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Abstract

Dermatomyositis (DM) is a systemic idiopathic inflammatory disease affecting 

skeletal muscle and skin, clinically characterized by symmetrical proximal mus-

cle weakness and typical skin lesions. Recently, myositis- specific autoantibod-

ies (MSA) became of utmost importance because they strongly correlate with 

distinct clinical manifestations and prognosis. Antibodies against transcription 

intermediary factor 1γ (TIF- 1γ) are frequently associated with increased risk of 

malignancy, a specific cutaneous phenotype and limited response to therapy in 

adult DM patients. Anti- Mi- 2 autoantibodies, in contrast, are typically associ-

ated with classic DM rashes, prominent skeletal muscle weakness, better thera-

peutic response and prognosis, and less frequently with cancer. Nevertheless, 

the sensitivity of autoantibody testing is only moderate, and alternative reliable 

methods for DM patient stratification and prediction of cancer risk are needed. 

To further investigate these clinically distinct DM subgroups, we herein ana-

lyzed 30 DM patients (n = 15 Mi- 2+ and n = 15 TIF- 1 γ+) and n = 8 non- disease 
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1 |  INTRODUCTION

Dermatomyositis (DM) is a rare idiopathic inflam-
matory disease of the skeletal muscle and skin with 
heterogeneous clinical and morphological presenta-
tion. Histomorphologically, inflammatory infiltrates 
of various immune cells, perifascicular atrophy, spe-
cific injury to capillaries and perifascicular myofibers, 
and MHC- I upregulation are common in DM (1, 2). 
Clinically, the presence of muscle weakness is mostly 
associated with skin symptoms like Gottron's papules, 
Gottron's sign, and/or the heliotrope eruption (2, 3). 
New biomarkers, such as DM- specific autoantibodies 
(anti- Mi- 2, anti- MDA5, anti- TIF- 1γ, anti- NXP2, and 
anti- SAE) correlate with distinct clinical phenotypes 
with respect to organ involvement and malignancy in 
cancer- associated myositis (CAM, (4)). The association 
of anti- TIF- 1γ antibody and increased risk of cancer 
in adult DM has recently been highlighted (4, 5) and 
characteristic cutaneous findings, such as palmar hy-
perkeratotic papules, psoriasis- like lesions, and hy-
popigmented and telangiectatic "red- on- white" patches 
have been described (6). TIF- 1γ (TRIM33) plays an im-
portant role in carcinogenesis and cell differentiation 
(7, 8). Cancer development, including various entities 
e.g. breast, colorectal and ovarian cancer, as well as 
Hodgkin's lymphoma (9– 12) may be recognized years 
before or after diagnosis of DM (13). Anti- TIF- 1γ- 
associated DM typically presents with proximal limb 
weakness accompanied by severe skin changes, mod-
erately elevated CK levels, and absence of interstitial 
lung disease (ILD) (7). In muscle biopsies, complement 
(C5b- 9) deposition on intramuscular capillaries has 
been shown to be associated with malignancy (1, 5). 
Proximal muscle weakness may also be seen in anti- 
Mi- 2+ DM patients in which classical Gottron's pap-
ules or heliotrope rash are more common and CK levels 

are usually high, whereas other organ involvement is 
generally absent. Histomorphologically, anti- Mi- 2- 
associated DM typically demonstrates characteristic 
perifascicular atrophy, necrotic myofibers, prominent 
inflammatory infiltrates, and MHC- I expression on 
perifascicular fibers. Anti- Mi- 2+ DM patients respond 
well to standard treatment, including corticosteroids 
and rituximab and show a better overall prognosis 
(14– 16).

