
decitabine, C: w/ICT
(induction chemo)

A+B: No DLT, C: Grade 4
polyneuropathy DLT. RP2D: IOOmg/
day

(100)

NCT 3390296 lb/II AML Glasdegib 138' AE and CRc Drug combinations: PF-
04518600, Avelumab,
AZA, Utomilumab, GO,
Glasdegib

None yet Estimated
completion
date: December
29, 2024

NCT 1546038 II AML Glasdegib 71 CR w/ analysis
defined as deaths
in at least 40 of 60
patients >55yo

IOOmg/day w/ DNR
and Ara-C

CR in 46.4% of 69 patients. In >55yo,
40.0%

(101)

NCT 1546038 II AML Glasdegib 132 OS IOOmg/day w/ LDAC
N=84 (or just LDAC
N=41)

Median OS: w/o 4.9 mo, w/ 8.8mo (102)

NCT 1841333 II AML Glasdegib 31 Relapse-free
survival, Remission
duration, OS, AE

After Autologous
transplantation:
IOOmg/d

Relapse free survival: 142 days (28–336),
Remission duration: 333 (87–787) days,
28/31 experienced an AE, OS over I year
was 20/31 (64.5%)

Completed
April 2020

NCT04051996 II AML Glasdegib 46* CR, OS, EFS IOOmg/day after DAC
for either 5 or 10 days

None yet Terminated due
to COVID-19
enrollment
issues.

NCT 3226418 II AML Glasdegib 75* CR, all patients
>60yo

A: no Glasdegib; Ara-C
and Idarubicin. B:
Decitabine, Venetoclax,
and Glasedegib

None yet Est Comp: July
7, 2023

NCT 4093505 III AML Glasdegib 252* MRD Negativity
and EFS

2x2 study, 2 GO
schedules; w/(o)
Glasdegib 100mg/day

None yet Estimated
completion
date: March 1,
2024

NCT 4168502 III AML Glasdegib 414* MRD Negativity
and DFS

After Autologous
transplantation: Ara -C,
DNR, and GO; w/(o)
Glasdegib 100mg/d

None yet Estimated
completion
date: October 1,
2026

NCT
03416179

III AML Glasdegib 720* OS Double Blind: w/ Ara-C
and DNR

OS: Glasdegib 17.3 (15.2-18.5) months I
Placebo 20.4 (17.6-NA) (too few events
to give upper limit of 95% CI)

Completed
January 24,
2022

NCT
03416179

III AML Glasdegib 720* OS Double Blind: w/ AZA OS: Glasdegib 10.3 (7.7-12.4) months |
Placebo 10.6 (8.4-13.3)

Completed
January 24,
2022

NCT
02367456

Ib AML and
MDS

Glasdegib 73 CR and OS Open label: 100mg/day
w/ AZA

AML (n=30): CR in (6) 20.0%; OS at
6mo= (21) 70.0% MDS (n=30): CR in
(5) 16.7%; OS at 6mo= 78.9%

(103)

NCT
01826214

II AML or
ALL

Sonidegib 70 OR 400 or 800 mg/d Unclear if the data is not in yet or if
only 1 patient (in the 400mg group) had
a CRi and nothing else happened.

Completed May
2015

NCT04231851 II AML w/
MDS

Glasdegib 30 EFS 100mg/day after CPX-
351 (Ara-C + DNR)

None yet Estimated
completion
date: September
30, 2022

NCT
01944943

II B-Cell
Lymphoma
or CLL

Vismodegib 31 OR, PFS, OS 150 mg/d Terminated early due to lack of efficacy Terminated
October 2014

(Continued)
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FDA approval was made largely based upon these data (111). A

major weakness of this trial, however, was the open label design

which may have contributed to the significantly shorter

treatment duration for LDAC alone patients and could

confound the results. More importantly, extremely favorable

r e sponse ra t e s to vene toc l ax combina t ions wi th

hypomethylating agents in similar, unfit AML patient

populations have limited clinical enthusiasm for the LDAC

+glasdegib combination.
Glasdegib phase III and in-progress trials

There are currently three large phase III trials recently

reported or in progress. BRIGHT AML 1019 (NCT 03416179)

is a global randomized double-blinded placebo control trial of

glasdegib in combination with standard therapy for front line

AML. Fit patients eligible for induction chemotherapy are
Frontiers in Oncology 09
offered cytarabine and daunorubicin (7 + 3) plus glasdegib or

placebo. Unfit patients are treated with azacitidine and glasdegib

or placebo. Neither arm hit their primary overall survival

endpoint. However, detailed subgroup analysis from this large

phase III study has not yet been presented.

