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Abstract Simple temporal models that ignore the spa-
tial nature of interactions and track only changes in
mean quantities, such as global densities, are typically
used under the unrealistic assumption that individu-
als are well mixed. These so-called mean-field mod-
els are often considered overly simplified, given the
ample evidence for distributed interactions and spatial
heterogeneity over broad ranges of scales. Here, we
present one reason why such simple population models
may work even when mass-action assumptions do not
hold: spatial structure is present but it relates to global
densities in a special way. With an individual-based
predator–prey model that is spatial and stochastic, and
whose mean-field counterpart is the classic Lotka–
Volterra model, we show that the global densities and
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densities of pairs (or spatial covariances) establish a bi-
power law at the stationary state and also in their tran-
sient approach to this state. This relationship implies
that the dynamics of global densities can be written
simply as a function of those densities alone without in-
voking pairs (or higher order moments). The exponents
of the bi-power law for the predation rate exhibit a
remarkable robustness to changes in model parameters.
Evidence is presented for a connection of our findings
to the existence of a critical phase transition in the
dynamics of the spatial system. We discuss the applica-
tion of similar modified mean-field equations to other
ecological systems for which similar transitions have
been described, both in models and empirical data.

Keywords From individuals to populations · Modified
mean-field equations · Scaling · Implicit space in
ecological models · Moment closure · Criticality

There are always scales and dimensions that are
being ignored. And this is dangerous because the
whole point is that all these sizes of turbulence are
interconnected; they are both separate and contin-
uous, feeding energy from large to small then back
again—Gilles Foden; Turbulence, A novel of the
atmosphere.

Introduction

In his 1992 Robert H. MacArthur Award Lecture ti-
tled ‘The problem of pattern and scale in Ecology’,
Levin (1992) emphasized the central problem of link-
ing dynamics across scales in ecology: in time, space
and levels of organization. This problem lies at the
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heart of modeling complex systems, not only to un-
derstand their dynamics but also to identify the scales
that determine their global behavior (Pascual 2005).
In parallel with the development of models with in-
creasing number of interacting components, such as
individual- or agent-based models, a large number of
theoretical studies in the past two decades have ex-
plored ways to simplify these high-dimensional formu-
lations to capture their global, or aggregated, dynamics
(e.g., Bolker and Pacala 1997; Keeling 1999; Filipe and
Maule 2003; Pascual and Levin 1999a; Aparicio and
Pascual 2007; Volz 2008). The resulting approximations
can provide systems whose dynamics are easier to study
and whose equations are easier to parameterize from
empirical data. They can also help us understand how
to incorporate implicitly the effects of variability at
the smaller scales that are not explicitly represented
in the model. This is particularly relevant because all
ecological systems are nonlinear as a result of density-
or frequency-dependent interactions, and nonlinearity
allows variability to interact across scales, as illustrated
by the paradigmatic example of fluid turbulence. Be-
cause variability typically occurs over a broad range of
scales, any simple model must either choose to ignore
the effects of unrepresented scales or incorporate these
in some phenomenological way.

At one extreme of the spectrum, mean-field models
aggregate all individuals into a single variable and ig-
nore space completely, considering only global densi-
ties under the simplifying assumption that individuals
are well mixed and they sample space at random in
their interactions. We can ask whether such simple
models belong mainly to textbooks and to the history
of Ecology, together with their well-known ancestors
by Lotka and Volterra (Lotka 1925; Volterra 1926),
given that ecological systems are typically distributed,
with interactions that are local in space or in other
network topologies. However, mean-field models con-
tinue to find applications in a variety of problems
and in particular those that involve confronting mod-
els with population-level data (e.g., Earn et al. 2000;
Finkenstadt and Grenfell 2000; King et al. 2008). One
approach that corrects the mean-field models to ac-
count for deviations from random mixing, and associ-
ated influences of spatial heterogeneity on the global
dynamics of population densities, has relied on modifi-
cations of the functional forms describing interactions
between individuals. An early example of this is found
in the functional form proposed for the transmission
rate in epidemiological models, which replaces a bilin-
ear term (for the product of infected and susceptible
individuals, IS) by a nonlinear term in which each

density is raised to a power (Sα1 Iα2 ) (Severo 1969; Liu
et al. 1987; Hochberg 1991; Gubbins and Gilligan 1997).
A number of studies have relied on this type of func-
tional form to formulate simple transmission models
that were fitted to time series data (e.g., Bjornstad
et al. 2002; Koelle and Pascual 2004; Koelle et al. 2005).
There has been limited theoretical work to actually
examine whether this functional form provides a good
approximation to the aggregated, or global, population
dynamics of systems with local interactions at the indi-
vidual level. One exception concerns infectious disease
dynamics with temporary immunity in a small-world
network (Roy and Pascual 2006). Theoretical studies
of individual-based predator–prey systems have also
considered how the functional form of interaction rates
at the aggregated population level are modified by local
interactions, and noted modifications based on power
functions of densities (Pascual and Levin 1999a; Roy
et al. 2003).