An autoantibody- based distinction of these two 
clinically distinct subsets of adult DM is import-
ant for further patient stratification and follow- up. 
Nevertheless, the detection of autoantibodies in DM is 
not well- standardized (2, 4, 17). There are no interna-
tional reference samples available so far, whereas dif-
ferent therapeutic regimen such as administration of 
B- cell directed therapy (rituximab), plasmapheresis, 
or administration of intravenous immunoglobulins 
may influence the concentration of autoantibod-
ies and subsequently decreased disease activity (2). 
Therefore, additional robust and reliable methods 
are needed. Here, we utilize the NanoString- based 
nCounter PanCancer Immune Profiling Panel™ (18), 
quantifying the expression levels of 770 genes related 
to immune- oncological signaling pathways and cell 
types to characterize muscle biopsies from DM pa-
tients harboring anti- TIF- 1γ and anti- Mi- 2 autoanti-
bodies, to see if any DM- specific subgroups may be 
differentiated using an alternative molecular tech-
nique. Special interest was given to these two DM 
subgroups as prognosis, association with cancer and 
treatment response differ substantially. In addition, 
we wanted to i) investigate if cancer association in DM 
may be detected by this technique and ii) further an-
alyze subgroup- specific expression profiles to better 
understand the pathogenesis and potential risk factors 
for cancer development.

controls (NDC). We demonstrate that the NanoString technology can be used 

as a very sensitive method to clearly differentiate these two clinically distinct 

DM subgroups. Using the nCounter PanCancer Immune Profiling Panel™, we 

identified a set of significantly dysregulated genes in anti- TIF- 1γ+ patient mus-

cle biopsies including VEGFA, DDX58, IFNB1, CCL5, IL12RB2, and CD84. 

Investigation of type I IFN- regulated transcripts revealed a striking type I in-

terferon signature in anti- Mi- 2+ patient biopsies. Our results help to stratify 

both subgroups and predict, which DM patients require an intensified diag-

nostic procedure and might have a poorer outcome. Potentially, this could also 

have implications for the therapeutic approach.

K E Y W O R D S
dermatomyositis, Mi- 2, myositis- specific antibody, NanoString, skeletal muscle, TIF- 1γ
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F I G U R E  1  Genetic profiling of anti- TIF- 1γ+ and - Mi- 2+ dermatomyositis patients’ skeletal muscle biopsies revealed subgroup- specific 
signatures. (A) Experimental design and analysis workflow of the project. (B) Differential gene expression analysis from anti- TIF- 1γ+ 
patients (n = 6) and non- diseased controls (n = 2). (C) Differential gene expression analysis from anti- Mi- 2+ patients (n = 6) and non- 
diseased controls (n = 2). (D) Venn diagram comparing the differentially expressed genes (in skeletal muscle tissues) of anti- TIF- 1γ+ 
patients vs. non- diseased controls and anti- Mi- 2+ patients vs. non- diseased controls, identifying 207 commonly dysregulated genes, 20 
TIF- 1γ subgroup- specific genes and 118 Mi- 2 subgroup- specific genes. The top 5 up-  and downregulated genes specific for each subgroup 
are highlighted 
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2 |  M ETHODS

2.1 | Patient cohort

The study cohort and sample size as well as the experi-
mental design, analysis workflow, diagnosis, and au-
toantibody status are displayed in Figure 1A and Table 
S1. The available clinical and demographic information 
of all (n = 38) patients enrolled in this study are listed 
in Table S1. Skeletal muscle biopsies were analyzed 
from patients diagnosed (according to EULAR classi-
fication criteria) with DM and positive autoantibodies, 
against Mi- 2 (n = 15, using n = 6 for NanoString, n = 11 
for qPCR, and n = 7 for histology) or TIF- 1γ (n = 15, 
using n = 6 for NanoString, n = 9 for qPCR, and n = 7 
for histology). Cancer- associated myositis (CAM) was 
present in n = 9 (60%) anti- TIF- 1γ+ and n = 3 (20%) anti- 
Mi- 2+ patients. CAM was defined as neoplasms occur-
ring within 2 years before or no more than 3 years after 
myositis onset as previously described (2, 5). Patients 
that suffered from cancer more than 2 years before or 
more than 3  years after DM diagnosis were defined 
as CAM- . Patients labeled “no cancer” never suffered 
from cancer at all.

