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ABSTRACT

Background. Protein biomarkers may provide insight into kidney disease pathology but their use for the identification of
phenotypically distinct kidney diseases has not been evaluated.
Methods. We used unsupervised hierarchical clustering on 225 plasma biomarkers in 541 individuals enrolled into the
Boston Kidney Biopsy Cohort, a prospective cohort study of individuals undergoing kidney biopsy with adjudicated
histopathology. Using principal component analysis, we studied biomarker levels by cluster and examined differences in
clinicopathologic diagnoses and histopathologic lesions across clusters. Cox proportional hazards models tested
associations of clusters with kidney failure and death.
Results. We identified three biomarker-derived clusters. The mean estimated glomerular filtration rate was 72.9 ± 28.7,
72.9 ± 33.4 and 39.9 ± 30.4 mL/min/1.73 m2 in Clusters 1, 2 and 3, respectively. The top-contributing biomarker in Cluster
1 was AXIN, a negative regulator of the Wnt signaling pathway. The top-contributing biomarker in Clusters 2 and 3 was
Placental Growth Factor, a member of the vascular endothelial growth factor family. Compared with Cluster 1,
individuals in Cluster 3 were more likely to have tubulointerstitial disease (P < .001) and diabetic kidney disease
(P < .001) and had more severe mesangial expansion [odds ratio (OR) 2.44, 95% confidence interval (CI) 1.29, 4.64] and
inflammation in the fibrosed interstitium (OR 2.49 95% CI 1.02, 6.10). After multivariable adjustment, Cluster 3 was
associated with higher risks of kidney failure (hazard ratio 3.29, 95% CI 1.37, 7.90) compared with Cluster 1.
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Conclusion. Plasma biomarkers may identify clusters of individuals with kidney disease that associate with different
clinicopathologic diagnoses, histopathologic lesions and adverse outcomes, and may uncover biomarker candidates and
relevant pathways for further study.

LAY SUMMARY

In this study, we used a computational algorithm to explore whether different subgroups of patients with chronic
kidney disease can be identified based on measurements of 225 blood proteins. We found that three subgroups, or
clusters, existed. These clusters associated with different types of underlying kidney diseases, different findings as
seen on kidney biopsies and differing risk of progression of the disease. Our study uncovered important plasma
proteins for future study and points towards the involvement of different biological pathways that may play an
important role in kidney disease. These could potentially be targeted for future drug development.
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Conclusion: Plasma biomarker-derived clusters are associated with clinicopathologic
diagnoses, histopathologic lesions, and adverse clinical outcomes.

The use of plasma biomarker-derived clusters for clinicopathologic
phenotyping: results from the Boston Kidney Biopsy Cohort

Cluster analysis using plasma biomarkers may help to identify phenotypically distinct
kidney diseases and provide insight into kidney disease pathology.

Methods Results
Prospective cohort study
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INTRODUCTION

Chronic kidney disease (CKD) affects over 10% of the global
population and is a major contributor to premature death and
disability worldwide [1]. CKD is not a single entity but rather
a highly heterogenous condition, encompassing a variety of
distinct clinical phenotypes that arise from different underlying
pathologicmechanisms. Current staging of CKD relies on the es-
timated glomerular filtration rate (eGFR) and albuminuria, both
of which provide only limited information about underlying dis-
ease etiology or histopathologic manifestations of the disease.

Novel biomarkers may provide non-invasive insights into
disease mechanisms and pathobiologic processes responsible
for CKD. In a previous study, we identified individual biomark-

ers associated with histopathologic changes and the risks of
CKD progression and death in patients with biopsy-confirmed
kidney disease [2]. The heterogeneity of CKD, however, suggests
that the combined information from multiple biomarkers,
which reflect different pathobiologic processes and pathways,
could aid with non-invasive phenotyping and enhance our
understanding of underlying mechanisms of the disease.

Studies in other disease settings such as cancer [3], heart
failure [4] and diabetes [5] have applied unsupervised machine
learning algorithms to identify disease subtypes and predict
clinical outcomes. In the setting of CKD, unsupervised consen-
sus clustering using traditional risk factors, including baseline
eGFR and proteinuria, identified distinct CKD subpopulations
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that had significantly different risks of kidney disease progres-
sion, cardiovascular events and death [6]. Few studies have used
unsupervised machine learning algorithms to classify patients
using multiple biomarker–generated phenotypes [7–9].