A more extensively studied approach to simplify,
or scale, spatial stochastic systems from individuals to
populations has relied on incorporating the effects of
third and higher order moments on the dynamics of
pairs (e.g., Bolker and Pacala 1997; Keeling 1999; Sato
and Iwasa 2000). Here, the equations describing the
dynamics of global densities are modified to include
terms that are a function of spatial variances and covari-
ances (or “local” densities; Schlict and Iwasa 2006). The
problem becomes one of suitably closing the system,
since equations must be added for the dynamics of the
second-order moments, but these include terms with
higher order moments and so, in an infinite set of equa-
tions that relates variability across scales in an intimate
fashion. Typically, the system is closed at the level
of variances and covariances, by finding dependencies
between moments (see Bolker and Pacala 1997 for an
elegant example).

Here, we propose that for some spatial ecological
systems these two simplification approaches, “modified
mean-field equations” and moment-closure approxi-
mations, are related, and this is one reason why we
may be able to use simple models that consider only
mean, or global, densities, and ignore all other mo-
ments, even though these systems are highly structured
in space and interactions are local, in a strong depar-
ture from the random mixing assumption. We rely on
a spatial and stochastic predator–prey model where
the individuals interact locally with near neighbors on
a lattice; the mean-field counterpart of this model is
the classic Lotka–Volterra predator–prey model with a
carrying capacity in the growth of the prey. We show
that the dynamics of the global predator and prey
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densities are well approximated by a modified mean-
field model, whose functional forms incorporate power
laws of these densities. This approximation appears to
hold because the local densities (spatial covariances)
in the system are themselves well approximated by
functions of the global densities. Furthermore, these
functions specifically involve power laws, not just in the
long-term, or asymptotic, dynamics, but even earlier,
in the transient regime as the system approaches the
stationary state. In other words, as the spatial patterns
self-organize in the system, the global and local den-
sities establish a relationship that can be described by
power laws. It follows that the global dynamics of the
spatial system can be modeled as a function of mean
densities alone, ignoring any higher order moments
that would take into account spatial heterogeneities
from neighborhood interactions. This is not because
spatial variability does not matter; on the contrary it is
fundamental. Spatial patterns arise in this system as the
result of a critical phase transition, a percolation-type
transition at which the system-wide connectivity of the
prey changes dramatically, and power laws emerge in
the size distribution of connected prey clusters. Similar
types of transition and associated patterns have been
described for a variety of spatial stochastic models
in ecology, and scale-free patterns of this kind have
been documented for different empirical systems, from
vegetation in arid ecosystems to ant colonies to mus-
sels in the intertidal (Pascual et al. 2002b; Guichard
et al. 2003; Kefi et al. 2007; Scanlon et al. 2007; Sole
2007; Vandermeer et al. 2008; Kefi et al. 2011). We
provide preliminary evidence for a connection between
criticality in our predator–prey individual-based model
and the robustness of the power-law exponents used
to modify the predation rate in the modified mean-
field equations. We speculate on the generality of these
results to spatial dynamics that involve local birth and
death processes that are density-dependent.

The spatial stochastic model

The model is implemented as an interacting particle
system (IPS) (Durrett and Levin 1994). This type of
stochastic model shares with the better known cellular
automata, the discrete nature of space, here, a two-
dimensional grid of size L2 in which individuals can
occupy grid cells and interact locally with their neigh-
bors. Each cell can be in one of three possible states:
empty, occupied by a prey, or occupied by a predator.
Because preys and predators rarely have an “activity
range” encompassing the entire landscape, but have

instead spatially restricted ranges for movement and in-
teraction, we use the simplest activity neighborhood—
the four nearest neighbors of a focal cell. By contrast
to discrete-time cellular automata, time is treated in
an IPS as continuous. Transitions of a cell from one
state to another are stochastic and their probabilities
determined by a stochastic process in continuous time.
The birth of prey onto empty space, the death of prey
by predation, the corresponding birth of a predator,
and the death of predators are all treated as Poisson
processes, with their rates of determining their associ-
ated probabilities in a small interval of time. Moreover,
the death of the predator is density-independent and a
cell occupied by a predator becomes empty at a rate
δ. Predation rates depend instead on the number of
predators in the local neighborhood of a prey. Thus,
a cell that is occupied by a prey dies and becomes
occupied by a predator at a rate that is proportional
to the density of predators in its neighborhood, with
constant of proportionality β. Finally, an empty cell
becomes occupied by a prey also at a rate that depends
on the local density of prey in its neighborhood, with
constant of proportionality α. We refer to this model as
the “spatial” Lotka–Volterra model.

