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Abstract: Ilimaquinone (IQ), a metabolite found in marine sponges, has been reported to have a
number of biological properties, including potential anticancer activity against colon cancer. However,
no clear understanding of the precise mechanism involved is known. The aim of this study was to
examine the molecular mechanism by which IQ acts on HCT-116 cells. The anticancer activity of
IQ was investigated by means of a cell viability assay followed by the determination of induction
of apoptosis by means of the use of acridine orange–ethidium bromide (AO/EB) staining, Annexin
V/PI double staining, DNA fragmentation assays, and TUNEL assays. The mitochondrial membrane
potential (∆Ψm) was detected using the JC-1 staining technique, and the apoptosis-associated proteins
were analyzed using real-time qRT-PCR. A molecular docking study of IQ with apoptosis-associated
proteins was also conducted in order to assess the interaction between IQ and them. Our results
suggest that IQ significantly suppressed the viability of HCT-116 cells in a dose-dependent manner.
Fluorescent microscopy, flow cytometry, DNA fragmentation and the TUNEL assay in treated cells
demonstrated apoptotic death mode. As an additional confirmation of apoptosis, the increased level
of caspase-3 and caspase-9 expression and the downregulation of Bcl-2 and mitochondrial dysfunction
were observed in HCT-116 cells after treatment with IQ, which was accompanied by a decrease in
mitochondrial membrane potential (∆Ψm). Overall, the results of our studies demonstrate that IQ
could trigger mitochondria-mediated apoptosis as demonstrated by a decrease in ∆Ψm, activation of
caspase-9/-3, damage of DNA and a decrease in the proportion of Bcl-2 through the mitochondrial-
mediated apoptosis pathway.

Keywords: Ilimaquinone; colon cancer; apoptosis; marine sponge; HCT-116 cancer cell line;
mitochondrial-mediated apoptosis pathway

1. Introduction

At the present time, the occurrence of colorectal cancer (CRC) has increased dramati-
cally, and it has become the third most common cancer type. Due to the unmet screening
and therapeutic strategies, along with the increasing incidence rates, this disease also
became the world’s second leading cause of cancer death. In 2020, CRC accounted for 10%
of the global cancer incidence and 9.4% of cancer deaths [1]. On the basis of population
growth, aging and human development projections, it is expected that there will be around
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3.2 million new cases of CRC worldwide by 2040. The increasing incidence of CRC is pri-
marily explained by increased exposure to environmental risk factors caused by changing
lifestyles and diets toward Westernization [2].

Conventional treatments to treat cancer are still the most common option of treatment,
despite the fact that they are mostly unsuccessful and lead to many deaths due to their
side effects. Nevertheless, research into developing new drugs from natural sources that
have fewer side effects is a very promising area for cancer research [3]. In the past few
decades, natural compounds derived from sponges have increasingly attracted attention as
potential innovative tools against cancer, since they are the sources of the majority of bioac-
tive compounds [4]. As a consequence of the structurally varied varieties of metabolites
obtained from sponges, they exhibit significant therapeutic potential for treating human
diseases, making them well-suited for the studies of marine natural product chemists [5].
In contrast, bioactive compounds derived from marine organisms have a typically complex
chemical structure, and their effects on the body affect multiple organs, functions, and
targets; therefore, studying their mechanisms of action is very challenging [6].

Ilimaquinone (IQ) is one of the sesquiterpene quinines that was firstly isolated from
the Hippospongia metachromia de Laubenfels marine sponge [7]. Quinone derivatives are
well-known for their cytotoxicity via various mechanisms, such as redox cycling, arylation,
intercalation, DNA strand breaks, free radical generation and alkylation. Anthracyclines
(doxorubicin and mitoxanthrone) are the best-known examples of quinones with antitumor
activity and inhibitory activity against type II topoisomerase. There has been a steady in-
crease in studies devoted to the biological activity of natural and semisynthetic quinones [8].
According to the reports, it exhibits a variety of biological properties, including anti-HIV,
antimicrobial, antimalarial, anti-inflammatory, antimitotic, antisecretory and anticancer
properties [9–14]. Additionally, it has been documented that it is capable of causing Golgi
fragmentation. This combination of biological properties makes it a promising candidate
for further study. The cytotoxicity of IQ has been reported against few types of cancer cell
lines [15–17]. In spite of this, further investigation is needed to establish the mechanism by
which IQ induces cell death.

