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Abstract: The concept of ecosystem services (ES) supply and demand has attracted increasing
attention in science and policy making because it effectively links ecosystem services to human
well-being. The imbalance of ES supply and demand in urban areas has become a key issue in regional
sustainable development. In this context, we calculated ES supply and demand for Wuhan City,
China, using the ES supply and demand ratio (ESDR) and the comprehensive ES supply–demand
ratio (CESDR) to express the relationship between ES supply and demand. Ecological zoning was
proposed according to the spatial differentiation of the ES supply–demand relationship, and policy
recommendations are made. The results show that from the perspective of total ES supply and
demand, the water yield supply (SWY), grain yield supply (SGY), and recreation services supply
(SRS) are greater than the water yield demand (DWY), grain yield demand (DGY), and recreation
services demand (DRS), and that the climate regulation supply (SCR) is less than the climate regulation
demand (DCR). From a spatial perspective, there are imbalances and mismatches in ES supply and
demand, especially in urban central areas. The values of SWY, SGY, SCS, and SRS per unit area are
less than their respective demand values, and the area of mismatch has expanded with the gradual
increase of the built-up area. The spatial pattern of ES supply and demand is circular, with the form of
“deficit zone–relative equilibrium zone–surplus zone”, which corresponds to “urban central area–near
suburbs–distant suburbs and rural areas”.

Keywords: ecosystem services; ecosystem services supply and demand index; spatial mismatch; Wuhan

1. Introduction

The term ecosystem services (ES) refers to the various types of well-being that ecosystems
provide to humans. They are usually classified into supporting, provisioning, regulating, and cultural
services [1–3]. The ES supply refers to the products and services provided by an ecosystem for
human well-being, and the ES demand is the consumption of products and services provided by the
ecosystem [4,5]. The difference in the degree of matching between ES supply and demand reflects,
in a sense, the interrelationship between ecosystem services and human well-being [6]. Ecological
and environmental problems in a region, especially in urban areas, are fundamentally caused by
imbalances or mismatches in ES supply and demand [7]. Therefore, it is important to investigate the
types, quantities, dynamic changes, and mutual relationships of ES supply and demand, in order to
further develop scientific and rational management methods for the provision of ecosystem services.

Several studies of the assessment and quantitative analysis of regional ES supply and demand
have been conducted in recent years [7–9]. Burkhard et al. proposed a land cover-based matrix model
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for assessing the supply and demand of ecosystem services for each type of land cover through an
expert assessment methodology [4]. On the basis of environmental quality standards and policy goals,
Baró et al. provided environment quality standards to assess ES mismatches, which were then applied
to a case study of European cities [10]. Stürck et al. analyzed the role of land-use change in the supply
of two regulatory services, flood regulation and climate regulation, in the European Union (EU) for the
period of 1900−2000, and they also investigated four plausible scenarios of land-use change up to 2040.
The demand for these services was found to increase rapidly, and land-use allocation favoring the
supply of regulating services could be seen as a nature-based solution [11]. Zoderer et al. explored the
spatial mismatch between the delivery of ES bundles by the ES bundles demand in South Tyrol in
the Central Alps on the basis of landscape photographs obtained by local farmers, local inhabitants,
and visitors [12]. Schirpke et al. mapped the supply, flow, and demand at the municipality level in
the Alpine Space area, then used cluster analysis to analyze the linkages between ES [13]. Wang et al.
used the ecosystem services provision index and land development index to analyze ES supply and
demand in China from 2000 to 2015 [14]. In a case study of Shanghai, Chen et al. found that there
was a spatial mismatch between ES supply and demand, especially in urban centers [7]. In most of
the research on ES supply and demand, the interrelationships between ES supply and demand have
been emphasized. However, the relationship between multiple ES is complex and a combination of
different approaches may more effectively explain the different characteristics of supply and demand.
The matching relationship between ES supply and demand and the comprehensive assessment of
various supply and demand situations require further detailed research [7,14,15]. At the same time,
studies of ecological zoning management based on the supply and demand of ecosystem services
are rare [10,16–18].