The mean-field model and some approximations

At the opposite end of the spatial model with local
interactions, we can write the mean-field model ob-
tained by assuming that individuals are well mixed and
therefore, perceive local densities in their neighbor-
hood that are equal to global ones. In other words,
they sample space at random in the whole grid. Let
p, h, e(= 1 − p − h) denote the global/mean densities
of prey, predator, and empty cells, respectively. The
equations for this model are given by

dp/dt = αpe − βph,

dh/dt = βph − δh, (1)

where α, β and δ denote, respectively, (per capita)
rates of prey growth, predation and predator death.
These equations correspond to the well-known Lotka–
Volterra model with the growth of the prey limited by
a carrying capacity. Both the processes of prey growth
on empty space (at rate αpe) and of predators hunting
for prey (at rate βph) are bilinear in the respective
densities, which is the standard “mass-action” form
characteristic of a well-mixed system.
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Model 1 can be simplified to a two-parameter model
by rescaling the time by, for example, the parameter
β using the transformation t′ = βt, α′ = α/β, δ′ = δ/β,
and then dropping the prime ′ for convenience:

dp/dt = αpe − ph,

dh/dt = ph − δh. (2)

We use Eq. 2 as our mean-field (MF) Lotka–
Volterra model, with stable equilibrial densities given by

p∗ = δ, h∗ = α(1 − δ)

1 + α
. (0 ≤ δ ≤ 1)

We know that the MF model (Eq. 2) can only poorly
capture the dynamics of global densities for the spatial
model because interactions are local (see for example
Fig. 2c, d), and that this will be the case for both the
transients and asymptotic dynamics. The correct equa-
tions for the global densities of predator and prey can
be easily written with pair-approximation approach fa-
miliar from a number of other studies (see for example
Sato and Iwasa 2000). We let [ph] and [pe] denote the
respective densities of prey–predator and prey-empty
site pairs in the system. These correspond to spatial
covariances (or local densities) as can be seen from
writing [ph] = cov(p, h) + ph, and [pe] = cov(p, e) +
pe (in the well-mixed MF model, covariances are zero
and [ph] = ph, [pe] = pe). To emphasize the local na-
ture of these pairs, we can also write [ph] = pρhp and
[pe] = eρpe, where ρhp is the conditional probability
of finding a predator in the local neighborhood of a
prey, and similarly, ρpe is the conditional probability
of finding a prey in the local neighborhood of an
empty site.

With this notation, we can write the exact equations
for the spatial model as

dp/dt = α[pe] − [ph],
dh/dt = [ph] − δh. (3)

As is typical from pair-approximation models, we see
that the equations for global densities are not closed,
and one would need a second set of equations for the
pair densities (or second-order moments) [ph] and [pe]
in terms of triplets (or third-order moments) [pph],
[phh], [ppe], [pee] etc, and so on. One would then
proceed to explore ways to close the system at the level
of pairs (by, for example, assuming that triplet densities
become simple functions of pairs), to approximate the
dynamics of the spatial system with a model consisting
of four equations, two for mean densities and two for
spatial covariances.

This is not the path we explore here. We would
instead like to use an even simpler approximation that

writes the mean or global densities as a function of
themselves alone and does not track covariances or
higher order moments. This is in a sense what we
do when we write simple temporal models at some
aggregated level and ignore heterogeneities at smaller
spatial scales. By considering Eq. 3, we see that this
would work as long as the pair densities were them-
selves a function of mean densities. That is, we need
[ph] = f (p, h) and [pe] = g(p, e), where f and g are
yet unspecified functions. We can numerically extract
these by simulating the spatial model and plotting [ph]
vs p and h, to ask whether the function f exists not
just for the long-term dynamics but also for part of
the transients, and what do these functions look like.
Motivated by our earlier work (Pascual and Levin
1999a; Pascual et al. 2002a), we are especially interested
in replacing bilinear functional forms with parametric
nonlinearities, or “bi-power laws”, such that [pe] in
Eq. 3 is replaced by g(p, e) = c1 pa1 eb 1 , and [ph] by
f (p, h) = c2 pa2 hb 2 (ai, bi and ci > 0, i = 1, 2). The MF
Eq. 2 now take the modified form:

dp/dt = αc1 pa1 eb 1 − c2 pa2 hb 2,

dh/dt = c2 pa2 hb 2 − δh. (4)