In order to maintain the growth and homeostasis of tissues, apoptosis, or programmed
cell death, plays an important role in regulating the number of cells in tissues in order to
remove old, damaged and unwanted cells to maintain the growth and homeostasis of those
tissues. In spite of the fact that this process is self-destructive, it is vital to the development
and remodeling of tissues, immunoregulatory processes and several diseases [18]. Cells
of eukaryotes have to balance survival signals and death signals that originate from their
extracellular domains in order to maintain homeostasis. The process of cancer develop-
ment is characterized by the non-initiation of apoptosis by the dividing tumor cells after
DNA damage, and this is one of the primary characteristics of cancer development [19].
Apoptosis-inducing approaches could be useful in the treatment of cancer by reactivating
the apoptotic machinery within tumor cells. The primary mechanism of action of most
anticancer medications is to induce apoptosis in neoplastic cells. A number of natural
ingredients have also been shown to possess promising anticancer properties or cancer-
preventing effects by activating apoptosis pathways in carcinogenic cells [20]. This study
aimed to assess the anticancer properties of IQ in colorectal cancer cells as well as its
molecular mechanism for causing apoptosis.

2. Results
2.1. Induction of Cytotoxicity by IQ in HCT-116 Cells

Cell viability and proliferation were assessed using the MTT assay. In this assay,
yellow tetrazolium MTT is reduced by mitochondrial succinate dehydrogenase into a
purple formazan. The growth inhibitory effect of IQ was observed in HCT-116 cancer
cells with an IC50 of 17.89 µM, which indicates that IQ inhibits cell proliferation in a
dose-dependent manner (Figure 1A,B).
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Figure 1. (A) The chemical structure of Ilimaquinone. (B) Cytotoxic activity of IQ against HCT-116
cells. Error bars indicate the SD (standard deviation) of three independent experiments.

Likewise, to confirm that IQ is capable of inhibiting growth, we tested its effect of on
the confluency of HCT-116 cells using the inverted microscope method. As depicted in
Figure 2A–F, treatment with increased concentrations of IQ caused a gradual decrease in
the confluency of the monolayer of HCT-116 cells. Cells also rounded, shrank and lost their
alignment, and the intercellular spaces became larger.
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cells that were green and orange, with condensed chromatin, and those which were 
stained with AO and EB, were cells that have gone through an early apoptosis. As it was 
shown in the results of experiments carried out with HCT-116 cells treated with IQ, 
apoptosis is the most prevalent, being characterized by chromatin condensation as well 
as the degradation of the cell membrane (Figure 3A–H). 

Figure 2. Morphological analysis of HCT-116 cells under inverted microscope after treatment with
different concentrations of IQ with morphological changes. (A) Untreated, (B) 1.25 µM, (C) 2.5 µM,
(D) 5 µM, (E) 10 µM and (F) 20 µM.

2.2. Apoptosis Induction by IQ
2.2.1. Microscopic Analysis

In order to determine if apoptosis is caused by IQ, fluorescent microscopy analyses
were performed using AO/EB-stained cells. Using the staining method with the cells, it
was evident that the morphology of cancer cells treated with this method showed clear
signs of apoptosis. The green cells that were stained with only AO represented viable cells,
whereas the orange cells stained with EB were late apoptotic cells. On the other hand, the
cells that were green and orange, with condensed chromatin, and those which were stained
with AO and EB, were cells that have gone through an early apoptosis. As it was shown in
the results of experiments carried out with HCT-116 cells treated with IQ, apoptosis is the
most prevalent, being characterized by chromatin condensation as well as the degradation
of the cell membrane (Figure 3A–H).
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level of effectiveness. 

Figure 3. Fluorescence and bright-field microscopic studies of HCT-116 cells. (A–D) Untreated cells.
(E–H) Cells exposed to IC50 of IQ for 24 h. For fluorescence microscopy, cells were stained using AO
and EB.