In this study, we used an unsupervised clustering approach
on 225 plasma biomarkers measured in a prospective cohort
study of individuals with biopsy-confirmed kidney diseases and
adjudicated semiquantitative assessment of histopathology.
We examined contributions of biomarkers to each cluster and
tested associations of cluster membership with histopathologic
lesions, clinicopathologic diagnoses and the risks of future
kidney failure and death. We used pathway analyses to gain
insights into differences in cluster-specific pathway activities.

MATERIALS AND METHODS

Study population

The Boston Kidney Biopsy Cohort (BKBC) is a prospective, ob-
servational cohort study of patients undergoing native kidney
biopsy at three tertiary care hospitals in Boston. Details of the
study design have been previously described [10]. The study
includes adults ≥18 years of age who underwent a clinically
indicated native kidney biopsy between September 2006 and
October 2018. Exclusion criteria were the inability to provide
written consent, severe anemia, pregnancy and enrollment in
competing studies. Patients provided blood and urine samples
on the day of kidney biopsy. For this study,we evaluated 541 par-
ticipants with available plasma samples. The Partners Human
Research Committee (the Brigham and Women’s Hospital Insti-
tutional Review Board) approved the study protocol which is in
accordance with the principles of the Declaration of Helsinki.

Sample collection, proteomics assays and exposures

Blood sampleswere collected from study participants on the day
of biopsy, aliquoted and immediately stored at −80°C. Aliquots
were analyzed at Olink using high-throughput, multiplex im-
munoassays [2, 11] on three commercially available panels
named Inflammation, Organ Damage and Cardiovascular II.
Each panel consists of 92 biomarker proteins that were chosen
based on their potential relevance in various pathological pro-
cesses and expressed as normalized protein expression (NPX)
values on a log2 scale. We included 5% blind split replicates
in addition to BKBC samples. Of the 276 proteins included
in the three panels, we used 225 biomarkers as the primary
exposures for statistical analyses that were non-overlapping
across the panels and passed the following quality control
metrics: coefficients of variation (CV) <10% from blind split
replicates; standard deviation of internal Olink controls <0.2;
and incubation or detection control which deviated less than
±0.3 from the median value of all samples on the plate. As
an additional quality control, we included multiple plasma
aliquots from two patients, one with high and one with low
eGFR, which were spread randomly in dummy labeled tubes
across the shipment boxes. The mean CVs were 5.5 ± 4.3% and
4.9 ± 4.6%, respectively, for the 225 biomarkers.

Histopathologic outcomes

Kidney biopsy specimens were adjudicated under light mi-
croscopy by two experienced kidney pathologists who provided
semiquantitative scores of kidney inflammation, fibrosis, vas-
cular sclerosis, and acute tubular injury (Supplementary data,

Table S1). Methods to evaluate and score histopathologic lesions
were previously described in detail [2, 10]. The adjudication of
histopathologic lesions by the two kidney pathologists was per-
formed between 2014 and 2017.Of the 13 histopathologic lesions
adjudicated, all were scored during study sessions except for
grades of global or segmental glomerulosclerosis, which were
taken from the biopsy report, because they were each calculated
as a percentage of the total number of glomeruli.We limited sta-
tistical analyses on histopathologic lesions to participants with
adjudicated histopathology by both kidney pathologists (n= 474,
87.6%) except for analyses of global or segmental glomeru-
losclerosis since they were taken from the biopsy report. For
regression analyses, histopathologic lesions were dichotomized
as described in Supplementary data, Table S1. We combined
endocapillary glomerular inflammation, extracapillary cellular
crescents, focal glomerular necrosis and fibrocellular crescents
into a single dichotomous variable named “glomerular inflam-
mation”due to the relatively low prevalence and limited range of
severity for each of those lesions in this cohort. All participants’
charts were reviewed alongside histopathologic evaluations to
provide the final primary clinicopathologic diagnosis.