Additionally, we investigated skeletal muscle biopsies 
(n = 8, using n = 2 for NanoString, n = 3 for qPCR and 
n = 6 for histology) from patients with nonspecific com-
plaints in the context of “fatigue- like” symptoms, with-
out clinical muscle weakness, with the absence of any 
morphologic abnormalities on skeletal muscle biopsies, 
of elevated creatine kinase (CK) levels, or laboratory 
evidence of any systemic inflammation serving as non- 
diseased controls (NDC).

2.2 | Standard protocol approvals and 
patient consents

Informed consent was obtained from all patients at each 
institution involved. Procedures were approved by the 
official ethical standards committee (EA2/163/17) at the 
Charité- Universitätsmedizin Berlin.

2.3 | Histologic, immunohistochemical, and 
immunofluorescence procedures

Histological stains were performed on 7- μm cryostat 
muscle sections according to standard procedures. 
Immunohistochemical and double immunofluorescence 
stains with antibodies against laminin- α5 and VEGF, 
nMyHc and VEGF, DDX58/RIG- 1 and CD68, MSTR1R/
RON and CD31 as well as pRON and nMyHc, PDGFRβ, 
MHC class II, CD8, CD206, and CD4 were performed 
as previously described (19, 20). Primary antibodies are 
listed in Table S2.

2.4 | RNA isolation and cDNA transcription

Total RNA was isolated from muscle specimens using 
TRIzol™ Reagent (Thermo Fisher Scientific, Germany) 
as previously described (20). Complementary DNA 
(cDNA) was synthesized using the High- Capacity cDNA 
Archive Kit (Applied Biosystems, Foster City, CA, USA) 
according to the manufacturer's protocol.

2.5 | Quantitative real- time PCR (qPCR)

We performed quantitative real- time PCR (qPCR) meas-
uring the gene expression profile of VEGF, DDX58, 
and MSTR1 using the following TaqMan probes 
(ThermoFisher Scientific): Hs00900055_m1 (VEGFA), 
Hs00204833_m1 (RIG1/DDX58), Hs00899920_m1 
(MST1R), and Hs99999905_m1 (GAPDH). Glyceral-
dehyde 3- phosphate dehydrogenase (GAPDH) was in-
cluded as an internal control to normalize the expression 
of the target genes. qPCR analysis was performed using 
an Applied Biosystems™ QuantStudio™ 6 Flex Real- 
Time PCR System (ThermoFischer, Waltham, MA; 
USA) with the following thermal profile: 20  s at 95°C, 
followed by 40 cycles of 1 s at 95°C and 20 s at 60°C.

2.6 | NanoString analysis

We analyzed the expression of 770 genes (including 40 
reference genes) related to the immune response in can-
cer using the nCounter PanCancer Immune Profiling 
Panel™ (human) (Nanostring, XT- CSO- HIP1- 12). 200– 
500  ng of total RNA was used as input and sample 
hybridization was performed according to the manufac-
turer's instructions. Sample detection and analysis were 
completed on a nCounter® Digital Analyzer. Raw data 
processing, quality control, and normalization were per-
formed using the nSolver™ 4.0 analysis software. Quality 
control (QC) and normalization were performed with an 
imaging QC of >75% field of view registration, binding 
density QC within 0.1- 2.25 range, positive control lin-
earity QC of R2 above 0.95, and positive control limit of 
detection set as 0.5 fM positive control above 2 stand-
ard deviations above the mean of the negative controls. 
Normalization to housekeeping genes, of which genes 
below 100 were excluded, and differential expression 
analysis were completed using the Advanced Analysis 
software plugin (version 2.0.115). For differential expres-
sion analysis, a log2 fold change of ≤−1 or ≥1 as well as 
a p- value of ≤0.05 were applied as cutoffs. For the first 
analysis, gene expression measurements from anti- Mi- 2+ 
patient muscle biopsies (n = 6) and anti- TIF- 1γ+ patients’ 
muscle biopsies (n = 6) were normalized to healthy non- 
diseased control samples (NDC, n = 2) before being com-
pared to each other. For the second analysis, anti- Mi- 2+ 
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patients’ muscle biopsies (n = 6) were directly compared 
to anti- TIF- 1γ+ patients’ biopsies (n = 6).