Located in the central region of China, Wuhan is an important node city in the Yangtze River
Economic Belt, and one of the major cities undergoing rapid social and economic development in
China. The rapid transformation in land use/land cover change (LUCC) in Wuhan has led to changes in
the structure and interrelationships of ES supply and demand. Zhang et al. used the bivariate Moran’s
I method to characterize the relationship between ecosystem services and urbanization in Wuhan,
and observed a negative spatial correlation [19]. Luo et al. examined the effects of the “ecological control
line” and its supporting policies on maintaining ecosystem services in Wuhan [20]. Wang et al. studied
the impact of ecosystem services under different land-use scenarios [21]. Wuhan City therefore serves
as a valuable research area for exploring the impacts of changes in LUCC on ES supply and demand.

The main objectives of the present study are: (1) to determine the spatial differentiation and
evolution of ES supply and demand in Wuhan; (2) to apply the supply–demand ratio for individual ES
and the comprehensive ES supply–demand ratio (CESDR) to assess the interrelationships between ES
supply and demand; (3) to investigate ecological zoning based on CESDR; and (4) to produce land-use
policy recommendations for the observed ecological zoning. Overall, it was hoped that the study
would provide a decision-making reference for the sustainable utilization of urban land in Wuhan
and elsewhere.

2. Materials and Methods

2.1. Study Area

Wuhan, the capital of Hubei Province, is located in the central part of the province where the
Yangtze River merges with the Han River, hence water resources are abundant (Figure 1). The region
experiences a subtropical monsoon climate. The city area is 8494.41 km2. In 2015 the residential
population of Wuhan was 10.607 million, and the annual GDP was 109.5 billion RMB. As a result of the
development of the Yangtze River Economic Belt and gradual advances in metropolitan area policy,
Wuhan has become an important node city in central China.
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matter content, bulk density, and the contents of sand, silt, and clay. The DEM data were downloaded 
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Figure 1. The study area of Wuhan City. Abbreviations: JX—Jiangxia, HS—Hongshan, WS—Wuchang,
JA—Jiang’an, HP—Huangpi, CD—Caidian, JK—Jingkai, HY—Hanyang, QK—Qiaokou, JH—Jianghan,
QS—Qingshan, XZ—Xinzhou, and DXH—Dongxihu.

The “Wuhan City Master Plan (1996–2020)” and “Wuhan City Master Plan (2010–2020)” were
implemented with the aim of creating an attractive ecological environment. Since 2000, these plans
have had a profound impact on land-use patterns and urban development in Wuhan.

2.2. Data Sources

LUCC data were obtained from the Resource and Environmental Science Data Center of the
Chinese Academy of Sciences (http://www.resdc.cn/Default.aspx). The spatial resolution is 30 m.
Land use is divided into six categories: Cultivated land, forest, grassland, open water, construction
land, and unused land. The meteorological data were derived from the China Meteorological Data
Network (http://data.cma.cn/), and includes temperature and precipitation in the study area and
the surrounding eight stations. Spatial interpolation of the site data was used to obtain spatial
raster data. The soil data, with a spatial resolution of 1 km, were from the World Soil Database
(http://www.fao.org/land-water/databases-and-software/hwsd/en/). They include soil depth, organic
matter content, bulk density, and the contents of sand, silt, and clay. The DEM data were downloaded
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from the geospatial data cloud (http://www.gscloud.cn/), and have a spatial resolution of 30 m.
In ArcGIS, the vector boundary of the watershed/secondary watershed was extracted using the
ArcSWAT plugin. The Normalized Difference Vegetation Index (NDVI) was generated from Moderate
Resolution Imaging Spectroradiometer (MODIS) images, with a resolution of 250 m, for 2000–2015
(http://www.resdc.cn/Default.aspx). Data on grain yield, energy consumption, and food consumption
were from the statistical yearbooks of China, Hubei Province, and Wuhan (http://www.statshb.gov.cn/

info/iIndex.jsp?cat_id=10055;http://www.stats.gov.cn/tjsj/ndsj/). The water consumption data were from
the water resources bulletin of Hubei Province (http://www.stats-hb.gov.cn/info/iIndex.jsp?cat_id=100)
and Wuhan City (http://www.stats.gov.cn/tjsj/ndsj/). The per capita public green land index data refer
to the city of Wuhan. The data of per capita public green space index refer to the requirements specified
in the Wuhan City Master Plan (http://gtghj.wuhan.gov.cn/). Data used to quantify ES supply and
demand in Wuhan are list in Table S1.