2.2.2. Annexin V–Propidium Iodide (PI) Staining

The amount of phosphatidylserine (PS) occurring within a healthy cell is restricted
to the inner leaflet of the plasma membrane and is exposed to the cytoplasm. During
the process of apoptosis, the outer leaflet of membrane of the cell is ruptured, leaving PS
exposed on its outer leaflet as a result of the rupture in the membrane. By fluorescently
labeling Annexin V (AnnexinV-FITC), which is a calcium-binding protein of 36 kDa, it is
able to detect PS in apoptotic cells. Nevertheless, Annexin V is also capable of accessing
the necrotic cell membrane, owing to the fact that these membranes have lost their integrity
and are likely to allow Annexin V to pass through damaged plasma membranes. At the
late stage of apoptosis, PI stains necrotic or apoptotic cells. In this way, viable, early and
late apoptotic and necrotic cells can be distinguished by co-staining Annexin V-FITC and
PI. In consequence, flow cytometry is capable of measuring the degree of apoptosis in
treated cells by means of Annexin V binding and PI uptake and can distinguish between
early apoptotic and late apoptotic/necrotic cells in the treated cells. Using Annexin V–PI
staining, it was determined that IQ induces 7.62% early apoptosis, 25.74% late apoptosis
and 8.37% of cell death in HCT-116 cells after 24 h of incubation (Figure 4A). Based on these
results, it is clear that IQ is able to induce apoptosis in tumor cells with a remarkable level
of effectiveness.
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Figure 4. (A) Distribution of HCT-116 cells without treatment and treatment with IC50 concentration
of IQ determined by Annexin V–PI apoptosis assay. (B) DNA fragmentation in treated HCT-116,
Lane 1 (M): molecular marker, Lane 2 (C): control, Lane 3 (IQ): the cells treated with IQ (IC50),
(C,D) DNA fragmentation in treated HCT-116 cells. Apoptotic intensity of HCT-116 cells was
determined by flow cytometry after TUNEL assay. Shift of the population to the right in treated cells
compared to control cells indicates the apoptotic cell population.

2.3. Induction of DNA Fragmentation by IQ

One of the key events in the process of apoptosis is the fragmentation of DNA, which
differentiates apoptotic cells from necrotic ones. DNA cleavage is facilitated by nucleases
such as CAD (CASPASE-activated DNase), resulting in fragmented patterns visible on
agarose gels (Figure 4B).

TUNEL Assay

In order to confirm apoptosis, flow cytometry was used to quantify double-stranded
DNA fragmentation by measuring the TUNEL assay score. The DNA breakage can be
detected by this classical method, mostly by labeling the nucleic acid terminal end, which
was employed in the current study to determine the effects of treating HCT-116 cells
with IC50 of IQ after 24 h of DNA fragmentation. According to the results, there was a
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significant increase in the percentage of DNA damage (10.4%) in the cells treated with IQ
in comparison to the control cells (Figure 4C,D).

2.4. Reduction in ∆Ψm in HCT-116 Cells Treated with IQ

A lipophilic fluorochrome known as JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′- tetraethylbenz-
imidazolcarbocyanine iodide) was used to assess the mitochondrial membrane potentials
(∆Ψm). The ∆Ψm has been shown to be a sensitive indicator of mitochondrial permeability,
so in order to determine whether IQ is involved in mitochondrial apoptosis, JC-1 staining
was used to evaluate the mitochondrial membrane potential in treated cells by using a flow
cytometer. As shown in Figure 5A,B, cells that were treated with IQ showed a significant
decrease in JC-1 red fluorescence when compared to untreated cells. A decrease in the
JC-1 red fluorescence corresponds to an increase in the depolarization of the mitochondrial
membrane potential. This was indicated by a decrease in the MFI (mean fluorescence
intensity) of red fluorescence and an increase in the cells in the apoptotic gate (cells with
low red fluorescence). These findings indicate the mitochondrial pathway may be involved
in IQ-induced apoptosis.
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2.5. Expression of Genes Related to Apoptosis

The expression of apoptotic genes, such as caspase-3 and caspase-9, along with Bcl-2,
was detected by real-time PCR in HCT-116 cells treated with IQ in order to determine
whether or not these cells are subjected to apoptosis. The expression levels of caspase-3 and
caspase-9 in treated cells were found to have increased in comparison to those of untreated
cells, whereas the expression levels of Bcl-2 were found to have decreased in treated cells
(Figure 6).
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Figure 6. Gene expression levels in HCT-116 cells treated with the IC50 concentration of IQ. The
expression level of apoptosis-related genes was determined via quantitative real-time PCR. GAPDH
was used as an internal control. Error bars indicate the SD (standard deviation) of three indepen-
dent experiments.