2.7 | Evaluation of NanoString results

To further analyze the associated pathways of the dif-
ferentially expressed genes, functional enrichment 
analysis was performed using Enrichr (21, 22) for 
Gene Ontology (GO) to identify the annotated sets of 
genes based on the biological processes in which they 
participate.

2.8 | Statistical analysis

Non- parametric Kruskal- Wallis one- way analysis of var-
iance followed by multiple comparison was used for gene 
transcript analysis. Data are presented as mean  ±  SD. 
The level of significance was set at p < 0.05. GraphPad 
Prism 9.0.0 software (GraphPad Software, Inc., La Jolla, 
CA) was used for statistical analysis.

3 |  RESU LTS

3.1 | Genetic profiling of dermatomyositis 
patients revealed subgroup- specific signatures

In order to identify disease- specific gene signatures 
in DM subgroups, we performed NanoString gene ex-
pression analysis with RNA isolated from muscle bi-
opsies obtained from patients with anti- TIF- 1γ+ and 
anti- Mi- 2+ antibodies as well as non- diseased con-
trols (NDCs). Compared to NDC biopsies from both 
anti- TIF- 1γ+ and anti- Mi- 2+ patients revealed strong 
dysregulation of immune response- related genes. We 
detected 207 deregulated genes that were shared among 
both subgroups (Table S3). Gene Ontology (GO) term 
enrichment using Enrichr (21, 22) involved processes 
related to cytokine- mediated signaling, T- cell chemo-
taxis, type I interferon signaling, and inflammatory 
response. In fact, among these genes were many well- 
known type 1 IFN- inducible genes identified- using 
INTERFEROME v2.01 (23)- such as ISG15, ISG20, 
MX1, STAT1, SIGLEC1, CXCR4, CCL19, CARD16, 
and IRF7 (Figure 1B,C, Table S3).

Additionally, we identified genes that were specif-
ically deregulated in one of the two distinct subgroups 
in comparison to NDCs (Figure 1D, Table S3). Among 
the 20 specifically deregulated genes in anti- TIF- 1γ+ 
patients’ skeletal muscles, the top five upregulated 
genes were HLA- G, TRAF6, HLA- DQA1, MFGE8, and 
BAGE, among the top 5 downregulated genes was TPTE 
(PTEN2), which shows homology to the tumor suppres-
sor PTEN/MMAC1 (Figure 1D). In anti- Mi- 2+ skeletal 
muscles, 118 genes were specifically deregulated. The top 

five upregulated genes included CASP3, IL4R, CD74, 
HLA- A, and CD4 (Figure 1D), which were all classified 
as type 1 IFN- inducible genes (INTERFEROME v2.01). 
Among the top 5 downregulated genes were SH2D1B 
(EAT- 2), RORA, TFRC (CD71), and BCL6, which are in-
volved in differentiation and activation of regulatory T- 
cells (24– 27) leading to suppression of inflammation (28).