2.3. Mapping the Supply and Demand for Four Ecosystems Services

Based on their importance in Wuhan and on data availability, four ES indicators were used: Water
yield and grain yield (both from the provisioning services), climate regulation (from the regulating
services) and recreation services (from the cultural services). Data for 2000, 2010, and 2015 were
obtained. Also, Supplementary Table S2 list key parameters used to quantify ecosystem services (ES)
supply and demand in Wuhan.

2.3.1. Water Yield (WY)

(1) Supply of water yield (SWY)
Water retention is defined as the amount of water resources available to human beings, equal to

the difference between precipitation and actual evapotranspiration and environmental flow demand [8].
It is calculated as

SWY = Pre− ETactual − EF (1)

where SWY is the supply of water yield service, Pre is annual precipitation, ETactual is actual
evapotranspiration, and EF is the demand for the environmental flow rate. Based on the principles of
water balance, the water production module in the InVEST model was used for the calculation [22].

(2) Demand for water yield (DWY)
DWY refers mainly to urban and rural domestic water, agricultural water, industrial water and

ecological water, including for humans [7,8]. It is calculated as

DWY = Durban and rural + Dagr + Din + Deco (2)

where DWY is the demand for water resources, Durban and rural is the urban and rural domestic water
demand, Dagr is the agricultural water demand, Din is the industrial water demand, and Deco is the
ecological water demand.

2.3.2. Grain Yield (GY)

(1) Supply of grain yield (SGY)

SGY is calculated according to the output per unit area of various crops (including grains, beans,
and root crops) [23]. Various studies have shown that there is a significant linear relationship between
grain yield and NDVI [24], and therefore NDVI data were used to spatialize grain yields; that is,
grain yield were allocated to cultivated land grids according to NDVI values, and then used to calculate
the grain yield. It is calculated as follows:

Gi =
NDVIi

NDVIsum
×Gsum (3)

http://www.gscloud.cn/
http://www.resdc.cn/Default.aspx
http://www.statshb.gov.cn/info/iIndex.jsp?cat_id=10055; http://www.stats.gov.cn/tjsj/ndsj/
http://www.statshb.gov.cn/info/iIndex.jsp?cat_id=10055; http://www.stats.gov.cn/tjsj/ndsj/
http://www.stats-hb.gov.cn/info/iIndex.jsp?cat_id=100
http://www.stats.gov.cn/tjsj/ndsj/
http://gtghj.wuhan.gov.cn/


Int. J. Environ. Res. Public Health 2019, 16, 2332 5 of 17

SGY = Gi/Area (4)

where Gi is the grain yield allocated for grid i, Gsum is the total food production, NDVIi is the NDVI of
grid i, NDVIsum is the sum of NDVI of the cultivated land in the study area, SGY is the grain yield per
unit area of grid i (that is, the supply of grain yield), and Area is a single grid area.

(2) Demand of grain yield (DGY)

DGY is expressed in terms of grain consumption per unit area. The grain consumption of urban
and rural residents is calculated based on population density and per capita grain consumption of
urban and rural residents [25]. It is calculated as

DGY = Denpop × Peru + Denpop × Perr (5)

where DGY is the demand of grain yield, Denpop is the population density, Peru is the per capita grain
consumption of the city, and Perr is the per capita grain consumption in rural areas. The product of
Denpop and Peru is the grain yield demand of urban residents, and the product of Denpop and Perr is the
grain yield demand of rural residents.

2.3.3. Climate Regulation (CR)

(1) Supply of climate regulation (SCR)

The climate can be adjusted by increasing or decreasing the concentration of atmospheric
greenhouse gases such as carbon dioxide. It is calculated using the carbon storage module in the
InVEST model. For each LUCC type, the module needs to estimate the minimum amount of carbon in
each of the four main carbon pools (aboveground, underground, soil, and dead organic material) [22].
It is calculated as

SCR = Cabove + Cbelow + Csoil + Cdead (6)

where SCR is the total carbon reserves, Cabove is the aboveground carbon stock, Cbelow is the underground
carbon stock, Csoil is the soil carbon stock, and Cdead is the carbon stock of dead organic matter.
The carbon storage table in the basic carbon pool of the LUCC unit was obtained by consulting the
IPCC appendix of the InVEST user manual [22] together with the actual LUCC classification in Wuhan.