We call Eq. 4 the “modified mean-field” (MMF) model,
which, unlike the MF model (Eq. 2), can permit more
complex solutions besides stable equilibria, including
limit cycles (e.g., see Liu et al. 1987). The new pa-
rameters ci, ai and bi (i = 1, 2) modify the respective
functional forms of the prey’s growth rate and the
predation rate. In particular, ai and bi capture the
nonlinear effects of deviations from random mixing
caused by localized interactions. The original bilinear
functional forms in the MF model are now nonlinear.
For example, because p, h are defined as densities, a2 >

1 (assuming b 2 = 1) implies that a predator sees on
average fewer prey in its neighborhood than in the well-
mixed MF model. The overall per-capita predation rate
is thus smaller than its corresponding value in the origi-
nal model. Likewise, 0 < a2 < 1 implies that a predator
sees on average more prey in its neighborhood and
that the per-capita predation rate is larger. Similarly,
the value of the exponent b 2 influences the number of
predators that a prey sees on average. Clustering of the
prey is expected to reduce this rate as the prey are “pro-
tected” by neighboring conspecifics from interactions
with predators. Finally, the coefficients ci capture only
linear effects of the spatial patterns: they can decrease
or increase (when 0 < ci < 1 and ci > 1, respectively)
the overall rate but cannot modify its functional form.
Such intuitive interpretations are possible one expo-
nent (and coefficient) at a time, holding the others fixed
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(at their MF values). When all vary simultaneously,
the interpretation of individual parameters becomes
difficult but that of their combined effect on the overall
rate is still possible.

Results

As a result of localized interactions, the spatial model
develops spatial patterns characterized by clustering of
the prey, empty and predator sites (Fig. 1a; compare
with Fig. 1b for the MF model at the same asymp-
totic prey density). Similar patterns of self-organization
have been described in a number of stochastic spatial
models and empirical data in ecology (Pascual et al.
2002b; Guichard et al. 2003; Roy et al. 2003; Kefi et al.
2007; Scanlon et al. 2007; Sole 2007; Vandermeer et al.
2008). The origin of these patterns in all these systems
is to be found in the existence of a critical point, a
particular value of the parameters (and correspond-
ing density) at which the system exhibits a dramatic
change in the connectedness of the clusters for one of
the species (see Roy et al. 2003 for details in another
predator–prey model). At this point, a giant cluster
“percolates” through the lattice, spanning it from one
end to the other. This reflects a critical phase transi-
tion, and it is at this critical or percolation point that
system-wide spatial correlations develop in the grid,

and correspondingly, power laws arise in many of the
quantities characterizing the resulting spatial patterns.
Because of these long-range spatial correlations, whose
characteristic length extends beyond that of the inter-
action neighborhood, we expect the MF model with its
assumption of random mixing to poorly approximate
the global dynamics of densities. This correlation length
is determined by the proximity of the system to the
percolation point and is system-wide at this critical tran-
sition. Figure 1c shows for our predator–prey system,
the probability of observing a percolating prey cluster
that spans the grid from one end to the other, and that
this quantity jumps from zero to one at a particular prey
density p̄ = 0.54 ( p̄ denotes time-averaged asymptotic
density). Figure 1d shows that at this prey density, the
size of prey clusters exhibits a power-law distribution.
These patterns break down only progressively as we
move away from the critical point towards subcritical
prey densities, as has been described in related systems
elsewhere (see Kefi et al. 2011 for a description of this
in a number of models; and Roy et al. 2003 for more
technical aspects). At these subcritical densities, long-
ranged spatial correlations are still present and cluster
sizes scale approximately as a power law but over a
restricted range of sizes, but there are no spanning
clusters. On the other side of the critical point, at su-
percritical densities, the power-law pattern degenerates
at a faster pace, and what remain are mostly a large

Fig. 1 Spatial patterns at the
stationary state in the spatial
and mean-field models at
p̄ = 0.5 (a, b). The prey,
predator, and empty sites are
drawn in orange, white, and
black pixels, respectively.
In (c), the percolation
probability P is plotted as a
function of prey density p̄,
which indicates a percolation
point at p̄ = pc = 0.54 (see
text for details). As expected
at this critical transition, the
size distribution of prey
clusters is a power law. This
distribution is shown in (d)
for the critical density
p̄ = 0.54 on log–log scale
(see text)
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spanning cluster and many small ones. Note that, in
the (α, δ) parameter space used in the plots of Figs. 2
and 3 below, the percolation point becomes a line, as
the critical prey density p̄ = 0.54 can be obtained by
appropriately varying both α and δ.