2.6. Molecular Docking

The AutoDock Vina was used to pair the IQ with the apoptotic signaling proteins in
order to predicting receptor–protein binding modes and affinities. The low binding energy
of IQ for the protein indicated that it had a high affinity for it. A molecular coupling of
apoptotic signaling proteins associated with IQ shows that this protein has a high affinity
for binding with proteins. According to molecular coupling studies of IQ with apoptotic
signaling proteins, it binds proteins with high affinity. The top-rated pose of the ligand–
receptor complex is presented in Tables 1 and 2 along with a summary of the binding
affinity of the complex. It is apparent from Figures 7–10 that IQ occupied the active site in a
variety of different ways.

Table 1. Binding affinities of top-rated pose of ligand–receptor complex.

Compound Name 5I9B 1CX2 2AR9 4S0O

Ilimaquinone −6.9 −8.9 −8.1 −8.2
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Table 2. Binding affinities of top-rated pose of ligand–receptor complex.

Receptor–Ligand Receptor–Ligand Interactions Distance in Angstroms

2AR9–Ilimaquinone

(B:LYS272) HZ1-O (Ligand) 2.50
(B:LYS272) HZ3-O (Ligand) 2.53
(B:LYS272) HZ3-O (Ligand) 2.75
(B:LYS272) CE-O (Ligand) 3.51

(A:GLU240) OE1-C (Ligand) 3.64
(A:GLU240) OE1-Pi Anion interaction 3.41

(A:LEU4) Alkyl–Alkyl interaction 4.49
(B:ALA3) Alkyl–Alkyl interaction 4.74

(B:ALA3) Alky–C Alkyl interaction 3.94
(A:LEU4) Alkyl–C Alkyl interaction 4.23
(A:LEU7) Alkyl–C Alkyl interaction 3.99

(B:LEU7) Pi-Alkyl interection 4.77

1CX2–Ilimaquinone

(ASN7) HD21-O (Ligand) 2.56
(ALA125) HN-O (Ligand) 2.35
(PRO123) O-H (Ligand) 1.67

(VAL124) CA-O (Ligand) 3.57
(PRO123) Alkyl–Alkyl interaction 5.22
(ALA125) Alkyl–Alkyl interaction 4.27

(ALA125) Alkyl–C Alkyl interaction 3.86
(MET16) Alkyl–C Alkyl interaction 4.69

(TYR105) Pi-Alkyl interaction 4.06
(CYS4) Pi-Alkyl interaction 5.02

(PRO122) Pi-Alkyl interaction 4.67

4S0O–Ilimaquinone

(ALA42) HN-O (Ligand) 2.44
(ALA42) HN-O 2.25
(LEU47) HN-O 2.27
(GLU41) CA-O 3.61
(ALA42) CA-O 3.57
(ALA46) CA-O 3.54
(LEU45) O-C 3.29

(ILE133) CD1 Pi Sigma interaction 3.50
(ILE133) Alkyl–Alkyl interaction 4.88

(LEU125) Alkyl–C Alkyl interaction 4.78
(ILE33) Alkyl–C Alkyl interaction 5.02
(ILE31) Alkyl–C Alkyl interaction 3.90

(ALA46) Pi-Alkyl interaction 4.47

5I9B–Ilimaquinone

(ARG207) NH1-Pi interaction 4.41

(CYS163) SG-Pi interaction 3.70
(TRP206) Pi-Alkyl interaction 5.06

(TRP206) Pi-C Alkyl interaction 4.65
(PHE256) Pi-Alkyl interaction 4.11

(PHE256) Pi-C Alkyl interaction 3.87
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ization of hydrophobic interaction. (E) Two-dimensional representation describing the binding of IQ
with an active site of 4S0O.
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(D) Visualization of hydrophobic interaction. (E) Two-dimensional representation describing the
binding of IQ with an active site of 1CX2.
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with 2AR9. (B) Close-up of interaction of IQ with 2AR9. (C) Visualization of hydrogen bond.
(D) Visualization of hydrophobic interaction. (E) Two-dimensional representation describing the
binding of IQ with an active site of 2AR9.
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3. Discussion

A variety of compounds are currently being investigated for their potential anticancer
properties, with the aim of improving cancer treatment [3]. Nevertheless, a number of
treatments have failed due to intolerance or resistance, and as a result, the disease has
progressed. Over the past few years, the interest in the use of marine sponges has increased
significantly because they possess a diverse range of bioactive metabolites with fewer side
effects [4]. This study aimed to investigate the anticancer properties of IQ, a sesquiterpene
quinine component, followed by exploring the mechanisms behind the activities of this
component leading to cancerous cell death [15–17]. There has also been evidence that IQ
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possesses some anticancer activity against a few cancers, though its underlying mechanism
has yet to be thoroughly elucidated. During this study, IQ was analyzed for its growth
inhibition properties against the colorectal cancer cell line HCT-116. A dose-dependent
inhibition of cell proliferation was observed in the results obtained with IQ.