Clinical outcomes

The primary outcome was kidney failure, defined as the ini-
tiation of dialysis or kidney transplantation. The secondary
outcome was death. To ascertain information on vital status,
change in creatinine or need for dialysis, we reviewed the elec-
tronic medical record (EMR) of the respective hospital as well as
other linked EMR systems. Data on eGFR during follow-up were
obtained from the EMR and kidney replacement therapy status
was confirmed by reviewing the EMR and linkage with the US
Renal Data System database. Mortality status was confirmed
with the Social Security Death Index. Participants were followed
until the occurrence of death, voluntary study withdrawal, loss
to follow-up or 1 February 2020.

Covariates

Detailed patient information was collected at the biopsy visit,
including demographics, medical history, medication lists and
pertinent laboratory data, and stored using REDCap electronic
data capture tools hosted at Partners Health Care. We obtained
serum creatinine (SCr) from the EMR on the day of biopsy. In
participants for whom this was unavailable, we measured SCr
in available blood samples collected on the day of biopsy. We
obtained spot urine protein-to-creatinine ratio (UPCR) or urine
albumin-to-creatinine ratio (UACR) from the date of kidney
biopsy to 3 months before biopsy from the EMR. If both were
available, the UACR was used. If a participant did not have any
of these values, we measured urine albumin-to-creatinine ratio
from urine collected on the day of the kidney biopsy. SCr and
urine creatinine were measured using a Jaffe-based method
and urine albumin was measured by an immunoturbidometric
method. The creatinine-based Chronic Kidney Disease Epidemi-
ology Collaboration equation without Race (2021) was used to
calculate the eGFR [12].

Construction of clusters and principal component
analysis

We performed unsupervised hierarchical clustering on 225
biomarkers to partition subjects based on the totality of
biomarker information. This approach did not use clinical
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Figure 1: Hierarchical cluster analysis. (A) Dendrogram showing the results from hierarchical clustering on 225 plasma biomarkers using the Euclidean distance

measure and Ward’s Minimum Variance. Rectangles show the split into three clusters. (B) Shown is the cluster formation in the first two PCs. PC1 and PC2 explain
21.5% and 10.2% of the total variance, respectively. PC, principal component.

characteristics or subsequent outcomes and was based only on
the biomarker data. Clustering was performed using the hclust
function in R. We used the Euclidean distance measure and
Ward’s Minimum Variance method for combining clusters by
minimizing the total within-cluster variance, and determined
the optimal number of clusters using the R package NbClust
[13]. We aggregated information across 19 of NbClust’s 30 differ-
ent indices, which each recommended an optimal number of
clusters, and used majority voting to determine a single value
for the optimal number of clusters (Supplementary data, Table
S2). Once clusters were defined, we used principal components
analysis (PCA) to determine the individual contribution of
biomarkers to the formation of each cluster. The contribution
of a biomarker to a principal component is:

f2i, j
λ j
, where λ j is the

eigenvalue for the jth principal component and f2i, j is the factor
score of the ith observation on the jth principal component.
A factor score is an observation’s coordinates on the principal
components. Contribution represents the proportion of the PC
that is determined by that biomarker. We performed a PCA
on each cluster using the 225 biomarker measurements and
assessed each biomarker’s contribution to the first five PCs. The
total contribution of a biomarker to the first five PCs, explaining
the variation in the first five principal components, is given by

the following equation:
∑5

i=1 CPCi∗λPCi∑5
i = 1 λPCi

, where PCi is the ith PC, CPCi

is the biomarker contribution to PCi, and λPCi is the eigenvalue
for PCi.

Pathway analysis

To explore differences in enriched biological pathways between
clusters, we used the Gene Set Variation Analysis (GSVA) tool.
GSVA is a non-parametric, unsupervised method for estimating
pathway enrichment using hallmark gene sets which represent
specific biological processes. Results are obtained as GSVA
scores which are calculated using the Klimigrov random walk
statistic [14]. For these analyses, we ranked biomarkers in each
cluster according to the magnitude of the coefficient obtained
from PCA and submitted these data to the GSVA tool to examine
differences in pathway activities between clusters. Hallmark
gene sets from Molecular Signatures Database (MSigDB) [15]
were adopted to summarize differences in pathway activities
between clusters. Analyses were performed using the GSVA
v.1.32.0 R package.

