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Abstract: Curcuminoids have been used for the management of burns and wound healing in
traditional Chinese medicine practices but the wide application of curcuminoids as a healing agent for
wounds has always been a known problem due to their poor solubility, bioavailability, colour staining
properties, as well as due to their intense photosensitivity and the need for further formulation
approaches to maximise their various properties in order for them to considerably contribute towards
the wound healing process. In the present study, a complex coacervation microencapsulation was
used to encapsulate curcuminoids using gelatin B and chitosan. This study also focused on studying
and confirming the potential of curcuminoids in a microencapsulated form as a wound healing
agent. The potential of curcuminoids for wound management was evaluated using an in vitro human
keratinocyte cell (HaCaT) model and the in vivo heater-inflicted burn wound model, providing
evidence that the antioxidant activities of both forms of curcuminoids, encapsulated or not, are
higher than those of butylated hydroxyanisole and butylated hydroxytoluene in trolox equivalent
antioxidant capacity (TEAC) and (2,2-diphenyl-1-picryl-hydrazyl-hydrate) (DPPH) studies. However,
curcuminoids did not have much impact towards cell migration and proliferation in comparison
with the negative control in the in vitro HaCaT study. The micoencapsulation formulation was
shown to significantly influence wound healing in terms of increasing the wound contraction rate,
hydroxyproline synthesis, and greater epithelialisation, which in turn provides strong justification for
the incorporation of the microencapsulated formulation of curcuminoids as a topical treatment for
burns and wound healing management as it has the potential to act as a crucial wound healing agent
in healthcare settings.
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1. Introduction

A wound can be defined as a physical rupture at the epithelial integrity of the skin. While
understanding the formations of wounds can be considerably straightforward, the wound healing
process is a lengthy one and requires deep exploration. The wound healing process comprises of a series
of overlapping phases, namely the inflammatory, proliferative, and remodeling phase [1]. The healing
process often starts with the inflammation phase of the wound, with edema, erythema, heat, and pain
as its accompanying characteristics. In the later stages of inflammation, macrophages play one of the
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major roles, responsible for the digestion of and cleaning the cellular debris from the wound. With the
macrophages at work, the proliferative phase begins, which consists of the migration of fibroblasts,
the deposition of the extracellular matrix, and the formation of the granulation tissue. The healing
wound exhibits a moist, shiny, hyperaemic, and reddish appearance on the granulation tissue, however
if the wound appears to have excessive inflammation, and soft and friable tissue with a beefy-red
colour, it indicates that the wound is healing poorly. The remodeling phase is initiated concurrently
with the development of granulation tissue, and the process continues over a prolonged period. During
the remodeling phase, contraction and epithelialisation occurs, in which tissue structures are being
organised, leading to the increase of the integrity and tensile strength of the wound [2].

Wound repair agents have demonstrated their importance towards the public’s health and
health care resource expenditure as they contribute towards expediting the healing process of a
wound formation [3,4]. In spite of the tremendous demand on wound repair agents in clinical use,
the availability of drugs that are capable of stimulating the process of wound repair is still limited.
With the demand of the market being higher than what the industry is capable of delivering, the
development and utilisation of effective wound repair agents of natural origins are of great interest,
not only for researchers but also to the general public and those within the healthcare industry as well.

Curcumin has always been well known for its effects in promoting wound healing [5–7]. However,
due to its poor solubility, oxidative degradation, light sensitivity, and poor bioavailability, there has been
a huge limitation in its use as an oral or even topical medication [8,9]. A vast amount of effort has been
made to improve the curcumin delivery system in order to increase its stability and bioavailability to an
optimum level. To improve its bioavailability and increase its permeability, several formulations have
been prepared which include nanoparticles, liposomes, micelles, and phospholipid complexes [10].
For instance, nanoglobules-based nanoemulsion formulation has been prepared to enhance the
solubility of curcumin [11,12]. Another formulation designed for improvement of the bioavailability
of curcumin is liposomal curcumin. Liposomes are considered effective carriers to solubilise
curcumin and alter the pharmacokinetic properties of curcumin. For example, liposome-encapsulated
curcumin, silica-coated flexible liposomes loaded with curcumin, and curcumin-loaded flexible
liposomes without silica-coatings have shown to improve the bioavailability of curcumin. In addition,
liposome-curcumin formulation had been shown to improve the bioavailability of curcumin [13,14].
Cyclodextrin had also been reported for its use in curcumin formulation. In a previous publication,
it was found that cyclodextrin-encapsulated curcumin had a greater cellular uptake and longer
half-life in cells and showed an improvement of curcumin permeability to penetrate animal skin
tissue [15,16]. Poly(lactic-co-glycolic acid) (PLGA) has also been used to improve the pharmacokinetics
of curcumin by enhancing its bioavailability. PLGA-curcumin and PLGA-polyethylene glycol (PEG)
nanoparticle-encapsulated curcumin were able to increase the half-life of curcumin through the
augmentation of its bioavailability [17,18].