3.2 | NanoString analysis clearly 
distinguishes anti- TIF- 1γ+ from anti- Mi- 2+ 
dermatomyositis patients

To further assess whether NanoString- based gene profil-
ing can readily differentiate between anti- TIF- 1γ+-  and 
anti- Mi- 2+- associated DM, we performed a pathway 
score analysis, which functionally annotated groups of 
genes followed by unsupervised clustering of samples. 
Here, we found a clear separation of both DM groups 
into two distinct clusters (Figure 2A). Interestingly, the 
one Mi- 2+/CAM+ case clustered closer with the TIF- 1γ+ 
cases than the other cancer- free patients. Within the 
group of TIF- 1γ+ patient samples, CAM+ cases clustered 
together (Figure 2A, asterisks) indicating an additional, 
CAM- associated expression profile. A comparison of 
the differentially expressed genes in anti- TIF- 1γ+ ver-
sus anti- Mi- 2+ patients’ biopsies revealed a distinct 
subgroup- specific gene signature (Figure 2B, Table S2). 
The top 5 upregulated genes in anti- TIF- 1γ+ patients’ 
muscle compared to anti- Mi- 2+ patients’ skeletal muscles 
were: VEGFA, IFNB1, DDX58, ARG2, and IL12RB2. 
The top 5 downregulated genes in TIF- 1γ+ patients' 
muscle compared to Mi- 2+ patients' muscle were: CD74, 
CD84, CCL5, ITGB2, and ITGAL (Figure 2B). To fur-
ther elucidate the molecular mechanisms of anti- TIF- 1γ 
autoantibody and association to cancer in adult DM 
patients- since an association with cancer was described 
in the literature, we focused on specifically dysregulated 
genes in anti- TIF- 1γ+ patients compared to NDCs or 
anti- Mi- 2+ individuals. We could identify VEGFA (29, 
30), BAGE (31, 32), DDX58 (RIG- I, (33)), and MST1R 
(RON, (34)) as upregulated and TPTE (35) as downregu-
lated. As shown in Figure 2C, the expression levels of 
VEGF, DDX58/RIG- 1, and MST1R/RON were increased 
in comparison to NDCs, in line with the NanoString 
results. The expression reached significance for DDX58 
and MSTR1 in both subgroups.

For validation of our findings, with qPCR we ana-
lyzed expression levels in additional muscle samples of 
anti- TIF- 1γ+ and anti- Mi- 2+ patients. However, VEGF, 
DDX58, and MST1R expression showed no significant 
differences between the two subgroups (Figure 2D), 
which is in line with previous reports demonstrating 
that NanoString showed superior  sensitivity compared 
to that of qPCR (36, 37). NanoString is, therefore, better 
suited to identify subtle differences in the gene expres-
sion levels.
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3.3 | Protein 
expression of VEGF and DDX58/RIG- 1 is 
enhanced in perifascicular areas

To investigate protein localization of VEGF in the 
skeletal muscle specimens, we performed immuno-
histochemistry and immunofluorescence stainings. 
In anti- TIF- 1γ+ DM patients’ muscles, VEGF expres-
sion was clearly enhanced in perifascicular areas, most 

evident on atrophic muscle fibers with a decreasing 
gradient towards the center of the fascicle (Figure 3). In 
contrast, anti- Mi- 2+ DM patients showed- in line with 
the RNA expression data- less positive myofibers with 
a more diffuse distribution pattern (Figure 3). Double 
labeling of VEGF and laminin- α5- expressed around 
blood vessels- identified severe loss of capillaries in 
the perifascicular area between the VEGF+ myofibers 
in anti- TIF- 1γ+ patients’ skeletal muscles (Figure 3). 

F I G U R E  2  NanoString® analysis clearly distinguishes anti- TIF- 1γ+ from - Mi- 2+ dermatomyositis patients. (A) Unsupervised clustering of 
patient samples using the NanoString® pathway score analysis tool. Asterisk (*) indicate CAM+ patients. Hashtag (#) indicates CAM-  patient. 
(B) Differential gene expression analysis of anti- TIF- 1γ+ patients vs. - Mi- 2+ patients. The top 5 up-  and downregulated genes are highlighted. 
(C) Gene expression levels detected by qPCR of DM patients (each subgroup n = 10) displayed as fold- change vs. NDC (n = 3), upregulation is 
significant for DDX58, MST1R in anti- Mi- 2+ patients as well as for MST1R in anti- TIF- 1γ+ patients, no significance between both subgroups 
was detected (C, D) 
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These VEGF+ myofibers were identified as regenerat-
ing fibers by the co- expression of the neonatal myosin 
heavy chain (nMyHc, Figure 3). Regular laminin- α5- 
positive capillaries were not severely diminished in 
anti- Mi- 2+ DM patients’ muscles. Here, many perifas-
cicular fibers showed sarcolemmal laminin- α5 expres-
sion (Figure 3).

