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Abstract: We present a theoretical and experimental study in which we increased the sensitivity of a
phase-sensitive optical time-domain reflectometer (phi-OTDR). This was achieved by constructing
coils in the sensor cable, which increased the total amplitude of the impact on the fiber. We demon-
strate this theoretically using the example of a phase-sensitive reflectometer model and practically in
testing grounds with a buried nearby conventional sensor and a sensor with coils. The sensitivity
increased 2.2 times. We detected 95% of events when using coils, versus 20% when using a straight
cable. The suggested method does not require any modifications to the device.

Keywords: fiber optic sensor; distributed fiber optic sensor; phi-OTDR; sensitivity improvement

1. Introduction

Distributed fiber-optic systems (FOSs) are used in a large number of areas for recording
acoustic impacts: in seismometry, including for oil wells [1–7]; for monitoring activity near
long objects, such as perimeters and pipelines [8–10]; and for monitoring railway tracks
and transport [11,12] as well as structures, including engines, buildings, and composite
airplanes.

Scientists at the University of Texas under the leadership of GF Taylor introduced
FOSs based on phase-sensitive reflectometry in the early 1990s [13–15]. Over the past years,
many studies have been carried out on these systems in various directions, including signal
recognition [9,16,17], increasing the range of the controlled area [8,18–20], and increasing
the system’s spatial resolution [21–23].

One important parameter of such FOSs is their acoustic sensitivity threshold, that is,
the minimum acoustic or vibration impact that the system can register. Several methods
have been proposed to increase the acoustic sensitivity of FOSs, such as the use of a special
cable with improved acoustic sensitivity [24–28], several photoreceivers together with
special data-processing algorithms [29,30], and a special optical fiber with weak fiber Bragg
gratings (wFBGs) recorded in a fiber with a known periodicity [31–34]. One possibility for
increasing the SNR was investigated by using two probe pulses simultaneously [35–38],
including with a certain polarization configuration [39,40].

In this work, we study another way to increase the acoustic sensitivity of a phase-
sensitive optical time-domain reflectometer (phi-OTDR). Its advantages include simplicity
and lack of need to upgrade any devices. The effect is achieved by using fiber coils in the
cable in certain places or with some periodicity. This method of increasing the acoustic
sensitivity does not exclude other existing methods and can be used together with them.

2. Theory

A phi-OTDR is a device that can detect acoustic impacts on a cable based on Rayleigh
backscatter analysis. The schematic of the device is shown in Figure 1. The radiation source
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is a frequency-stabilized narrow-linewidth laser, with a coherence length that is much
greater than the pulse half-width (τpulse~10...500 ns). This causes backscattered radiation
interference in each pulse position. The continuous radiation from the laser is amplified
by an erbium-doped fiber amplifier (EDFA). After the acousto-optic modulator (AOM)
modulates the radiation to probing pulses, it goes to the sensor fiber through the circulator
in the forward path. The backscattered radiation passes in the opposite direction in the
circulator. Then, it is amplified by the pre-EDFA. Its amplified spontaneous emission (ASE)
is excluded after it passes the narrow optical filter. Then, radiation enters the photodiode
(PD) and is digitized on the analog-to-digital converter (ADC) before processing on the
personal computer (PC).

Figure 1. Phi-OTDR schematic.

Due to the long coherence length of the radiation source on the phi-OTDR’s PD, the
amplitudes of the backscattered waves are summed, taking into account their phases. For
one probe pulse, the addition occurs over a section whose length is equivalent to the
half-width of the pulse duration

(
∆z = 1

2 ·
c
n ·τpulse

)
, which is equal to the system’s spatial

resolution, where c is the speed of light, and n is the effective refractive index of fiber core.
An acoustic wave from an external source decays with distance. If the wave reaches its
maximum amplitude at each point of the fiber with a length of ∆z, then attenuation due
to the section length will not occur. The acoustic sensitivity will increase due to the fiber
coils, since the amplitude of the impact over the entire interval of the spatial resolution
does not decrease. This increases the impact’s contribution on the resulting interference
signal. The method’s operating principles are demonstrated in Figure 2 for simulated data.
Figure 2a shows how the intensity of fiber deformation depends on the cable’s coordinates
and the distance from the impact site. Figure 2b shows a similar change in intensity when
the cable is laid with a coil. Obviously, for the same cable length as in the first case, the
greater level of impact is total. For example, compare the square under 1–7 m in graph 2a
with that under 5–11 m in Figure 2b. Thus, the signal produced by the device also should
increase in intensity.