A topical treatment of curcumin is a medication with the application of curcumin on the skin
to treat ailments such as cancer and inflammation, and to promote wound healing. The wound
dressing formulation of curcumin are mainly prepared either by the use of natural polymeric materials,
such as chitin, chitosan, or alginate, or with different synthetic polymers. Currently, a number of
topical formulations of curcumin for their application in wound-healing have been formulated, where
polymers are blended into different forms such as films, fibers, emulsion, and hydrogels, as well as
with nano-formulations by the use of natural polymeric materials, such as chitin, chitosan or alginate,
or with synthetic polymers [19]. For instance, poly(lactic-co-glycolic acid) nanoparticles encapsulating
curcumin and curcumin loaded in liposomes and penetration enhancer-containing vesicles have
showed their potential in improving wound healing and skin regeneration, with an enhanced level of
bioavailability of curcumin [20,21]. Other delivery systems, such as biodegradable hydro gel systems
have also showed potential as a great application for wound healing [22] through the controlled release
of curcuminoids [23]. In this present study, a complex coacervation microencapsulation approach
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was used to encapsulate the curcuminoids and its wound healing-promoting effects were verified by
in vitro and in vivo assays.

2. Materials and Methods

2.1. Materials

Nembutal® sodium pentobarbital was bought from CEVA Santé Animale, France while
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) was purchased from Calbiochem,
Darmstadt, Germany. Phosphate buffer solution (PBS), potassium persulfate, haematoxylin,
eosin, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl
(DPPH), butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), sodium chloride (NaCl),
chloramphenicol, tetracycline, gentamicin sulphate, perchloric acid (ACS reagent, 70%), Tween
80, Span 80, Pachloramine-T-trihydrate (ACS reagent, 98%), and n-propanol were purchased from
Sigma-Aldrich, St. Louis, MO, USA. Paraffin (tissue embedding medium, Paraplast® Regular) was
bought from Sigma-Aldrich, St. Louis, MO, USA. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide) (MTT) was procured from Amresco, Dublin, Ireland. 4-(dimethylamino) benzaldehyde
was obtained from Fluka, Buchs, Switzerland, and liquid paraffin (extra pure) was purchased from
QRëC, Selangor, Malaysia. White soft paraffin BP was bought from Euro-Pharma Sdn. Bhd., Pulau
Pinang, Malaysia. Cetostearyl alcohol BP was obtained from Wilheim Wilzein Company GmbH, city,
Germany. Dulbecco’s Modified Eagle’s medium (product no.: 31053-028), fetal bovine serum (FBS),
penicillin and streptomycin were purchased from Gibco, Invitrogen Corporation, Waltham, MA, USA.
The human keratinocyte (HaCaT) cell line and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium
bromide) (MTT) Cell Proliferation Assay (ATCC® 30-1010KTM) kit were obtained from the American
Type Culture Collection (ATCC), Manassas, VA, US. Muller Hinton agar and Muller Hinton broth were
purchased from HiMedia, India. Dimethyl sulphoxide (DMSO) and hydrochloric acid (HCl) were
bought from Sigma, USA. Formaldehyde 37–41% was bought from Fisher Scientific, Loughborough,
UK. The curcuminoids (mixture of curcumin, demethoxycurcumin, and bisdemethoxycurcumin, >98%)
and ethanol were supplied by Acros Organics, Belgium., USA. Sodium citrate and sodium acetate were
purchased from R&M Chemicals, Selangor, Malaysia. Sodium hydroxide was purchased from System,
Malaysia. Silfazine cream (Sunward Pharmaceutical Sdn. Bhd., Johor, Malaysia) was obtained from a
local pharmacy (Penang, Malaysia).

2.2. Animal Models

Healthy Sprague Dawley rats weighing 200–220 g were used for the study. The rats were kept
individually in their cages and maintained with normal food and water ad libitum. The study was
approved by the Animal Ethnics Committee, Universiti Sains Malaysia (Animal ethics approval no.:
USM/Animal Ethics Approval/2012/(81) (426)).