DDX58/RIG- 1 was found in the perifascicular area, 
weakly expressed on the sarcolemma of muscle fibers 
and on single immune cells in both subgroups without 
major differences (Figure S1). DDX58/RIG- 1 expression 
was not detected on CD68+ macrophages or CD8+ T- 
cells (Figure S1).

3.4 | RON/MSTR1 is mainly expressed on 
endothelial cells of intramuscular capillaries

Next, we investigated, which cells expressed RON/
MST1R in our cohort. We identified CD31+/RON+ en-
dothelial cells in intramuscular capillaries in both sub-
groups (Figure S2), whereas there was no co- labeling of 
RON and PDGFRB+ pericytes (Figure S2). To further 
elucidate the expression of the phosphorylated form 
(Phospho- RON, p- RON), we performed various dou-
ble immunofluorescence staining which revealed no 
co- labeling of pRON and nMyHc+ regenerating fibers, 
MHC class II+ M1 or CD206+ M2 macrophages nor 
CD8+ T- cells. We identified single CD4+/pRON+ cells in 
both subgroups (Figure S2).

4 |  DISCUSSION

Dermatomyositis- specific autoantibodies such as anti- 
TIF- 1γ have been shown to tightly correlate with organ 
involvement and malignancy in cancer- associated my-
ositis (2, 4, 5, 10). Thus, these autoantibodies are now 
recognized as useful biomarkers to stratify DM patients 
into clinical subgroups, and assessing the correct TIF- 1γ 
antibody status is of high importance to determine diag-
nostic procedures and prognosis.

The correlation of cancer and Mi- 2 autoantibodies, 
however, remains debated. While some groups reported 
no increased risk of cancer development in anti- Mi- 2+ 
patients (38- 40), other more recent studies on larger pa-
tients cohorts demonstrated a correlation of Mi- 2 anti-
body and CAM (41, 42). In our cohort, CAM was detected 
in 60% of anti- TIF- 1γ-  and 20% of anti- Mi- 2- associated 
DM patients, which (i) basically reflects results from 
other larger patient series (43, 44) and (ii) emphasized the 
need for personalized risk- stratified cancer follow- up for 
both DM subgroups.

We demonstrate that determining the NanoString 
nCounter PanCancer Immune Profiling Panel™ from 
skeletal muscle tissue may be alternatively used or in 
addition to distinguish both subgroups based on their 
distinct immune gene expression profiles. Moreover, our 
results suggest a specific expression profile of TIF- 1γ+/
CAM+ cases. As a limitation of our study is the small 
sample size, this needs to be followed up in larger, pro-
spective studies to further elucidate signaling pathways 

F I G U R E  3  Histological and immunofluorescent staining of VEGF in DM patients’ skeletal muscle samples. Anti- TIF- 1γ+ DM patients 
show clearly enhanced expression of sarcolemmal VEGF in the perifascicular areas while anti- Mi- 2+ DM patients show only single positive 
fibres (left panel). Double immune histochemistry identified multiple VEGF+ myofibres and a severe depletion of laminin- α5+ capillaries in 
anti- TIF- 1γ+, while laminin- α5+ capillaries were less depleted in anti- Mi- 2+ DM patients’ biopsies (middle panel). Double immunofluorescence 
showed that atrophic muscle fibres co- stained with neonatal myosin heavy chain (nMyHc) and VEGF (orange arrow) both in TIF- 1γ+ and in 
Mi- 2+ cases, however, not all regenerating myofibres were also VEGF+ (right panel) 
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associated with cancer development and manifestation 
in these patients.