Treatment of cancer has traditionally focused on inhibiting growth and inducing
apoptosis in cancer cells, regardless of the specific sites of action of pharmacological
agents [21]. As part of our investigation to determine whether the growth inhibitory effect
of IQ is attributable to its apoptosis-inducing effect, AO/EtBr staining, flow cytometric
analysis and DNA fragmentation analysis were conducted. Based on our observations,
the morphological changes observed during cell death were consistent with apoptosis.
IQ was more potent in inducing early apoptosis and late apoptosis, and fewer necrotic
cells after 24 h. In early apoptotic cells, specific signals attract phagocytes without causing
inflammation, whereas in late apoptotic and necrotic cells, further pro-inflammatory signals
are released [22].

In one of the earliest stages of apoptosis, cells that are undergoing the process of
apoptosis reorient the phosphatidylserine from the inner membrane to the leaflet on the
outer membrane. In this condition, annexin V can bind to a cell surface, which can be
used as a marker for the onset of apoptosis. Using the Annexin V assay, we determined
whether HCT-116 cells exposed to IQ were capable of undergoing apoptosis. In the analysis,
it was found that IC50 concentrations of IQ for 24 h resulted in early and late apoptosis
cells (resulting in more late apoptotic cells than early apoptotic cells). As a result of the
permeabilization of the plasma membrane, early apoptotic cells can become late apoptotic
ones [23]. A very small percentage of cells died because of necrosis. This may be because
the cells that died by apoptosis were later degraded because they did not have the capacity
to repair their DNA during late apoptosis [24]. As a result of the apoptotic properties of
IQ, cells also showed significant DNA fragmentation as well. By selectively cleaving vital
substrates within the cell, caspases have been shown to induce apoptotic morphological
changes as well as DNA fragmentation when activated [25,26]. Accordingly, we found that
IQ causes caspase-3 activation as evidenced by the detection of caspase-3 activity in treated
cells. When caspase-3 is activated, the cell initiates DNA fragmentation and apoptosis
by activating enzymes such as DNase which, in turn, results in DNA fragmentation and
consequently, apoptosis. As a result of our analysis, we suggest that the anticancer activity
of IQ against HCT-116 cells might be mediated by the promotion of cell apoptosis.