Statistical analysis

We summarized descriptive statistics by cluster as count with
percentages for categorical variables and mean ± standard de-
viation or median with interquartile range (IQR) for continuous
variables. For skewed data distributions, we performed natural
logarithmic transformation as appropriate. To assess differ-
ences in clinicopathologic diagnoses by cluster membership, we
used chi-squared tests. Unadjusted and adjusted multivariable
logistic regression models were used to assess associations of
each cluster with histopathologic lesions.

We performed time-to-event analyses to examine the
associations of clusters with kidney failure and death. Cox
proportional hazard models were adjusted for age, race, sex,
log(proteinuria), primary clinicopathologic diagnostic cate-
gory of kidney disease and eGFR (modeled as a time-varying
variable). Statistical analyses were performed using R Version
3.6.1 (R Foundation for Statistical Computing, Vienna, Austria)
and STATA 15.0 (STATACorp, College Station, TX, USA). A P-value
<.05 was considered statistically significant.

RESULTS

Cluster analysis and baseline characteristics by cluster
membership

The optimal number of clusters in this unsupervised hierar-
chical cluster analysis was three (Fig. 1). Table 1 summarizes
the baseline characteristics of the study cohort by cluster. The
mean age was 47.9 ± 15.0 years in Cluster 1, 50.0 ± 16.6 years in
Cluster 2, and 54.7 ± 16.7 years in Cluster 3. In Clusters 1, 2 and
3, respectively 49.3%, 56.8% and 48.5% were female. The mean
eGFRwas 72.9 ± 28.7, 72.9 ± 33.4 and 39.9 ± 30.4mL/min/1.73m2

and the median proteinuria (IQR) was 1.1 (0.3, 2.9), 1.0 (0.3, 3.4)
and 2.4 (0.8, 5.1) g/g creatinine in Clusters 1, 2 and 3, respectively.

Top biomarker contributors to Clusters 1, 2,and 3

Biomarker levels by cluster membership are shown in Supple-
mentary data, Table S3. The top three biomarkers contributing
to clustermembershipwere as follows (Supplementary data, Fig.
S1): Cluster 1, AXIN-1, Syntaxin-8 (STX8) and Placental Growth
Factor (PGF); Cluster 2, PGF, TNF-related apoptosis-inducing
ligand-R2 (TRAIL-R2) and DNA topoisomerase 2-beta (TOP2B);
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Table 1: Baseline characteristics of BKBC participants by cluster.

Cluster 1 Cluster 2 Cluster 3 P-value
n = 71 n = 241 n = 229

Clinical characteristics
Age, mean (±SD) 47.9 (±15.0) 50.0 (±16.6) 54.7 (±16.7) .001
Female 35 (49.3) 137 (56.8) 111 (48.5) .17
Race .002

White 44 (62.0) 139 (57.7) 159 (69.4)
Black 8 (11.3) 49 (20.3) 45 (19.7)
Other 19 (26.8) 53 (22.0) 25 (10.9)

eGFR (mL/min/1.73 m2) 72.9 (±28.7) 72.9 (±33.4) 39.9 (±30.4) <.001
Proteinuria (g/g creatinine), median (IQR) 1.1 (0.3, 2.9) 1.0 (0.3, 3.4) 2.4 (0.8, 5.1) <.001

Clinicopathologic diagnosisa <.001
Proliferative glomerulonephritis 26 (36.6) 73 (30.3) 62 (27.1)
Non-proliferative glomerulopathy 12 (16.9) 44 (18.3) 39 (17.0)
Paraprotein-related disease 4 (5.6) 22 (9.1) 9 (3.9)
Diabetic kidney disease 5 (7.0) 15 (6.2) 44 (19.2)
Vascular disease 6 (8.5) 26 (10.8) 18 (7.9)
Tubulointerstitial disease 4 (5.6) 9 (3.7) 32 (14.0)
Advanced glomerulosclerosis 7 (9.9) 33 (13.7) 21 (9.2)
Other 7 (9.9) 19 (7.9) 4 (1.7)