Both anti- TIF- 1γ+ and anti- Mi- 2+ patients’ skeletal 
muscle biopsies revealed strong dysregulation of im-
mune response- related genes compared to NDCs. In line 
with previous reports, these included well- known type 1 
IFN- inducible genes such as ISG15, ISG20, SIGLEC1, 
IRF7, and MX1 (45- 50). We also identified subgroup- 
specific differences: TIF- 1γ+ patients showed upregula-
tion of HLA- G, HLA- DQA1, and BAGE, the latter being 
a well- known tumor antigen (51– 53) present in many 
cancers (54). Dysregulation of HLA genes including 
HLA- DQA1, HLA- A, and HLA- G are described in DM 
patients and HLA gene polymorphisms were shown to 
be susceptibility factors in myositis (55, 56).

In direct comparison to anti- Mi- 2+ DM patients’ 
biopsies, anti- TIF- 1γ+ patients’ biopsies showed an in-
creased number of VEGF+ atrophic, nMyHc+ regener-
ating muscle fibers and a marked loss of perifascicular 
capillaries. The capillary drop out, a feature previously 
noticed in DM (45) may be caused by C5b- 9- driven an-
giodestruction in TIF- 1γ+ patients (5, 57) and may well 
explain the significant upregulation of VEGF mRNA in 
the muscle tissue of TIF- 1γ+ patients in contrast to that 
in anti- Mi- 2+ patients, which is most likely the result of 
increased levels of hypoxia in the perifascicular region 
(58– 61). Nevertheless, the function of VEGF is not lim-
ited to angiogenesis and vascular permeability (62), but 
also affects the function of immune cells and contributes 
to key aspects of tumor initiation and tumorigenesis (63). 
In fact, VEGF induces the expression of programmed 
cell death 1 ligand 1 (PD- L1), an inhibitory ligand, which 
may lead to decrease the ability of the immune system 
to detect and eliminate tumor- associated antigens (64). 
However, whether VEGF overexpression in the muscle 
tissue of TIF- 1γ+ patients contributes to tumor initiation 
or progression needs further investigation.

Retinoic acid- inducible gene I (DDX58/RIG- 1) a cyto-
solic pattern recognition receptor, which is responsible 
for the type- 1 interferon (IFN1) response, was also found 
to be significantly upregulated in anti- TIF- 1γ+ muscle bi-
opsies in contrast to anti- Mi- 2+. Immunohistochemically, 
the expression of RIG- 1 was found on the sarcolemma of 
muscle fibers in the perifascicular area and on single im-
mune cells in both subgroups (anti- Mi- 2+, anti- TIF- 1γ+). 
DDX58/RIG- 1 was shown to be directly involved in 
virus recognition and interferon production (47, 65– 67). 
Nevertheless, it has been shown that increased RIG- 1 
expression may be involved in limiting innate immune 
response and supporting tumor growth (67).

RON expression has recently been shown in a wide 
variety of human cancers (68) and is associated with ma-
lignant progression (69, 70), whereas in inflammation, it 
is described to suppress the inflammatory response (69). 
Analyzing the expression of MST1R/RON, showed a 
specifically upregulation in the muscle tissues of TIF- 1γ+ 
patients in contrast to those of NDCs.

We identified CD31+ endothelial cells as the major 
source of RON in both, anti- TIF- 1γ+ and anti- Mi- 2+ 
muscle biopsies. MST1R/RON induces molecular and 
cellular alterations (70), which may contribute to endo-
thelial dysfunction and damage in DM, but this needs 
further investigation. Regulation of genes that are known 
to be associated with cancer (VEGFA, DDX58/RIG1, 
MST1R/RON, BAGE, and TPTE) in anti- TIF- 1γ+ pa-
tients, and their expression on protein level, however, 
need further investigation as these genes are also involved 
in other biological processes apart from tumorigenesis.