(2) Demand of climate regulation (DCR)

The main sources of carbon outflows can be divided into industrial activities (e.g., raw coal,
washed coal, coke, crude oil, fuel oil, gasoline, diesel oil, kerosene, refinery dry gas, liquefied petroleum
gas, coke oven gas, etc.) and agricultural activities (e.g., fertilizers, pesticides, agricultural film,
or agricultural diesel oil) [26]. Thus, carbon outflows can be calculated as

DCR =
∑

Di =
∑

Ci × bi (7)

where DCR is the total amount of carbon outflows, Di is the amount of carbon outflows from various
carbon sources, Ci is the amount of each carbon source, and bi is the carbon emission coefficient of each
carbon source.

2.3.4. Recreation Services (RS)

(1) Supply of recreation services (SRS)

Public green space is an important provider of outdoor recreation and leisure. SRS can be evaluated
from the proportion of public green space area relative to the total area [27]. SRS in a specific area
(streets, towns, etc.) can be expressed by the ratio of the area of green space (woodland or grassland) to
the total area, as follows:

SRS = Gi/Zi (8)
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where SRS is the supply of recreation and leisure (that is, the green space rate of region i), Gi is the area
of green space within region i, and Zi is the area of region i.

(2) Demand for recreation services (DRS)

DRS is mainly determined by the per capita green space index determined by population density
and government planning [7]. It is calculated as

DRS = Den× P (9)

where DRS is the demand for recreation and leisure, Den is the population density, and P is the per
capita green space index.

2.4. Construction and Evaluation of the ES Supply and Demand Index

Constructing an index of the supply–demand ratio helps to demonstrate visually the dynamic
spatio-temporal characteristics of the equilibrium relationship between ES supply and demand.
According to the supply–demand ratio defined by Chen et al. (2019) [7], the ES supply–demand ratio
and comprehensive ES supply–demand ratio in Wuhan were calculated as follows.

2.4.1. ES Supply–Demand Ratio (ESDR)

The ES supply–demand ratio links the actual supply of ES to human needs and can be used to
reveal surpluses or shortages of ecosystem services [7,28]. It is calculated as

ESDRi =
Si −Di

(Smax + Dmax)/2
(10)

where Si and Di are the actual ES supply and demand for ES type I, and Smax and Dmax are the maximum
of ES supply and demand, respectively. A positive value indicates an ES surplus, zero indicates a
balance between ES supply and demand, and a negative value indicates a shortage of ES supply
relative to demand.

2.4.2. Comprehensive Supply–Demand Ratio (CESDR)

The Comprehensive supply–demand ratio (CESDR) is used to determine the state of ES at an
integrated level. It is calculated as the arithmetic mean of the ESDR:

CESDR =
1
n

n∑
i=1

ESDRi (11)

where n = 4, and ESDR is the value of the supply–demand ratio for each type of ecosystem service.
We also quantified changes in the gradient in CESDR along four sample transects as a function of

distance from the urban center in response to changes in urban land use and land cover change.

3. Results

3.1. Evolution of Relationships Between ES Supply and Demand

3.1.1. Water Yield

Figure 2 shows that during 2000–2015, the water yield supply (SWY) and water yield demand
(DWY) in Wuhan City showed an upward trend. In particular, the water yield supply in 2000 (SWR2000)
in Wuhan was 6752.25 m3/ha; in 2010 (SWY2010) it was 10,069.88 m3/ha; and in 2015 (SWY2015) it was
9820.75 m3/ha. The total amount of SWY in Wuhan during 2000–2015 increased from 5.876 billion m3 in
2000, to 8.622 billion m3 in 2010, and to 8.409 billion m3 in 2015. In addition, the water yield demand in
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Figure 2. Spatial distribution of supply, demand, and supply–demand ratio of water yield service in
Wuhan in 2000, 2010, and 2015.