As expected, because of such highly non-random and
aggregated spatial patterns, the MF model is unable to
capture the temporal dynamics of total densities in the
spatial model (Fig. 2c, d: compare the time series in
red solid vs. black dashed lines). This is not surprising
as no large spatial clusters can arise from randomized
interactions in the well-mixed system (see Fig. 1b). Our
objective here is to explore the degree to which the
MMF model (Eq. 4) can improve upon such MF pre-
dictions in capturing the outcome of the spatial model,

both in the stationary and transient regimes. We return
later to the role of criticality, and ask whether power-
law scalings in the spatial patterns (such as Fig. 1d) can
influence our findings on scaling the temporal dynamics
of the system from individuals to global population
densities, as in Eq. 4.

We begin by simply plotting for a particular set
of parameters α and δ, the trajectory in time of the
pair density [ph](t) as a function of the corresponding
global densities p(t) and h(t), in a three-dimensional
log space. Figure 2a illustrates that this trajectory, in
red, lies approximately on a plane (see also Fig. S1
in the Electronic supplementary material). Interest-
ingly this means that the local covariances for predator
and prey (or local densities) are a smooth function
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Fig. 2 a, b Trajectory plots for p-h-[ph] and p-e-[pe] as a
function of time on a three-dimensional log scale (red dots) to-
gether with their corresponding regression planes and projections
on this plane (black dots) (see text). The model parameters
α, δ are chosen so that the trajectory settles onto the critical
stationary state p̄ = 0.54. The fitted parameters for the planes
and corresponding MMF coefficients are (a1, b1, c1, a2, b2, c2) =
(0.2, 0.59, 0.19, 0.59, 1, 0.4). R2 values for the fits in (a, b) are

0.99 and 0.76, respectively. c The corresponding prey time-series
data p(t) of the spatial model (in red) are compared with the
solutions of the MF model (Eq. 2) (black dashed line) and MMF
model (Eq. 4) (in blue). d A similar comparison is shown for
another trajectory that corresponds to a subcritical density p̄ =
0.3, and the fitted MMF coefficients are (a1, b1, c1, a2, b2, c2) =
(0.59, 0.4, 0.19, 0.67, 0.9, 0.34). These values do not differ much
from those for the critical trajectory in (c)



Theor Ecol (2011) 4:211–222 217

a

− 1.5 − 1.0 − 0.5  0.0−
6

−
5

−
4

−
3

−
2

− 5
− 4

− 3
− 2

− 1

log(p)

lo
g(

h)

lo
g(

[p
h]

)
b

−1.5 −1.0 −0.5  0.0−3
.5

−3
.0

−2
.5

−2
.0

− 2.5

− 2.0

− 1.5

− 1.0

− 0.5

log(p)

lo
g(

e)

lo
g(

[p
e]

)

c

− 5− 4− 3− 2− 1 −
6

−
5

−
4

−
3

−
2

− 2.0
− 1.5

− 1.0
− 0.5

0.0

log(h)

lo
g(

p)

lo
g(

[p
h]

)

d

− 2.0 −1.5 −1.0− 0.5  0.0−
3.

5
−

3.
0

−
2.

5
−

2.
0

− 2.5−2.0 −1.5 −1.0−0.5 0.0

log(p)

lo
g(

e)

lo
g(

[p
e]

)

Fig. 3 The points p̄-h̄-[ph] and p̄-ē-[pe] at the stationary state
are plotted together with their regression planes on a 3D log
scale, for three fixed values of α = 0.1 (in blue), 0.5 (in red),
and 0.9 (in green), while δ is varied (see text for details) (a, b).
Similar plots for these points at the stationary state (in red) are

shown when both α and δ are simultaneously varied (see text),
along with their regression planes, oriented so that each plane is
viewed along its edge (c, d). R2 values for the fits in (c, d) are 0.99
and 0.76, respectively

of global densities, and that this function can be ap-
proximated well by a bi-power law (because on a three-
dimensional log space bi-power laws describe a plane;
see below). This holds for a substantial part of the tran-
sients: after some initial time, the trajectory appears
to already settle on this plane. Thus, we can use this
trajectory to fit the exponents a2, b 2 and coefficient
c2 of the bi-power law function c2 pa2 hb 2 in the MMF
model (Eq. 4). A similar pattern holds for the [pe]
pair function c1 pa1 eb 1 (Fig. 2b), although the trajec-
tory here exhibits larger deviations from a plane (a
feature that recurs throughout our results below and
which we elaborate in the “Discussion”). We compute
the MMF parameters, c1, a1, b 1, c2, a2, b 2, by such log-
regression fits; on log axes, the regression model y =
c2 pa2 hb 2 describes a regression plane log(y) = log(c2) +
a2log(p) + b 2log(h) with intercept log(c2) on the y-axis
(and similarly for y = c1 pa1 eb 1 ). Figure 2c, d show that
the resulting MMF model provides a much better ap-