Anti- TIF- 1γ+ skeletal muscles showed compared to 
anti- Mi- 2+, only scarce inflammatory infiltrates (1), 
which goes in line with the downregulation of different 
genes involved in immune response, such as CD74 (HLA 
class II histocompatibility antigen gamma chain) (71), 
leucocyte differentiation antigen CD84 (72, 73) as well as 
Chemokine (C- C motif) ligand 5 (CCL5), which plays an 
active role recruiting leukocytes to inflammatory sites 
and which is also relevant to induce immune responses 
against tumors (74). Further downregulated genes were 
Integrin beta chain- 2 (ITGB2, CD18), which together 
with Integrin alpha L (ITGAL, CD11A, lymphocyte 
function- associated antigen 1) form the lymphocyte 
function- associated antigen- 1 (LFA- 1) playing a major 
role in neutrophil and T- cell trafficking, extravasation, 
and emigration (75, 76).

Anti- Mi- 2- associated DM, in contrast, reflects a 
pathogenetically distinct subgroup, for which the specific 
type I interferon and inflammatory response was most 
prominent. From 109 upregulated genes in anti- Mi- 2+ 
muscles compared to NDC muscles, 72 were identified 
to be IFN1- inducible, which is histologically reflected by 
dense, mixed inflammatory infiltrates in the muscle bi-
opsies. Therefore, the IFN signature in DM seems to be 
very prominent and pathogenically relevant especially in 
anti- Mi- 2+ patients’ biopsies. Our results subsequently 
enlarge the current knowledge on DM subgroup- specific 
deregulation of IFN1 pathways, which was previously 
investigated by Pinal- Fernandez et al., but for only a very 
limited number of IFN1- inducible genes (48).

Furthermore, our observation paves the way for JAK 
inhibitors as a treatment strategy to block type I inter-
feron pathway activation in DM (47), which- in light of 
our results- may be more effective in anti- Mi- 2+-  than in 
anti- TIF- 1γ+-  associated DM.

We show that NanoString analysis is a very sensitive 
method (77, 78) to identify a distinct gene signature in 
skeletal muscle tissues of DM patients with anti- TIF- 1γ 
or with anti- Mi- 2 autoantibodies for diagnostic evalua-
tion, cancer surveillance, and clinical follow- up. In com-
parison, immunofluorescence or qPCR studies did not 
identify a distinct anti- TIF- 1γ+- specific biomarker that is 
associated with an increased risk of CAM showing that 
NanoString analysis is useful for better understanding of 
the DM etiology, prognosis, and identifying better treat-
ment strategies.
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Fig S1- S2

FIGURE S1 Histological and immunofluorescent stain-
ing of DDX58/RIG- 1 in DM patients’ skeletal muscle 
samples. DDX58/RIG- 1 was found in perifascicular 
areas on the sarcolemma of muscle fibres and single im-
mune cells (left panel). Expression was not detected on 
CD68+ macrophages (middle panel) nor on CD8+ T- cells 
(right panel)
FIGURE S2 Immunofluorescent staining of RON/
MST1R in DM patients’ skeletal muscle samples. (A) 
We identified single CD31+RON+ cells, while there was 
no co- labelling between RON and PDGFRB+ pericytes 
or fibroblasts (left panel) or pRON and nMyHc+ regen-
erating fibres (middle planel) or MHC class II+ macro-
phages (right panel). (B) We revealed no co- labelling of 
pRON and CD8+ T- cells (left panel) or CD206+ M2 mac-
rophages (middle panel). However, we identified single 
CD4+/pRON+ cells in both subgroups (right panel)
Table S1- S2
TABLE S1 clinical information
TABLE S2 antibody information
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TABLE S3 NanoString results
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