Notably, in this case, it is necessary to match the fiber’s length with the coordinates
of the controlled object since the cable’s physical length will also contain the length of the
fiber spools.

If the reflecting centers on the fiber section for the two cases under consideration are
displaced, then the attenuation of the amplitude along the length of the sensor will change.
An example of the resulting picture of a simulation after filtering is shown in Figure 3.
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Figure 2. Diagram of the acoustic signal propagation for straight (a) and coil (b) configurations.

Figure 3. Plots of scattering center shift distributions along the cable for straight (a) and coil (b)
configurations.

This change in the signal response will increase the impact’s contribution in the data
recorded by the receiver (Figure 4), which will increase the amplitude. Following the
operating principles of a phi-OTDR, it is convenient to check this using the filtered signal,
as shown in Figure 5.
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Figure 4. Reflectogram fluctuations for the sensor with (a) and without (b) fiber coil.

Figure 5. Filtered modeled signal for straight cable and fiber coils.

Fiber coils can be used for other applications than signal enhancement at a certain
point. Some applications do not require using the full available length of the phi-OTDR
sensor, e.g., perimeter monitoring of an object or a short pipeline that has a length less than
20 km. The user only needs 20 km or less out of the usual 50 km length of a phi-OTDR. In
such conditions, it is possible to create coils from cable length equal to the spatial resolution
∆z of the phi-OTDR with the same ∆z period between them in the buried trench. In such
configurations, a fiber with length L will be used for a sensor with length L/2. Coils can be
created on the entire sensor length or only in some special and important zones to enhance
sensitivity.

3. Modeling

For theoretical analysis of the proposed method, a mathematical model was developed
of the signal-formation process in a fiber-optic sensor system based on a phase-sensitive
reflectometer with fiber coils. It is interpreted using the following considerations [41].
The amplitude for a point with the x coordinate along the cable undergoes attenuation
with a coefficient α, and it also has the probability density of a Gaussian distribution, as
determined by Formula (1):

A(x) = A0·exp(−2xα)·p(a), (1)
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where p(a) = 1
σ
√

2π
exp
{
− (a0−a)2

2σ2

}
is the probability density of a Gaussian distribution,

and σ is the scale parameter.
The radiation source is not ideal and has instability over time. The array of values ν

for the radiation frequency source within the interval of simulated time interval T at each
moment is described by Equation (2):

ν = ν0 +

∣∣∣∣F−1
{√

Sννp2T
}∣∣∣∣, (2)

where ν0 is the laser frequency at the initial moment, in Hz; F−1{ } is the inverse Fourier
transform; Sν = Ŝν·|F{rand(1)}|2 1

νp2T is the laser frequency’s instability, as determined by

the envelope Ŝν; νp is the the pulse repetition rate (in our case, 1 kHz); T is the duration of
simulated time, in s; and F{ } is the Fourier transform.

The radiation detected by the receiver has a phase that depends on the source wave-
length λ = c/ν and the distance to point x along the cable and is determined by Formula (3):

Θ(x) =
4πn(x + ∆x)

λ
, (3)

where n is the effective refractive index of the fiber core, and ∆x is the coordinate displace-
ment due to external influence, in µm.

In the simulation, a shift of the scattering centers was specified, similar to the shift
of a fiber section wound around a piezoelectric cylinder. The simulation was carried out
for various values of the maximum shear at the end of the piezoelectric ∆Lmax with the
frequency νac. The impact is described by Equation (4):

∆x(l, t) =

{
∆Lmax· l

lmax
·sin(2πνact)

0 , otherwise
,
{

0 ≤ l ≤ lmax
t ∈ timpact

. (4)

Thus, the complex amplitude from each point, taking the phase into account, is
determined by Equation (5).

E(x) = A(x)·exp(iΘ(x)), (5)

where i is the imaginary unit.
For sensors based on phi-OTDR, the receiver detects the interference result of all

backscattered waves at half-pulse width τpulse/2, which can be written according to
Equation (6):

Esampling(x) =

x+
τpulse

2 · c
n∫

x

E(x)dx. (6)

In addition to interference, the receiver has a transfer function, as defined by Equation (7).