Comparison of the spatial distribution of SWY with DWY reveals that areas of high/low SWY

correspond roughly to areas of high/low DWY, indicating that SWY is matched by DWY. In 2000,
the range of ESDRWY was −0.46 to 0.5; in 2010 it was −0.42 to 0.5; and in 2015 it was −0.34 to
0.5. The spatial relationship between SWY and DWY in 2010 and 2015 has changed compared to the
relationship in 2000, mainly because SWY and DWY in the central urban area have gradually changed
from a state of relative balance to one of scarcity, and the range has also changed with the expansion of
central Wuhan. On the other hand, a state of relative equilibrium in the southeastern part of the city in
2000 gradually evolved to one of relative surplus in 2010 and 2015.

3.1.2. Grain Yield

The total grain yield supply values (SGY) for Wuhan in 2000, 2010, and 2015 were 56 Mt, 71.9 Mt,
and 82.9 Mt, respectively. In 2000, the average SGY was 6995.26 kg/ha; in 2010 it was 8753.35 kg/ha;
and in 2015 it was 10,075.77 kg/ha. The average grain yield demand (DGY) in Wuhan in 2000 was
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4227.52 kg/ha; in 2010 it was 3341.83 kg/ha; and in 2015 it was 3345.58 kg/ha. In 2015, DGY was 880.94 kg
less than in 2000, which indicates a reduction in DGY per unit area in Figure 3.
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Figure 3. Spatial distribution of supply, demand, and supply–demand ratio of grain yield service in
Wuhan in 2000, 2010, and 2015.

Comparison of the average values of SGY and DGY in Wuhan indicates that SGY is greater than
DGY. Figure 3 shows that areas with larger values of DGY correspond to areas with lower values of
SGY, and vice versa. Thus, there is a mismatch between SGY and DGY, and thus an imbalance between
SGY and DGY.

The range of the grain yield supply–demand ratio (ESDRGY) is from −0.5 to 0.46. It can be seen that
the difference between SGY and DGY in Wuhan is substantial. During 2000–2015, ESDRGY gradually
decreased from 0.46 to 0.43, while the negative value remained at 0.5. It can be seen that the state of
grain yield service surplus is approaching equilibrium, and that a shortage still occurs in DGY.

In terms of the spatial distribution of ESDRGY, the range is negative. It includes two major areas:
The urban center, and the forested land in the northwest part of the city. The (negative) value of
the urban central area has continued to decrease over time. The range of the central red region has
gradually expanded from the east bank of the Yangtze River to the west bank, and then to the entire
central area. At the same time, the distribution has changed from being relatively fragmented to
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continuous, while the overall state of the northwest area has improved, as shown by the red shading in
Figure 3. ESDRGY tends to zero; that is, areas where SGR and DGR are roughly in balance (the yellow
shaded area in Figure 3) are distributed mainly in the suburbs outside the central city. There are many
patches with a deficit embedded within the southern part of the city; the number of these patches has
decreased during 2000–2015.

3.1.3. Climate Regulation

The total carbon storage in Wuhan in 2000 (SCR2000) was ~0.190 million ton; in 2010 (SCR2010) it
was ~0.184 million ton; and in 2015 (SCR2015) it was ~1.79 million ton. Thus, SCR in Wuhan decreased
continuously during 2000–2015. The average carbon outflows in Wuhan in 2000 (DCR2000) were
19.08 kg/ha; in 2010 (DCR2010) they were 26.33 kg/ha; and in 2015 (DCR2015) they were 22.21 kg/ha. Thus,
during 2000–2015, DCR first increased and then decreased. The region with the highest SCS has the
lowest DCR, and therefore SCR and DCR are spatially mismatched in Figure 4.
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ESDRCR ranges from −0.5 to +0.5, indicating substantial regional differences in SCR and DCR.
From the spatial distribution of EDSRCR, the area with surplus SCR and DCR is larger than the area
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with a scarcity. In 2000 and 2010 the distribution of areas of scarcity had the form of “1 + N”, where 1
represents the central city, and N represents several patches in the city (Figure 4). However, in 2015
the relationship between SCR and DCR in the central urban area trended to be more balanced (in
Figure 4, it can be seen that the color of the central part of the city changed from red to orange). In 2000,
the relationship between SCR and DCR (the yellow shaded area in Figure 4) was more balanced and
distributed to the north and south of the central area. In 2010, the area with an approximate balance
increased substantially and also had a circular distribution around the central area. In 2015, the area
with a balance between SCR and DCR decreased substantially, while the area of surplus was mainly in
the outer suburbs.