There are two main pathways that trigger apoptosis: mitochondrial signaling (in-
trinsic) and death receptor signaling (extrinsic). Death receptors trigger activation of
caspase-8 through Fas/FasL, which belongs to the family of tumor necrosis factor [27,28].
The mitochondrial pathway is involved in the action of several anticancer drugs using
cytochrome c (cyt-c), apoptotic protease activating factor 1 and caspase-9 [29]. There are
many proteins within the Bcl-2 family that regulate apoptosis in mitochondria, including
pro-apoptotic proteins such as Bax, Bad, and Bak, and antiapoptotic proteins such as Bcl-2,
Bcl-xL, and Bcl-w [30,31]. A combination of Bax activation and Bcl-2 inhibition leads to
mitochondrial disruption, which is followed by cytochrome-c release from the outer mi-
tochondrial membrane into the cytosol. As the apoptotic protease-activating factor 1 and
cytochrome-C are associated cytosolically, they are able to activate caspase-9, which, in
turn, triggers caspase-3 and caspase-7 [32,33]. One of the key executioners of apoptosis
is caspase-3, which is responsible for cleaving and in activating cellular substrates such
as poly (adenosine diphosphate-ribose) polymerase (PARP) [34]. The PARP is a DNA
repair enzyme that has a molecular weight of b116 kDa and is triggered by DNA strand
breaks. Caspase-3 activation and apoptosis have been linked to PARP cleavage [35]. In the
present study, the transcriptional level of several mitochondrial apoptosis-related genes was
measured. Based on our gene expression study, we identified elevated levels of caspase-3
and caspase-9, and Bcl-2 levels were significantly decreased. These results suggest that
mitochondria-dependent pathways are involved in IQ-induced apoptosis in HCT-116 cells.
This mechanism was further confirmed via a mitochondrial membrane potential (∆Ψm)
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assay. The activation of mitochondrial dysfunction as part of an early apoptotic process
is characterized by alterations in the mitochondrial redox potential as well [32,33]. Based
on our findings, we were able to demonstrate that IQ possesses the ability to decrease
the cell’s mitochondrial membrane potential and thus lead to the mitochondrial apoptosis
pathway (Figure 11). Various natural products were shown to have antitumor efficacy
against different types of cancers by using mitochondrial apoptotic pathways [36–39].
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Nowadays, approaches such as virtual screening are widely applied in drug discovery
and design due to advances in technology, computational science and the integration of
biological and pharmaceutical studies [40]. A structure-based virtual screening method is
a virtual screening technique that makes use of molecular docking in order to model and
analyze the binding relations between a ligand and a target molecule in order to optimize
the drug discovery process [41]. Molecular docking is one of the latest tools for designing
stable and effective interactions between ligands and receptors, as well as predicting the
optimal combination of ligands and receptors [42]. There are two fundamental aspects of
docking programs, which are search algorithms and the scoring function, both of which
are fundamental to a successful docking. A search algorithm can be regarded as a process
that can lead to a more complete understanding of the best methods for docking a ligand
onto a molecular target amongst the myriad configurations of ligands. In view of the fact
that a vast number of binding modes are found between a ligand and a biological target
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molecule, a search algorithm cannot only be used to consider the optimal orientation of the
ligand with reference to the target, but can also be used to make docking as economical and
time-efficient as possible, as well as to provide the optimal orientation of the ligand with
respect to the target [43]. Moreover, in the development of novel drugs, the use of molecular
docking programs has become an increasingly popular method of in silico drug screening,
partly because it is quicker and less expensive than traditional laboratory experiments, and
also because it is a faster and cheaper method of refining drugs than physical screening.
A computational protein–ligand docking technique was utilized in this study in order
for the candidate ligand IQ to interact with several apoptotic signaling target proteins
(Table 2). As a whole, we demonstrated the binding energy between IQ and apoptotic
proteins, hydrogen bond interactions and hydrophobic interactions for further analysis.

4. Materials and Methods
4.1. Cell Culture

Human colorectal cancer cell line HCT-116 was gathered from the National Centre
for Cell Science (NCCS), situated in Pune, India. The DMEM medium supplemented with
10% fetal bovine serum (Hi-Media®, Mumbai, India), 100 units of penicillin (U/mL) and
100 (µg/mL) of streptomycin was used for culturing the cells. The cells were maintained at
37 ◦C in a humidified atmosphere of 5% CO2.

4.2. Cell Viability Assay

The MTT assay was used to determine the effects of IQ on viability of HCT-116 cancer
cells. In order to harvest cells from T-25 flasks, cells were trypsinized and aspirated into
a 5 mL centrifuge tube. Cells were collected via centrifuging at 300× g. By using culture
medium, the cell count was adjusted so that approximately 10,000 cells were in 200 µL
of suspension. Each well of the 96 well microtiter plate was filled with 200 µL of the cell
suspension, and the plate was incubated at 37 ◦C in 5% CO2 for 24 h. Aspiration of the
spent medium was carried out after 24 h. In order to treat the cells, 200 µL of IQ at different
concentrations (1.25 µM, 2.5 µM, 5 µM, 10 µM and 20 µM) was introduced into the wells,
and the plates were further incubated at 37 ◦C in 5% CO2 atmosphere for 24 h. Each well
was then filled with 200 µL of medium containing 10% MTT reagent, and then incubated
for 3 h at 37 ◦C under 5% CO2. The culture medium was removed completely without
disturbing the crystals that had formed in the medium. Finally, 100 µL of solubilization
solution (DMSO) was added to the plate and agitated gently in a gyratory shaker to dissolve
the formazan. A microplate reader was used to measure the absorbance at 570 nm and
630 nm. Using the dose–response curve for the cell line, we calculated the concentration of
test drug required to inhibit the cell growth by 50% (IC50) after subtracting the background
and blank [44].

4.3. Acridine Orange–Ethidium Bromide (AO/EB) Staining

In 6-well plates, cells were plated at a density of 3 × 105 cells/per 2 mL, followed by
incubation in a CO2 incubator at 37 ◦C for 24 h. Cells were then washed with 1 mL of 1X
PBS after aspiration of spent medium. Following treatment with IQ (IC50), the cells were
further incubated for 24 h. After incubation, the medium was then removed and washed in
cold PBS. As the next step, 500 µL of AO/EB staining solution (10 µL of AO (2 mg/mL) and
10 µL of EB (2 mg/mL) in 1 mL of PBS) was added to the cells. The mixture was thoroughly
mixed and incubated for 5 min. A fluorescent microscope (XDFL series, Sunny Instruments,
China) was used to take images immediately after washing the cells in PBS three times [45].