proximation to the dynamics of the spatial system over
a large range of densities, not just for the equilibrium
but also for part of the transients. Similar results were
obtained for other values of α and δ (not shown here,
but see discussion on robustness below). These findings
provide a justification for the type of functional form in
the MMF model, where the “modified” functional form
for the respective rates of predation and prey growth
incorporate the densities to a power. (Note that the
approach taken here to estimate the parameters of the
modified functional forms fundamentally differs from
fitting the MMF model to the temporal trajectories of
the global prey and predator densities in the spatial
system. Given the number of parameters and number
of differential equations, one could always trivially fit
the MMF model to these transients. We considered
instead the relationship between second and first-order
moments to fit the exponents, and then examined
how well the MMF model that includes the resulting
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functional forms approximates the aggregated dynam-
ics of the spatial system).

We ask next whether the exponents in these modi-
fied functional forms are in some way robust to changes
in the parameters of the spatial model. In other words,
do we need a different correction to the bilinear func-
tional forms of the mean-field model, or can we find
a set of exponents that is independent and “works”
across parameters α and δ? To address this question,
we no longer consider the trajectories of pair densities
but their values at the stationary state, and vary the
parameter δ first (for a given α), to obtain a number of
time-averaged asymptotic points [ph] vs. p̄ and h̄ on the
same three-dimensional log plot. Figure 3a shows that
these points lie exactly on the same plane. Thus, at the
stationary state, the pair densities are again a bi-power
law function of the global densities, and a plane fits the
points extremely well. A single set of exponents a2, b 2

and intercept c2 describe this relationship for a range
of values of the dynamical parameter δ in the spatial
model; and the same pattern is observed for exponents
a1, b 1 and intercept c1 for the stationary [pe] pairs,
although the fit is less impressive (Fig. 3b). We also
observe similar relationships when we vary α keeping
δ fixed (not shown).

We can go further and consider the full range of
values of δ and α, and vary both parameters simul-
taneously, to obtain a family of points in our three-
dimensional space of pair densities versus global densities
from the stationary state of each numerical simulation
of the spatial model. Figure 3c shows a remarkable
pattern for the density of predator–prey pairs as a
function of predator and prey densities: the whole cloud
of points lies very close to a plane. This means that a
single bi-power law, and correspondingly a single set of
exponents and intercept, characterizes the relationship
between this second-order moment and the first-order
moments in this system at the stationary state, as we
vary the dynamical parameters. It follows that a single
bi-power law can be used to “modify” the predation
rate of the original mean-field model. A similar analysis
for the prey-empty pairs shows more scatter in their
relationship with the global densities for the prey and
empty sites (Fig. 3d). Here, a plane does not fit as well
the whole set of points, and there is more variation in
the values of the exponents for the different dynamical
parameters.

We are interested in the possible connection be-
tween the existence of a critical phase transition in
the system, at the percolation point described above,
and the robustness of the exponents’ values for the
predator–prey pair. This is motivated by the observa-
tion that characteristic patterns of the prey clusters,

and in particular of the boundary of these clusters at
which predator–prey interactions take place, arise at
this critical point. The relevance of the critical point
pc(= 0.54) can be investigated by examining whether
the exponents obtained in its proximity best capture
the relationship between the density of pairs and the
global densities, everywhere in parameter space. In
other words, does the plane defined by parameters in
the proximity of the critical transition, provide a better
fit to this relationship than that defined by parameters
further away from it? To address this question, we
consider subsets of points from Fig. 3c, d corresponding
to different ranges of prey densities, and therefore, to
different distances from the critical point pc (in Fig. 1c).
We subdivide the set of data points p-h-[ph] and p-
e-[pe] of Fig. 3c, d, which span the range 0.1 ≤ p̄ ≤
0.9, into smaller density intervals [ p̄i, p̄ j], and carry
out separate log-regression fits of the subset of data
within each interval. (These intervals are chosen such
that all of them have similar number of data points,
in order to avoid any potential bias in the quality of
fit). We then compute the “distance” d between the
entire set of points (in Fig. 3c, d) and the regression
plane for the subset of data belonging to each of the
above prey-density intervals. This distance is computed
as the length of the normal vector drawn from each
point to the plane, averaged over all points. Figure 4a,
b show these plots versus the intervals, and the “crit-
ical interval” [0.5,0.6] (that contains the critical point
pc = 0.54) is shown by a short vertical arrow in each
plot. The distance decreases rapidly as we approach the
critical point from above, that is, for planes defined by
supercritical dynamics. There is then a broad region
where the distance exhibits a minimum.