3.1.4. Recreation Services

In 2000, 2010, and 2015 the sum of SRS was larger than that of DRS (Figure 5), and during this
interval DRS increased and SRS decreased. Comparison of SRS and DRS in Figure 5 reveals a spatial
mismatch. In the area to the south of the Yangtze River, in central Wuhan, SRS is relatively low, but there
was a large demand for a high green space ratio of the towns in this area, and therefore it was difficult
for SRS to satisfy the DRS. In contrast, in the northwestern, northeastern, and southern suburbs of the
city, SRS was relatively high in Figure 5.
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Analysis of the ESDR of ESRS for 2000 reveals that the surplus area of ESRS in Wuhan was the
largest. In 2010, the area of balance had decreased sharply, with the area of shortage substantially
increased, and with a large area (mainly in the urban center) changing from a state of approximate
balance to a shortage of SRS which could not meet DRS. In 2015, the area of balance had changed to an
area of shortage. If this trend continues, the shortage will be further exacerbated in areas that already
have a short supply.

3.2. Mismatches between Comprehensive ES Supply and Demand

3.2.1. Mapping the Comprehensive ES Supply and Demand Ratio

The CESDR, as defined above, was used to analyze the relationship between the integrated
ecosystem services supply and demand in Wuhan. From Figure 6, it can be seen that:
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(1) There is substantial spatial heterogeneity of the supply and demand relationship of ecosystem
services in Wuhan. The comprehensive supply and demand index has a large range, with a maximum
difference of 0.86.

(2) There is a large spatial mismatch between ES supply and demand. For the central part of
the city, CESDR is negative and the absolute value is large, and thus the ES supply does not meet
the demand. In contrast, in the outer suburbs, the CESDR is positive and the absolute value is large,
and the ES supply is greater than the demand.

(3) The spatial relationship between ES supply and demand in Wuhan City has evolved to a
circular distribution. There is a deficit in ES in the central urban area, supply and demand in the
suburbs are approximately in balance, and supply is greater than demand in rural areas.

(4) The imbalance between ES supply and demand in Wuhan has intensified over time.
Quantitatively, the difference between the comprehensive supply and demand index is increasing with
time, the ecosystem service surplus area is continuing to grow, and the area of shortage is increasing
due to rising demand, resulting in a growing gap between supply and demand. Over time, the areas
where ecosystem services are scarce have expanded at the expense of the areas with an approximate
balance, while the areas with an approximate balance have extended to areas with a surplus.

3.2.2. Changes in Comprehensive ES Supply and Demand Along Different Directions within Wuhan

We attempted to characterize spatial gradients in the ES supply and demand in Wuhan over the
past 15 years. This was done by taking the central point of Wuhan and analyzing the supply–demand
ratio of integrated ecosystem services along zones of 1 km wide outwards along four directions (W–E,
S–N, SW–NE, and NW–SE), which represent axes of urban development [26–28]. There are substantial
differences in the ES supply of and demand along these axes. In the central urban area, there is a
shortage of ES (CESDR < 0), while at distances far from the urban central areas there is an oversupply
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(CESDR > 0). Along the S–N axis (Figure 7a), CESDR values in Jiangxia and Huangpi districts in the
outer suburbs are higher, while those in Wuchang District in the central urban districts are mostly
negative. Along the SW–NE axis (Figure 7b), Caidian, Huangpi, and Xinzhou are mainly cultivated
land and woodland and ecosystem services are in surplus, while in Hanyang, Qiaokou, and Jianghan
they are in deficit. The ES supply and demand in Qingshan District, located in the urban–rural
intersection, changes from deficit to surplus with increasing distance from the urban center. Along the
E–W axis (Figure 7c), ecosystem services in Jianghan, Jiangan, and Hongshan districts in the urban
center are in deficit (CESDR < 0), while in East–West Lake and Xinzhou, in the suburbs, they are in
surplus (CESDR > 0). Similarly, ecosystem services in Qingshan District change from deficit to surplus
with increasing distance from the urban center. Along the NW–SE axis (Figure 7d), ecosystem services
in Hongshan, Wuchang, and Jiangbian districts, in the central urban area, are in deficit. Most of the
ecosystem services in the Donghu High-tech Development Zone, Donghu Scenic Area, and Huangpi,
which have a greater area of woodland and arable land, are in surplus. Comparison of the change in
the ratio of integrated ecosystem services between 2000 and 2015 reveals that the regional deficit of
ES supply and demand for Wuhan became more pronounced in the urban center, especially in the
riverside area (Figure 7c,d). However, in the suburbs, there was only a minor change in ES supply
and demand.
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3.3. Ecological Zoning Management