4.4. Annexin V–PI Apoptosis Assay

Cell pre-treatment in 6-well plates was carried out as described above. After removal
of the spent medium, 1 mL of PBS was added. Then, IQ (IC50) was added to 2 mL of
culture medium and cells were treated for 12–16 h. As a negative control, wells were left
untreated. After incubation, medium was collected from each well, transferred to 5 mL
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centrifuge tubes and washed with 500 µL of PBS. Immediately, after removing the PBS
solution from the sample, 200 µL of trypsin-EDTA solution was added and incubated at
37 ◦C for 3–4 min. After a few minutes, the wells were filled with medium again, and the
cells were harvested into centrifuge tubes. The centrifugation was performed at 300× g
for 5 min at 25 ◦C. Following centrifugation, the supernatant was removed and washed
twice with PBS. After removing the PBS, cells were resuspended in 1X binding buffer at
a concentration of 1 × 106 cells/mL. In the following step, 100 µL of cell suspension was
transferred into a 5 mL tube, and Annexin V–AbFlour 488 was added. For optimal results,
cells were gently mixed and incubated for 15 min in the dark at 25 ◦C. In the end, 400 µL of
1X binding buffer and 2 µL of PI were added and mixed thoroughly. Cells were analyzed
by flow cytometry immediately after PI was added [46].

4.5. DNA Fragmentation Assay

The HCT-116 cells (3 × 105 cells/well) were cultured in 6-well plates, and then treated
for 24 h with IQ (IC50). Using standard phenol–chloroform extraction procedures, DNA
was extracted. Tris-EDTA (TE) buffer was used to dissolve the extracted DNA, and then 2%
agarose gels were used to analyze the DNA. To visualize DNA, the gel was stained with
ethidium bromide and photographed using a gel doc system [47].

4.6. Apoptotic DNA Degradation Assay by TUNEL (Terminal Deoxynucleotidyl Transferase dUTP
Nick End Labeling) Assay

In accordance with the manufacturer’s instructions, DNA degradation during apop-
tosis was detected by the TUNEL assay using APO-DIRECTTM Kit (Pharmingen, BD
Biosciences, San Diego, CA, USA) provided by the manufacturer. Cell pre-treatment in
6-well plates was carried out as described above. Cells were washed with 1 mL of 1X PBS
after aspiration of spent medium. In the dark, cells were fixed in 4% paraformaldehyde
solution for 1 h after being treated with IQ (IC50) for 24 h. For permeabilization, the cells
were washed with PBS and incubated on ice for 20 min in a solution containing 1% Triton
X-100 and 0.1% sodium citrate. In humidified air at 37 ◦C and in the dark, DNA was then
labeled by incubating the cells with TUNEL reaction mixture (Tdt enzyme and fluorescein-
conjugated dUTP) for 60 min. The percentage of TUNEL-positive cells was determined
using flow cytometry by analyzing the histograms generated [48].

4.7. Mitochondrial Membrane Assay

Cell pre-treatment in 6-well plates was carried as described above. Following the
aspiration of the spent medium, 1 mL of PBS was added. Then, the cells were treated
with IQ (IC50) and further incubated for 24 h. Following incubation, the medium was
withdrawn from all the wells and transferred into centrifuge tubes and washed 500 µL
of PBS. Following the removal of PBS, 200 µL of trypsin-EDTA solution was added and
incubated for 3–4 min at 37 ◦C. In the following step, cells were harvested directly into
centrifuge tubes by pouring the culture medium back into the respective wells. A centrifuge
was performed at 300× g at 25 ◦C for 5 min, and the supernatant was discarded. After
washing the pellet twice with PBS, 0.5 mL of freshly prepared JC-1 working solution was
added and incubated in a CO2 incubator at 37 ◦C for 10–15 min. After incubation, cells
were washed twice with 1X assay buffer and then centrifuged for 5 min at 400× g. After
centrifugation, cells were resuspended in 0.5 mL of 1X assay buffer and analyzed by flow
cytometry [49].