Mask(υ) = exp

(
−
[

υ

υPD

]2
)

, (7)

where υPD is the receiver’s bandwidth.
By adding the receiver’s transmittance function, expressed according to Formula (7),

to the resulting intensity described by Formula (6), we obtain Expression (8), which deter-
mines the intensity recorded by the receiver for each point at coordinate x along the cable.
We obtain Formula (9) by writing out all of the components in this expression:

IReceiver(x) =
∣∣∣Esampling(x)

∣∣∣2 ⊗ F−1{Mask(υ)}, (8)
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where ⊗ is the convolution operator.

IReceiver(x) =

∣∣∣∣∣∣∣∣
x+

τpulse
2 · c

n∫
x

A0·exp(−2xα)·p(a)·exp
(

i
4πn(x + ∆x)

λ

)
dx

∣∣∣∣∣∣∣∣
2

⊗ F−1

{
exp

(
−
[

υ

υPD

]2
)}

. (9)

The output data after the simulation were the SNR values for various input parameters,
including the impact amplitudes. The SNR was calculated as follows.

After simulation, the original signal passed a narrow-band filter corresponding to the
frequency of the impact. The algorithm used a 10th-order Butterworth bandpass filter with
a 3 dB width of less than 5 Hz from the central frequency of exposure.

The standard deviation over time interval ∆t (for each sensor point) was considered
without influence (t/∈ tImp). This value was equal to the RMSnoImp parameter.

For the entire simulation time, the standard deviations (SDs) were found for time
sections ∆t:

SNRSD(i) =
SD(i)

SDnoImp

SNR = max(SNRSD(i))

The data-processing stages from raw data to the final SNR values are shown in Figure 6.

Figure 6. View of the data at different stages of the algorithm: (a) raw data with 1 kHz discretization;
(b) data after bandpass filtering; (c) filtered data of standard deviations in 500 ms windows with
250 ms steps; and (d) the final SNR with 250 ms steps.
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Due to the system behavior’s random nature, the value of SDnoImp can vary and have
different values, even for areas where there is initially no impact. Because of this, the
SNRSD can differ, and SNRSD > 1 in any region does not mean that there has been an
impact. In further modeling, the condition chosen for stable recognition of an impact was
when the largest value in the array SNRSD(i) ≥ 5.

For a more accurate assessment of the system, 1000 realizations were simulated for
each amplitude of the impact. A simulation was carried out for two cases: a classic cable
(attenuation of the impact immediately from the epicenter) and an increased length of
optical fiber corresponding to the system’s spatial resolution. In this case, an impact was
simulated, and the classic cable showed amplitudes significantly lower than the threshold
of 1 nε. Distribution histograms of the obtained SNR values are shown in Figure 7.

Figure 7. Histogram plots of SNR values for straight cable and fiber coil.

Table 1 compares the accuracy parameters between the straight cable and fiber coil methods.

Table 1. Accuracy parameters of different cables.

Parameter Straight Cable Fiber Coil Method

Distribution mode, SNR 3.45 8.37
Number of realizations with

SNR < 5 807 21

Detection probability 19.3% 97.9%

The fiber coil method allowed the simulated impact amplitude parameters to increase
the SNR by 2.5 times, which increased the detection probability to 95%.

4. Field Tests

An experimental study of the proposed method based on fiber coils was carried out
on the BMSTU test site. The optical fiber cable was buried in a 30 cm deep trench, which
corresponds to the standard cable laying depth for DAS. In the experiment, we used one
brand of optical cable in different laying configurations. The experimental setup is shown
in Figure 8.
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Figure 8. Diagram and photographs of the test setup.

The fiber cable configuration comprised a) a cable with a 10 m long fiber coil, corre-
sponding to the system’s spatial resolution of the system during the experiment, and b) a
straight cable.

Table 2 shows the phi-OTDR parameters used for the experiments.

Table 2. The phi-OTDR parameters used for the experiments.

Parameter Value

ADC 50 MHz (the equivalent of 2 m spatial discretization)
Pulse duration 100 ns

Spatial resolution 10 m
Impact frequencies 38 Hz, 55 Hz, and 101 Hz

Distance from the vibration source to
the cable 0 m (over the cable), 2 m, and 4 m

The reasons for such parameter values were as follows. Frequencies of impacts in
the vicinity of 38 Hz are common for recording events such as human passes and digging,
since this range does not contain low-frequency noise from environment sources and
laser wavelength deviation but is still just slightly attenuated in the soil. Frequencies
in the region of 55 Hz were used for searching steps via fiber cable buried in rocky soil
at a shallow depth. A frequency of 101 Hz was investigated as the cutoff frequency of
sound propagation in the soil, above which strong attenuation begins. The distances to
the vibration source were chosen according to requirements in monitoring systems for
detecting steps using distributed acoustic sensors. The source of the vibration impacts had
an uneven frequency response: at a frequency of 38 Hz, the impact’s amplitude was about
5 times higher than at an impact frequency of 101 Hz.