Supplementary Fig. S2 shows the values of the ex-
ponents a1, b 1, a2, b 2 resulting from the individual re-
gressions for each density interval. The MF value a1 =
b 1 = a2 = b 2 = 1 is indicated by a horizontal dashed
line, and the critical interval [0.5,0.6] is marked again
by a short vertical arrow. The exponents (and intercept,
not shown) significantly differ from their MF value
over much of the plot range, with the exception of a2.
The robustness of the exponents observed in Fig. 3c
is reflected here in the little variation of b 2 and also
of a2 in the subcritical region (except for low prey
densities). Values of a2 close to one and b 2 larger than
one tell us that a prey sees on average fewer predators
than in the well mixed system. In combination with
c2 < 1, this leads to a reduced overall predation rate
as the results of the prey’s patchiness. Moreover, the
average per-capita predation rate varies nonlinearly
with the predator’s density, increasing more rapidly as
this density becomes larger.
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Fig. 4 The two plots (a, b) show the average distance between
the data points in Fig. 3c, d, respectively, and the regression plane
for each density interval [ p̄i, p̄ j], where the plane is described by
the fitted MMF coefficients a2, b2, c2 and a1, b1, c1 computed for

each interval (e.g., see Fig. S2 in the Electronic supplementary
material and text); the averaging is done over all data points. The
vertical arrow again shows the critical interval [0.5,0.6]

Finally, the MMF system can be used to examine
the overall effect of local spatial structure on the dy-
namics of global densities. The main effect of space in
our stochastic system is that of modifying the global
density of the species at the steady-state: that is, the
spatial system always exhibits a higher density of prey

and correspondingly, a lower density of predators,
than the MF model, and this is also the case for the
MMF approximation. Figure 5 illustrates this with a
comparison of the steady-state prey densities for the
three models (MMF, MF, and spatial) for different
values of the parameter δ. Local interactions effectively

Fig. 5 Steady-state prey
density versus the predator’s
mortality rate δ for the three
different models: spatial
(solid red), MMF (solid blue),
and MF (broken black line)
(see text for details)
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decrease the predation rate, and therefore, the preda-
tor’s growth rate.

Discussion

Simple temporal models that ignore the spatial na-
ture of interactions and track only the changes in
mean quantities (such as global densities), are typically
used under the unrealistic assumption that individu-
als are well-mixed. These so-called mean-field models
are often considered overly simplified given the am-
ple evidence for distributed interactions and spatial
heterogeneity over broad ranges of scales. There is
ample literature on the clear trade-offs in the respective
advantages and disadvantages of simple vs. complex
models, such as individual-based models that track in-
teractions in space or other sorts of networks (e.g.,
DeAngelis and Gross 1992; Levin 1992). Our results
illustrate, with a toy model that tracks individuals,
that there is another reason why population models
that only consider global densities may be applicable,
not because mass-action assumptions apply and spatial
structure is absent, but because the spatial structure
relates to global densities in a special way.

We have shown that in our individual-based predator–
prey model, the spatial covariances (or local densities)
that develop as a result of local interactions estab-
lish a relationship with the global population densities.
Interestingly, they do so not only in the stationary
states, but even in the transient dynamics. Thus, even
though the system has not yet settled onto its stationary
spatial patterns, it has sufficiently self-organized to ex-
hibit a relationship between the first- and second-order
moments of the spatial distribution. As the spatio-
temporal dynamics continue to evolve, this relation-
ship persists both in time, after an initial phase of the
transients, for a particular set of dynamical parameters,
and also at the stationary state, when these parameters
are simultaneously varied. Moreover, this relationship
can be approximated by a bi-power law, so that in
our system we can effectively replace the bilinear func-
tional form of the predation rate in the classic Lotka–
Volterra equations by a bi-power law, where each of
the prey and predator mean densities is raised to a
power. Such modification has been proposed before
for the transmission rate in epidemiological models
(Severo 1969; Liu et al. 1987; Hochberg 1991; Gubbins
and Gilligan 1997) as a phenomenological correction
to the mean-field description. Here, the basis for this
modification emerges from the individual-based dy-
namics itself. A similar relationship between local and
global densities was exploited for disease transmission

in a social network (Roy and Pascual 2006), with a focus
however on the topological properties of the network
and not on the robustness of exponents to parameter
variation.