The foregoing analysis has revealed substantial spatial differences in supply–demand relationships
for ES in Wuhan. In order to provide a rational basis for the development of an ecological civilization
and to promote sound ecological management, it is necessary to carry out a policy of ecological
regionalization and differential management. Based on the spatial differentiation of the comprehensive
supply–demand index of ecosystem services in 2015, the ecological zonation of Wuhan can be divided
into four types: Ecological restoration, ecological reconstruction, ecological connectivity, and ecological
conservation. They correspond to four supply–demand relationships: Low supply and high demand,
low supply and low demand, high supply and low demand, and high supply and high demand.
Combined with the map of ecological zonation construction (Figure 8), we propose the following
recommendations for ecological construction:
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(1) Eco-restoration zones

These comprise 75 streets/townships which are concentrated in the urban center. Construction
land is the main land use in the region. The degree of land development and utilization is high,
the population is dense, ecological patches are few in number and it is difficult for the local ecological
needs to be met. In terms of management, first, the degree of protection of ecological land should be
strengthened, and second, ecological construction should be increased, making full use of the existing
patchwork of ecological spaces, and the coverage of urban green space should be increased. In addition,
the land utilization ratio should be improved, the urban land should be rejuvenated, and strict controls
should be implemented to prevent urban construction from encroaching on ecological land.

(2) Eco-reconstruction zones

These comprise 43 streets/townships, distributed in the form of a “C-shape” around the city’s
central area. The land use in this area is complex and represents an expansion area of the city. Both the
intensity of land use and the population are increasing continuously, and the areas of ecological
land are seriously threatened. At present, however, it is able to meet its own ecological needs. It is
necessary to integrate and promote the existing ecological resources, strengthen ecological protection
and restoration, improve land use efficiency, and construct a complex social–ecological–economic space.

(3) Eco-connectivity zones

These include 20 streets/townships, distributed in the central-east and southwest parts of the city.
Cultivated land and open water are the main types of land use, the intensity of land development is
relatively low, the economic base is weak, and the ecological demand is low. Therefore, an eco-economy
can be developed, including promoting local industrial restructuring and linking urban and rural areas
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with the eco-economy, in order to alleviate the high ecological needs of the urban population. Such a
policy would also promote the rural economy and provide substantial ecological and economic benefits.

(4) Eco-conservation zones

These comprise 48 streets/townships, mainly distributed in the north and southeast parts of the
city. This region is dominated by woodland, arable land, and open water, where the natural resources
are more than sufficient to meet its own ecological needs. The region is the source of the flow of
ecosystem services to other regions and it is important to protect urban green space, water systems
and cultivated land, promote the role of ecological barriers and lakes, maximize water conservation,
and enhance the supply of raw materials from cultivated land, in order to ensure the sustainable
delivery of ecosystem services to the surrounding areas.