4.8. Analysis of the Expression of Genes Involved in Apoptosis

According to the manufacturer’s instructions, cellular RNA was isolated using Tri-
Pure Isolation Reagent (Sigma-Aldrich®, Bangalore, India). To quantify the amount of
RNA obtained, 1.2% agarose gels were electrophoresed, stained with ethidium bromide
and photographed under ultraviolet light. RNA was reverse-transcribed using the RT-
first strand synthesis kit from Qiagen (Valencia, CA, USA). To measure gene expression
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levels relative to controls, SYBR green qRT PCR was used (Applied Biosystems® 7500
Fast Real-Time PCR machine, Foster City, CA, USA). Data were analyzed using the ∆∆Ct
method, with fold changes expressed over control groups. As shown in Table 3, the primer
pairs were used separately. In order to determine relative gene expression, the following
conditions were used: reverse transcription for 45 min, one cycle of 95 ◦C and 10 min hold,
followed by 40 cycles of 95 ◦C and 15 s hold. The annexed temperature (caspase-3 and
caspase-9 and Bcl-2 and GAPDH) was 60 ◦C, and a 60 s hold was used [50].

Table 3. Sequences of primers of apoptosis regulatory genes.

Gene Forward Primer Reverse Primer

GAPDH 5′ CATGGGGAAGGTGAAGGTCGA 3′ 5′ TTGGCTCCCCCCTGCAAATGAG 3′

Bcl-2 5′ TTCGATCAGGAAGGCTAGAGTT 3′ 5′ TCGGTCTCCTAAAAGCAGGC 3′

Caspase-3 5′ TGCGCTGCTCTGCCTTCT 3′ 5′ CCATGGGTAGCAGCTCCTTC 3′

Caspase-9 5′ CCAGAGATTCGCAAACCAGAGG 3′ 5′ GAGCACCGACATCACCAAATCC 3′

4.9. Molecular Docking Analysis

Crystal structures of several apoptotic signaling proteins, such as BAX (PDB: 4S0O.pdb),
caspase-3 (PDB: 5I9B.pdb), COX-2 (PDB: 1CX2.pdb) and caspase-9 (PDB: 2AR9.pdb), known
to be associated with CRC were retrieved from Protein Data Bank (RCSB PDB). An eminent
database, PubChem, was used for the retrieval of the three-dimensional structure of IQ,
and Open Babel was used to convert this structure to the PDB format [51]. In order to dock
the IQ with the receptor structure individually (BAX, caspase-3, COX-2 and caspase-9),
molecule docking software AutoDock 4.2.6 was used [52]. This study used a similar dock-
ing protocol to that implemented in previous studies [53,54]. Using an auto grid [52], the
grid map using a grid box was prepared. The grid size was set to 125× 106× 156 xyz points
for 1CX2, 97.81 × 81.33 × 125.13 xyz points for 2AR9, 75.64 × 41.01 × 50.63 xyz points for
4S0O receptors and 54.76 × 55.66 × 50.62 xyz points for 5I9B. The grid center for 1CX2 was
designated at dimensions (x, y and z) 42.780, 34.762 and 37.574; for 2AR9 at (x, y and z)
21.40, 35.16 and 22.79; for 4S0O at (x, y and z): 20.58, −0.17 and 21.40; and for 5I9B at
(x, y and z): −6.70, −19.22 and −10.84. The grid box was designed to enclose both receptor
binding sites and provide adequate space for ligand translation and rotation. Predicted
binding energies of docked conformations were ranked using UCSF Chimera [55] in order
to determine the intermolecular hydrogen bonding of active-site amino acid residues [56].

5. Conclusions

Based on the results of the present study, it can be concluded for the first time that
IQ triggers the process of apoptosis (programmed cell death) in HCT-116 carcinoma cells.
There appears to be a requirement of a 24 h treatment period in order to achieve the
effect of inducing apoptosis. As it turns out, IQ is more effective at inducing apoptosis,
since it delivers a higher degree of efficacy at lower concentrations as compared to the
other apoptosis-inducing agents. According to the research, mitochondrial pathways and
caspase-3-mediated pathways are involved in IQ’s pro-apoptotic effects, which may explain
the pro-apoptotic effects of IQ. As a whole, the present study offers valuable mechanistic
insights into the mechanisms through which IQ exerts its anticancer effects on tumor cells.
These preliminary data are encouraging and may contribute to the development of new
chemotherapeutic agents based on the marine environment in the near future that could be
used to treat colorectal cancer and other undesirable and life-threatening cancers that are
difficult to treat.
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