Comorbid conditions
Diabetes mellitus 7 (9.9) 32 (13.3) 81 (35.4) <.001
Hypertension 30 (42.3) 119 (49.4) 133 (58.1) .034
Systemic lupus erythematosus 10 (14.1) 47 (19.5) 32 (14.0) .23
HIV 2 (2.8) 1 (0.4) 3 (1.3) .22
Hepatitis B 0 (0.0) 3 (1.2) 1 (0.4) .44
Hepatitis C 1 (1.4) 0 (0.0) 9 (3.9) .006
Malignancy 8 (11.3) 31 (12.9) 40 (17.5) .26

Medications
ACEi 27 (38.0) 73 (30.3) 74 (32.3) .47
ARB 11 (15.5) 40 (16.6) 30 (13.1) .56
MRA 1 (1.4) 4 (1.7) 9 (3.9) .24
Calcium channel blockers 9 (12.7) 69 (28.6) 58 (25.3) .024
Beta-blockers 7 (9.9) 57 (23.7) 98 (42.8) <.001
Steroids 17 (23.9) 53 (22.0) 53 (23.1) .92
Immunosuppression 13 (18.3) 41 (17.0) 47 (20.5) .62

Clinical site .010
1 46 (64.8) 187 (77.6) 145 (63.3)
2 18 (25.4) 34 (14.1) 52 (22.7)
3 7 (9.9) 20 (8.3) 32 (14.0)

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; MRA, mineralocorticoid receptor antagonist.
aThe ‘other diagnosis’ category was composed of participants with minor abnormalities or relatively preserved parenchyma.
Data are presented as mean ± standard deviation, median (IQR), or count with frequencies (%) for binary and categorical variables.

and Cluster 3, PGF, CD40, and BMP and activin membrane bound
inhibitor (BAMBI).

Associations of clusters with clinicopathologic
diagnoses and histopathologic lesions

Differences in clinicopathologic diagnostic categories by cluster
are shown in Fig. 2 and Supplementary data, Table S4. Compared
with Clusters 1 and 2, individuals in Cluster 3 were significantly
more likely to have tubulointerstitial disease (P < .001) and dia-
betic kidney disease (P < .001), and less likely to have only minor
abnormalities or relatively preserved parenchyma (P = .003).
Associations between cluster membership and histopathologic
lesions are shown in Table 2 and Supplementary data, Table S5.
Compared with individuals in Cluster 1, individuals in Cluster
3 had more severe mesangial expansion, glomerular sclerosis,
acute tubular injury and interstitial fibrosis/tubular atrophy,
as well as more severe arteriolar sclerosis and inflammation

in the preserved and fibrosed interstitium. After multivariable
adjustment for age, race, sex and eGFR, membership in Cluster
3 remained significantly associated with more severe mesangial
expansion [odds ratio (OR) 2.44, 95% confidence interval (CI)
1.29, 4.64] and inflammation in the fibrosed interstitium (OR
2.49 95% CI 1.02, 6.10) compared with Cluster 1. There were
no significant differences in histopathologic lesion severity
comparing individuals in Cluster 1 and Cluster 2.

Associations of clusters with adverse clinical outcomes

One hundred seventeen individuals progressed to kidney failure
and 79 participants died during a median follow-up time of
43.1 months and 59.5 months, respectively. Figure 3 and Table 3
show associations of cluster membership with subsequent
kidney failure and death. In the fully adjusted model, member-
ship in Cluster 3 was associated with a 3.29-fold higher risk of
progression to kidney failure compared with Cluster 1 (Table 3).
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Figure 2: Clinicopathologic diagnoses by cluster. Shown are differences in clinicopathologic diagnostic categories by cluster membership. P-values obtained from Chi-
square tests: proliferative GN, P = .30; non-proliferative glomerulopathy, P = .93; paraprotein disease, P = .07; *diabetic kidney disease, P < .001; vascular disease, P = .53;

*tubulointerstitial disease, P < .001; advanced chronic changes, P = .28; *other (comprised of individuals with minor abnormalities or relatively preserved parenchyma),
P = .003.