Data obtained during the experiment are shown in Figure 9. Raw waterfalls in time
duration from 6 to 16 s of the experiment represent the vibration start at the coil point
(1270 m) and at the straight cable point (1570 m) in Figure 9a,b, respectively. Figure 9c,d
show the signal spectra at marked points. For the point with coil, all impact frequencies
and a few harmonics for 38 Hz are visible. For the straight cable only 38 Hz and 55 Hz
peaks are observable. Figure 9e,f show bandpass-filtered data for the marked points during
the entire experiment.
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Figure 9. Experimental data: (a) raw data waterfall of vibration start for the coil point (1270 m); (b) raw data waterfall of
vibration start for the straight cable point (1570 m); (c) signal spectrum for the 1270 m point; (d) signal spectrum for the
1570 m point; bandpass-filtered data during the entire experiment at the 1270 m (e) and 1570 m (f) points.

The obtained experimental data confirmed the rapid degradation of weak vibration
impacts as the point of influence moves away from the cable [42]. The vibration influence
at a 38 Hz frequency, which had a higher power (due to the source’s uneven characteristics),
together with a lower attenuation coefficient in the ground, also underwent attenuation
with distance but was successfully recorded in all of the experimental configurations.

Table 3 and Figure 10 show the SNR values obtained for each experiment for cables a
and b.
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Table 3. Experimental SNR values.

Straight Cable Fiber Coil

Mean dimensionless SNR at 38 Hz
(Number of experiments with SNR > 5)

Dimensionless
SNR increase

0 m (over the cable) 15.75 (10 of 10) 39.37 (10 of 10) 2.50
2 m from the cable 8.64 (7 of 10) 27.09 (10 of 10) 3.13
4 m from the cable 8.09 (9 of 10) 18.8 (10 of 10) 2.25

Mean dimensionless SNR at 55 Hz
(Number of experiments with SNR > 5)

0 m (over the cable) 15.27 (10 of 10) 33.03 (10 of 10) 2.16
2 m from the cable 4.66 (5 of 10) 13.18 (10 of 10) 2.83
4 m from the cable 3.98 (1 of 10) 4.88 (5 of 10) 1.23

Mean dimensionless SNR at 101 Hz
(Number of experiments with SNR > 5)

0 m (over the cable) 7.66 (7 of 10) 9.96 (9 of 10) 1.30
2 m from the cable 1.82 (0 of 10) 4.14 (3 of 10) SNR < 5
4 m from the cable 1.93 (0 of 10) 2.03 (0 of 10) SNR < 5

Figure 10. Plot of experimental SNR values.

As can be seen from the obtained results, the use of the fiber coil made it possible
to increase the SNR by an average of 2.2 times. The obtained results were consistent
with the indicators calculated in the modeling, with a difference of 12%. The signal
formation process in a phi-OTDR depends on many factors and its intensity has a Rayleigh
distribution. As a consequence, it influences the signal intensity level and sensitivity of the
device. In computer modeling, we are able to simulate a large number of realizations and
obtain a histogram of possible SNR values, which is similar to the Rayleigh distribution.
But it is difficult to collect the same number of data realizations in a field-test experiment
since it takes significantly more time and resources. This is the reason for the deviation
between SNR improvement in the simulation and in the experiments. However, even with
the number of experiments performed, the values obtained are quite similar to the modeled
data and allow the model estimate to be considered correct.

5. Discussion

The paper considered how fiber coils in cable affected the acoustic sensitivity of a
phi-OTDR. To confirm the method’s effectiveness, mathematical modeling was conducted
for two types of systems: one with a straight cable and one with fiber coils. With a low
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impact amplitude, which a classic cable registered in less than 20% of cases, fiber coils
increased the SNR by 2.5 times, which increased the detection probability to more than
95% for 1000 realizations of the simulation system. An experimental study with fiber coils,
with length corresponding to the system’s spatial resolution, also confirmed the method’s
effectiveness, and the obtained results showed that SNR increased by 2.2 times.
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