4. Discussion

4.1. Trade-Off and Synergy of Ecosystem Services Supply

On the city scale, the statistical method of districts was used to quantify the supply of various
ecosystem services, and the calculation results were standardized in Figure 9. Correlation analysis was
used to evaluate the relationship between the supply of four ecosystem services for Wuhan. It was found
that there is a significant trade-off relationship between the SWY and SGY in Wuhan. The correlation
coefficient between the two is −0.44 (p < 0.01) for 2000, −0.31 (p < 0.01) for 2010, and −0.48 (p < 0.01)
for 2015. There is also a significant trade-off between the SWY and the SCR. The correlation coefficients
between the two are −0.42 (p < 0.01) for 2000, −0.34 (p < 0.01) for 2005, and −0.46 (p < 0.01) for 2015.
These findings are similar to those of Zhang [19] for Wuhan. Attention should be paid not only to the
correlation between the ES supply and demand, but also to the interrelationships among the different
supplies of ecosystem services.

4.2. Practical Implications of the Imbalance Between ES Supply and Demand

In this research, ESDR and CESDR were used to depict the relationship between ES supply and
demand, which represented a spatial pattern of the match degree of the production of ES and services
needs of human living. It was found that the imbalance between supply and demand is caused by
the difference between supply and demand [29]. Especially in the rapidly expanding areas of the city,
the ES supply has experienced significant degradation. At the same time, the ES demand has increased
significantly, resulting in a shift from a balance to an imbalance in the ES supply and demand in the
region, for example, in the urban and rural areas of Wuhan. Multi-functional rural landscapes can
provide more ES supply to humans and thus make an important contribution to human well-being,
and adding or optimizing green infrastructure in urban areas will improve the supply of ES [30].
For most provisioning services, the imbalance between supply and demand appears to be easier to
resolve. The imbalance between supply and demand for most services appears to be easier to resolve,
for example, the problem of local SGY not meeting the DGY can be solved by the allocation of grain
between regions [31].

Although spatial explicit models may be one of the most common models of ES supply and
demand, their application still has several limitations in the assessment process. Due to the complexity
of ES, we have simplified them when using models for evaluation. For example, when assessing the
supply of climate regulation in Section 2.3.3, we have characterized it as “carbon sequestration” and
evaluated it using the carbon storage module in the InVEST. From Equation (6), we can see that the
premise of this method is that the carbon storage coefficient of the same land-use type is the same, and it
will not increase or decrease carbon over time, or under the influence of climate change. To address this
problem, future research could increase the level of detail of land-use changes, and classify some LUCC
types according to the length of time [32]. In addition, most of the data we use is annual data, but the
annual variance in the calculated indicators may have an impact on the ES supply and demand, such as
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the estimated annual precipitation of water production in this study, while the regional precipitation is
obviously subject to seasonal changes which will affect the accuracy of the assessment of ES.
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5. Conclusions

Land use changes and the related development of Wuhan City have had varying ecological
impacts. In this study we have used Wuhan as a case study to assess the supply of and demand for
ecosystem services, specifically, water resources, food production, climate regulation, and leisure and
entertainment provision. The spatio-temporal distribution of the four types of service and their spatial
relationship provide decision support for the sustainable development of regional land use. We used
the two indicators of ESDR and CESDR to measure the matching and agglomeration of ES supply
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and demand in the city. Based on the results of CESDR analysis, an ecological subdivision of Wuhan
City is proposed. Various zoning policy recommendations provide a decision-making reference for
sustainable land development in the region. Our main findings are as follows:

(1) From the perspective of total supply and demand, the supplies of water yield, grain yield,
and recreation services are greater than the demand, and the supply of climate regulation is less than
the demand. In addition, there are spatial imbalances and mismatches in the supply of and demand
for various ecosystem services, especially in the urban central areas. Notably, the area of imbalance has
expanded with the gradual increase in the built-up area.

(2) The ecological subdivision of the comprehensive ecosystem service supply and demand ratio
exhibit a circular distribution in the form of “stable area–relative equilibrium area–surplus area”,
which corresponds to “urban central area–near suburbs–distant suburbs and rural area”. According to
the ecological zonation characteristics, a policy of sustainable land use is proposed in the context of
“ecological conservation–ecological restoration–ecological reconstruction–ecological connectivity”.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/13/2332/s1,
Table S1: Data used to quantify ecosystem services (ES) supply and demand in Wuhan; Table S2: Key parameters
used to quantify ecosystem services (ES) supply and demand in Wuhan.
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