Compared with Cluster 1, membership in Cluster 3 was asso-
ciated with a higher risk of death, but this association was not
statistically significant after multivariable adjustment including
eGFR.Membership in Cluster 2 was not associated with a higher
risk of kidney failure or death compared with Cluster 1.

Differences in pathway activities by cluster

Differences in pathway activities according to GSVA scores
between clusters are shown in Supplementary data, Fig. S2. The
top ranked pathway in Cluster 1 was epithelial–mesenchymal
transition. The top ranked pathway in Cluster 2 was Interleukin-
6 (IL-6)/Janus Kinase (JAK)/Signal Transducer and Activator of
Transcription-3 (STAT3) signaling, and the top ranked path-
ways in Cluster 3 was tumor-necrosis factor alpha (TNF-alpha)
signaling.

DISCUSSION

In this study, we investigated the use of plasma biomarker–
derived clusters for clinicopathologic phenotyping and as-
sessment of prognosis in individuals with biopsy-confirmed
kidney disease. Our unsupervised clustering approach, blinded
to any additional clinical information, partitioned subjects
into three separate clusters. Participants classified in Cluster
3 were slightly older, had worse kidney function, more severe
mesangial expansion and tubulointerstitial inflammation, and
were more likely to have tubulointerstitial and diabetic kidney
disease. Compared with those classified into Cluster 1, individ-
uals in Cluster 3 had a significantly higher risk of future kidney
failure; this difference was evident even after adjustment for
age, eGFR and proteinuria. The key contributing biomarkers in

each cluster and differences in pathway activities between clus-
ters may point toward important mechanisms involved in CKD
pathology and disease progression. Our findings demonstrate
that biomarker-derived clusters could aid with non-invasive
phenotyping andmay improve understanding of the underlying
heterogeneity of kidney diseases.

To our knowledge, this is the first study to investigate
associations of biomarker-derived clusters with disease pro-
gression and histopathologic findings across a spectrum of
biopsy-confirmed kidney diseases. In other disease settings,
data-driven phenotyping tools have been used to better char-
acterize heterogenous conditions such as diabetes [5], heart
failure [4, 16] and different types of malignancies [17–19]. In
the setting of kidney disease, cluster analysis has been used to
differentiate pathogenetic patterns in individuals with mem-
branoproliferative glomerulonephritis (GN) [20]. Another study
applied an unsupervised clustering approach on eight urine
biomarkers to predict incident CKD in HIV-infected women [7].
A study from the Chronic Renal Insufficiency Cohort showed
that cluster analysis on 72 variables, including baseline kidney
function, demographics and comorbidities, provided a useful
and simple metric to summarize patient heterogeneity and
comorbidity profiles in discrete categories of risk [6]. This study
reported strong associations of clusters with adverse clinical
outcomes and showed that the observed associations of future
cardiovascular events and death with cluster membership were
greater than those with established risk factors such as diabetes
or male sex [6]. By contrast, our study used biomarkers alone
to define cluster membership, which allowed us to evaluate
the ability of biomarkers in isolation to stratify individuals
into distinct categories of risk as well as to understand the
pathophysiologic pathways that maymediate such risk.We also
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Table 2: Associations of clusters with histopathologic lesions.

Cluster 1 Cluster 2 Cluster 3
Histopathologic lesions OR (95% CI) OR (95% CI) P-value OR (95% CI) P-value

Glomerular inflammation
Model 1 Reference 0.79 (0.40, 1.55) 0.488 1.01 (0.52, 1.96) .970
Model 2 Reference 0.77 (0.38, 1.54) 0.457 1.38 (0.67, 2.84) .378

Mesangial expansion
Model 1 Reference 0.96 (0.52, 1.78) 0.909 2.63 (1.45, 4.80) .002
Model 2 Reference 0.93 (0.50, 1.74) 0.828 2.44 (1.29, 4.64) .010

Segmental sclerosis
Model 1 Reference 0.91 (0.48, 1.72) 0.777 0.86 (0.45, 1.63) .645
Model 2 Reference 0.93 (0.49, 1.77) 0.827 0.85 (0.43, 1.67) .632