Two trials examine glasdegib in combination with

gemtuzumab ozogamicin (GO), an antibody-drug conjugate

that targets cells expressing CD33, a marker that is expressed

in tumor cells in almost all AML patients (114). A German trial,

GnG (NCT 04093505) is using a two-by-two factorial design

with two different GO schedules followed by the use of 100mg

per day glasdegib or a placebo. It aims to find the effect of the

treatments on measurable residual disease (MRD) and event free

survival (EFS) at 2 years. An Italian trial (NCT 04168502) is

looking at younger patients and considers the use of glasdegib as

maintenance after a patient receives an autologous or allogenic

stem cell transplant (SCT). Patients receive 7 + 3 ICT (Ara-C

and DNR), GO and a stem cell transplant, followed by 100mg
TABLE 1 Continued

Trial ID Phase Disease HH
agent

N Outcome
measure

Treatments Outcomes Publication
or Status

NCT
01218477

I CML BMS-
833923

33 DLT, RP2D, along
with any major
responses (MCyR
and/or MHR)

0, 50, 100, 200mg 2/d
for 7 days then 1/d (all
w/ 100 or 140mg/d
dasatinib)

Tolerable dose at 50mg/d, but little
evidence of efficacy

(104)

NCT
01456676

I CML Sonidegib 11 MTD 400-800mg/d No published data Completed
February 2014.

NCT
01842646

II MDS Glasdegib 35 Response Rate, OS,
EFS, (2yr4mo)

(N=35) Glasdegib
100mg/day in refractory
MDS patients

No CR, 5.7% HI, 64.5% SD, 30% PD;
OS: 10.2 months; EFS: 6.4 months

(105)

NCT01371617 II MF IPI-926 14 OR 160, 130, or 110 mg/d ORR<10%, some reduction of Gli1
levels, but overall was not considered to
be a drug worth pursuing

(106)

NCT
02226172

II MF Glasdegib 21 Patients' w/ spleen
size reduction, AE,

In patients previously
treated with Ruxolitinib:
Placebo or 100mg/d

In lead-in cohort: Drug was considered
safe, but did not meet minimum efficacy
requirements

Terminated
April 2 2018

NCT
02593760

Ib MF Vismodegib 10 Patients' w/ spleen
size reduction, AE,
CR, safety if drug

150 mg/d and placebo,
w/ Ruxolitinib

Completed, found Vismodegib to be safe
but had no improvement over
Ruxolitinib alone

(107)

NCT
02254551

II MM Sonidegib 7 MTD, Time to
Progression, OR

400, 600, and 800 mg/d,
with injections of
Bortezomib

Safety requirements not met in the
leadin, 400mg was deemed to be too
great a toxicity

Terminated
February 16,
2017

NCT
02086552

II MM Sonidegib 28 CR, OS, PFS After SCT, 400mg/d w/
Lenalidomide

(n=26) CR: 8 (31%), VGPR: 11 (42%),
PR: 6 (23%), SD: 1 (4%). Toxicity a
problem, only 10 completed the
treatment regiment

Completed

NCT
01330173

Ib MM Vismodegib 50 Change in MM
CSC blood count

After SCT: daily, no
given dose

No data Completed
November 2014

NCT
02129101

I/Ib Myeloid
Malignancies

Sonidegib 63 MTD and best
overall response

0-400mg w/ AZA MTD: 200mg/day, Response: 76% R/R
was SD and OS was 7.6 mo

(108)

NCT
01787552

Ib/II PMF Sonidegib 50 First cycle DLT,
spleen size
reduction

400 mg/d + 5-20mg/d
INC424

Ended early due to Novartis divesting
sonidegib: (results have not been posted)

Ended April 10,
2018
The asterisk (*) indicates an estimated or not yet finalized enrollment number for the given clinical trial.
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glasdegib per day. The study will consider MRD following the

SCT and GO treatments, and then measure disease free survival

at 2 and 5 years.
Discussion

While SMOi has seen some success in clinical study for

AML, the processes of interpreting the results and charting

future directions for the treatment are hindered by current

gaps in our mechanistic understanding of the role of HH

signaling in hematological malignancies. It remains unclear

whether the tumor or the microenvironment are the primary

targets for SMOi. Demonstrating modulation of HH signaling in

tumor samples has been challenging and has prevented the

development of useful pharmacodynamic biomarkers.

Based on data from both clinical and preclinical study, we

suggest that signaling is active in stromal cells that support the

hematopoietic and leukemic stem cell microenvironments. This

hypothesis would explain the apparently contradictory results

from earlier examinations of HH signaling in hematopoiesis, as

well as the pattern of SMOi preventing relapse rather

improvement of initial response in clinical trials. However, this

hypothesis needs to be specifically tested by specifically knocking

out Smo in the stroma without affecting its function in HSCs/

CSCs. Establishing a greater understanding of the mechanisms

of HH signaling in hematological malignancy will allow for

better interpretation of its clinical benefits and improved

implementation as a targeted therapy.
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