Simplifications of ecological models based on mo-
ment closure techniques have been used in a variety
of systems (e.g. Bolker and Pacala 1997; Keeling 1999;
Pascual and Levin 1999b, Sato and Iwasa 2000). How-
ever, the solution to the infinite hierarchy of equations
that develops from this approach has been to close the
system at the level of the second-order moments, with
the resulting system tracking the temporal dynamics of
mean quantities as well as variances and covariances.
Our results suggest that we may be able to close some
systems at the level of the means, and model the means
only as a function of themselves, because the variances
and covariances have approximate functional relation-
ships with these means. This provides a justification
for the use of modified mean-field models in which
the effects of spatial variability at unresolved (smaller)
spatial scales is not ignored, but instead represented
implicitly via a modification of the functional form
representing interactions at these scales.

One limitation of this approach is that we do not
know a priori the appropriate functional form and we
did not derive it here from first principles. Thus, the
exponents themselves were not mechanistically related
to the individual-level parameters of interactions. This
is a problem when our objective is to simplify a detailed
model that we have successfully parameterized. How-
ever, this is not always the case; we often recognize
the potential complexity of the systems we would like
to model but are unable to parameterize the models
themselves, and would like to write a simpler model
that captures in some way the underlying variability we
have neglected. Theoretical investigations of this sort
can suggest the form of such simpler models and give
us a basis to consider for their use, especially in cases
where the parameters of the models will be obtained
at the aggregated level. They can also suggest specific
patterns to test empirically, for example, to examine the
relationship over time between first- and second-order
moments.

Many open questions remain. Do similar results ap-
ply to other systems with birth and death processes?
It would be interesting to consider individual-based
models whose mean-field counterparts have functional
forms that are not bilinear (such as those with type
II or type III functional forms in the predation term).
Both moment closure and MMF formulations can help
us examine the effect of local spatial structure on the
dynamics of global densities. Here, this effect is that of
modifying steady-state densities (Fig. 5). For nonlinear
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functional forms, spatial structure may also change the
long-term qualitative dynamics, by transforming a limit
cycle into decaying oscillations approaching an equilib-
rium (Pascual and Levin 1999a). It is an open question
whether the bifurcation analysis of a MMF model will
show qualitative changes in dynamics consistent with
those of the spatial stochastic system. The case of
seasonally-forced dynamics would be especially inter-
esting in this respect.

Moreover, what are the key features of systems
where modified mean-field models with functional
modifications including power laws apply? Can we re-
late the exponents of the modified functional form to
a specific geometrical/structural feature of the spatial
patterns? This would be of practical use. In particular,
we can conjecture that the modifications in some way
relate to the fractal dimension of the boundaries of
the clusters where the interactions actually take place.
Models for consumer-resource interactions between
plants and herbivores have been proposed that explic-
itly consider the fractal dimension of resources (Ritchie
2009); the resulting functional forms also include expo-
nents. In this approach, however, the spatial pattern of
the resource is given; in our model, it emerges from
the dynamics. It would be interesting to consider the
possible relationship between these approaches.

Finally, we presented a few results that suggest a
connection between the described relationship between
moments and the existence of a percolation-type criti-
cal phase transition in the system. We have also shown
a somewhat surprising robustness of this relationship
for the predator–prey covariances: the plane that de-
scribes approximately their relationship to global prey
and predator densities is largely invariant with changes
in the dynamical parameters of the individual-based
model. This was not the case, however, for the other
covariance between prey and empty sites. Why is this
so? Our conjecture is that for the former, the two
relevant dynamical processes, the growth of the prey
and the growth of the predator (replacement of the
prey through predation) are both birth/death processes
that depend on local densities. By contrast, the growth
of empty sites is a point process that does not depend
on the state of the local neighborhood. More generally,
it is evident that criticality in this system is important to
the emergence of the spatial patterns, especially their
power-law scalings. It remains an open question how it
relates to the scaling or simplification of the dynamics
we have described here. This is relevant beyond theo-
retical considerations to the kinds of systems for which
this type of simplification would apply. A number of
ecological systems in which birth and death processes
are locally density-dependent have been shown to ex-

hibit similar patterns of self-organization, character-
ized by cluster size distributions that closely resemble
power laws in models and in empirical data (Guichard
et al. 2003; Kefi et al. 2007; Scanlon et al. 2007; Sole
2007; Vandermeer et al. 2008). The models all exhibit
a percolation type transition, and this suggests that a
critical phase transition of this kind underlies the ob-
servation of the corresponding power law like patterns
in nature. The previously described relative robustness
of these patterns to changes in parameters, as one
moves away from their particular values at the critical
point, would make their empirical observation possible
(Pascual et al. 2002b; Roy et al. 2003; Kefi et al. 2011).
We conjecture that modified mean-field equations such
as the ones presented here will be of relevance to this
family of ecological systems.
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