Glomerular sclerosis
Model 1 Reference 1.31 (0.72, 2.39) 0.375 2.72 (1.50, 4.93) .001
Model 2 Reference 1.23 (0.64, 2.35) 0.530 1.08 (0.55, 2.11) .825

Acute tubular injury
Model 1 Reference 1.38 (0.38, 5.06) 0.624 5.42 (1.62, 18.15) .006
Model 2 Reference 1.34 (0.35, 5.12) 0.664 2.14 (0.58, 7.88) .254

Inflammation, non-fibrosed interstitium
Model 1 Reference 0.58 (0.23, 1.44) 0.239 2.27 (1.01, 5.09) .048
Model 2 Reference 0.59 (0.23, 1.53) 0.277 1.38 (0.56, 3.42) .485

Inflammation, fibrosed interstitium
Model 1 Reference 0.91 (0.46, 1.79) 0.785 4.45 (1.91, 10.38) .001
Model 2 Reference 0.93 (0.46, 1.90) 0.844 2.49 (1.02, 6.10) .045

Interstitial fibrosis/tubular atrophy
Model 1 Reference 1.53 (0.80, 2.92) 0.199 5.08 (2.68, 9.63) <.001
Model 2 Reference 1.55 (0.74, 3.22) 0.242 1.86 (0.88, 3.92) .105

Arterial sclerosis
Model 1 Reference 0.99 (0.56, 1.75) 0.976 1.49 (0.83, 2.66) .180
Model 2 Reference 0.92 (0.50, 1.71) 0.791 0.77 (0.40, 1.51) .452

Arteriolar sclerosis
Model 1 Reference 1.39 (0.80, 2.42) 0.249 2.77 (1.57, 4.88) <.001
Model 2 Reference 1.42 (0.77, 2.60) 0.265 1.39 (0.73, 2.65) .317

Logistic regression models were fit using dichotomized histopathologic lesions as the dependent variable and cluster membership as the independent variable.
Model 1 is unadjusted, Model 2 is adjusted for age, sex, race and eGFR.

observed a strong association between cluster membership and
future kidney failure independent of baseline kidney function.

Membership in Cluster 3 was associated with higher risks of
future kidney failure and with the presence of diabetic kidney
disease and tubulointerstitial disease. In line with this, the top
hallmark pathway in Cluster 3 was TNF-α signaling, which plays
an essential role in the regulation of inflammatory processes
and the pathogenesis and progression of diabetic kidney disease
[21–23]. Several studies in individuals with diabetes and diabetic
kidney disease have shown that higher levels of TNF-α and
different TNF receptors were associated with adverse clinical
outcomes [22, 24–26]. The main biomarker that contributed
to the formation of Clusters 2 and 3 was PGF. We previously
identified a strong association between PGF, a member of the
vascular endothelial growth factor (VEGF) family, with a higher
risk of future kidney failure and more severe interstitial fibro-
sis/tubular atrophy (IFTA) [2]. Higher PGF levels have been found
to be associated with a higher risk of incident CKD [27], and
PGF has also been studied in the setting of preeclampsia where
lower circulating maternal PGF levels were found to be associ-
ated with the disease [28, 29]. In addition to PGF, we identified
CD40 as an important contributor to the formation of Cluster 3.
Soluble CD40 ligand has been shown to mediate inflammatory
responses and remodeling processes associated with tissue
injury and glomerular sclerosis in patients with diabetic kidney
disease [30]. Several main biomarker contributors to Cluster
3 are known to be involved in the regulation of inflammatory

pathways in the kidney [22, 24–29]. Our findings suggest that
targeting these pathways may be an important step toward
the development of new therapeutics of kidney diseases or
tracking response to therapy. Future basic and translational
research is needed to explore individual biomarkers identi-
fied in this study and evaluate their potential as therapeutic
targets.

The main contributor to Cluster 1, which was associated
with preserved kidney function and had a lower risk of disease
progression compared with Cluster 3, was AXIN-1. AXIN-1,
a cytoplasmic protein that functions as a negative regulator
of the Wnt-signaling pathway by downregulating β-catenin,
has primarily been studied in the setting of cancer [31–33].
Overexpression of Wnt1 and β-catenin has been shown to
be associated with podocyte dysfunction and albuminuria
in patients with diabetic kidney disease and focal segmental
glomerulosclerosis, suggesting that this pathway plays an im-
portant role in the pathogenesis of CKD [34–36]. A recent study
demonstrated decreased AXIN-1 expression in a rat model of
kidney fibrosis and found that inhibition of AXIN-1 plays a key
role in mediating Wnt/β-catenin signaling in hypoxia-induced
epithelial–mesenchymal transition in human proximal tubular
cells [37]. In our study, we observed the highest levels of AXIN-1
in Cluster 1, which may point toward an important role of
AXIN-1 in regulating anti-fibrotic responses in patients with
CKD. Our results provide support for further study of AXIN-1
and the Wnt/β-catenin signaling pathway in CKD.
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Figure 3: Associations of future kidney failure and death with cluster membership. Kaplan–Meier survival curves show associations between time-to-kidney failure

(A) and death (B) by cluster membership. P-values obtained from log rank test: P < .001 (A), P < .001 (B).

Table 3: Associations of clusters with risks of kidney disease progression and death.

Events Events per 100 person-years Model 1 P-value Model 2 P-value Model 3 P-value

Kidney failure
Cluster 1 6 1.4 Reference Reference Reference
Cluster 2 29 2.5 1.73 (0.72, 4.16) .224 1.54 (0.63, 3.78) 0.344 1.64 (0.66, 4.05) .283
Cluster 3 82 8.9 5.99 (2.61, 13.74) <.001 4.80 (2.04, 11.30) <0.001 3.29 (1.37, 7.90) .008

Mortality
Cluster 1 6 1.2 Reference Reference Reference
Cluster 2 21 1.5 1.20 (0.48, 2.98) .694 0.87 (0.34, 2.24) 0.780 0.83 (0.32, 2.15) .707
Cluster 3 52 4.1 3.40 (1.46, 7.95) .005 2.28 (0.94, 5.53) 0.068 1.64 (0.65, 4.16) .297

Results are expressed as hazard ratios (95% CI).
Kidney failure is defined as initiation of kidney replacement therapy.

Model 1 is unadjusted.
Model 2 is stratified by site and adjusts for age, sex, race, natural log transformed proteinuria,and primary clinicopathologic diagnosis.
Model 3 is model 2 and further adjusts for eGFR.

A significant strength of our clustering approach is that
clusters can define subgroups of individuals while mitigating
the problem of multicollinearity and implicitly handling poten-
tial measurement errors associated with individual variables
[6, 7]. Additional strengths of our study are the number of
protein biomarkers included in the analyses, the availability of
adjudicated histopathologic scores on lesion severity, and the
prospective study design with long-term follow-up data. Our
study has several limitations that warrant consideration as well.
First, our approach was exploratory. We measured biomarker
levels only in baseline samples and were not able to account
for therapy at the time of kidney biopsy which could alter an
individual’s risk of disease progression or death. An important
limitation of our pathway analysis was the narrow range and
nature of the protein markers studied. We selected three com-
mercially available Olink proteomics panels which were chosen
based on their potential relevance for kidney disease. Thus, the
protein biomarkers included in the study necessarily represent
processes related to cardiovascular disease, inflammation
and organ injury. Furthermore, we were not able to perform
mechanistic studies of signaling pathways which needs to
be addressed in future studies. Lastly, our findings will need
replication in a validation cohort.

In this study, we used a data-driven clustering approach
of protein biomarkers to identify subgroups of individuals
with biopsy-confirmed kidney disease. The three clusters sum-
marized the multidimensional information from 225 plasma
protein measurements at baseline and differed by clinico-
pathologic diagnoses, histopathologic lesion severity and future
risks of kidney failure. Our study demonstrates that clusters
of plasma protein biomarkers can be used for phenotyping
of patients with a diverse spectrum of kidney diseases and
can aid with uncovering proteins and pathways for further
investigation as therapeutic targets in CKD.
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Supplementary data are available at ckj online.
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