2.3. Methods

2.3.1. Complex Coacervation Microencapsulation

Gelatin B and chitosan were separately dissolved in 1% w/w acetic acid. The curcuminoids (0.2 g)
were suspended in Tween 80, and then dispersed in 20 mL of chitosan solution using mechanical
stirring at the speed of 1000 rpm at 50 ◦C for 30 min. After that, 20 mL of gelatin solution was added at
1 mL/min using a syringe pump (Green Stream® SY-P Argus 600, ARGUS Medical AG, Heimberg,
Switzerland) under constant stirring at 500 rpm with the temperature being kept constant at 50 ◦C
(IKA® Werke Staufen, Breisgau, Germany). The mixture was mixed homogeneously making the total
polymer concentration 2.55% w/w, with the mixing ratio of gelatin to chitosan 30:1% w/w. Thereafter,
the pH of the colloid was adjusted carefully to pH 5.50 by adding 1 M of sodium hydroxide solution
(NaOH). Then, the stirring at 500 rpm was continued for another 4 h at 50 ◦C to induce coacervation.
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Following that, the liquid coacervate was gradually cooled to room temperature, then abruptly cooled
to <10 ◦C by incubating the system in an ice bath under constant stirring for another 1 h. Subsequently,
1 mL of formaldehyde was added drop by drop into the system and stirred for 30 min to produce a
covalent cross-linked microcapsule. The drug-loaded coacervate was washed with ethanol 3 times and
then with cold distilled water for the final wash. This was followed by centrifugation at 1000 rpm for
5 min at a constant temperature of 10 ◦C. Then, the formed coacervate was frozen overnight at −70 ◦C
followed by freeze drying (Labconco, Kansas, MO, USA). Finally, the freeze-dried microcapsules
were stored in airtight glass bottles, protected from light, and kept in desiccators until required for
the studies.

2.3.2. Preparation of Curcuminoids Microcapsule-Incorporated Cream

The oil components (liquid paraffin, white soft paraffin, and cetostearyl alcohol of ratio
50:25:25% w/w), emulsifiers blend (Tween 80/Span 80), and 0.1 M citrate buffer pH 5.0 at a ratio
of 30:12.95:57.05% w/w were mixed and prepared in a beaker. The preservatives (0.1% methyl paraben
and 0.05% propyl paraben) were included in the final formulation where propyl paraben was dissolved
in the oil phase and methyl paraben was dissolved in the aqueous phase. After the cream base
was developed, the microcapsulated curcuminoids were dispersed and mixed in the base at 2% w/w.
The finished cream was kept in a tightened glass jar at room temperature and protected from light
prior to the experiment.

2.3.3. Antioxidant Activity

Trolox Equivalent Antioxidant Capacity (TEAC)

The total antioxidant activity of the active ingredient(s) was estimated using the trolox
(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) equivalent antioxidant capacity (TEAC) test
as described by Re et al. [24]. ABTS [2,2′-azino-bis (3-ehylbenzothiazoline-6-sulfonate)] was dissolved
in deionized water to produce a 7 mM solution. The ABTS radical cation (ABTS·+) were produced by
reacting the ABTS stock solution with 2.45 mM potassium persulfate. The mixture was allowed to
stand in the dark at room temperature (24–26 ◦C) for 12–16 h prior to use. The ABTS·+ solution was
then diluted with PBS (pH 7.4) to a final concentration that would give an absorbance of 0.70 ± 0.02 at
a wavelength of 734 nm in an ambient temperature of 30 ◦C. The reaction was initiated by the addition
of 10 µL of curcuminoids and the microcapsules of the curcuminoids solution (1 mg/mL in methanol)
to 2 mL of diluted ABTS·+. The spectrophotometer (Hitachi U-2000, Tokyo, Japan) was preliminarily
blanked with PBS. The decrease in absorbance was measured at 734 nm, 6 min after the addition
of trolox and the samples. Trolox, a vitamin E analogue with a concentration of 0 to 4 mM, was
used as the standard and for calibration purposes. BHT, a potent inhibitor of lipid peroxidation and
BHA were used as the positive controls. All antioxidants were prepared in methanol and sample
determinations were carried out in triplicates. The TEAC value was defined as the concentration
of standard trolox with the same antioxidant capacity as a 1 mM concentration of the antioxidant
compound under investigation.

Assessment of DPPH Scavenging Activity

The DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activities of native curcuminoids and the
microcapsules of curcuminoids were determined according to the method in the literature [25,26]. BHT
and BHA were used as references. The method was carried out by pipetting l00 mL of the samples
into 96-well plates and performing a serial 2-fold dilution using methanol. Then, 200 mL of 0.2 mM
DPPH solution (in methanol) was pipetted into each well and the plates were incubated at room
temperature (24–26◦C) for 30 min. The absorbance of the mixture was measured using a microplate
reader (Power Wave X340, Winooski, VT, USA) at 517 nm against the blank (100 mL substance +

200 mL methanol). The percentage of samples’ radical scavenging activity was evaluated by comparing
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them with a standard (100 mL methanol + 200 mL of 0.2 mM DPPH). Each sample was measured in
triplicate and the average was determined. The radical scavenging activity was calculated using the
following formula:

Radical scavenging activity = [(A0 − A1)/A0] × 100

where A0 is the absorbance of the control and A1 is the absorbance of samples after 30 min. The EC50

(effective concentration of 50%) of the sample was determined by the equation from the dose-dependent
free radical scavenging curve.

2.3.4. Minimum Inhibitory Concentration

The bacterial strains used for the study were Staphylococcus aureus ATCC 23923, Escherichia coli
ATCC 25922, Klebsiella pneumoniae ATCC 13883, Staphylococcus epidermidis ATCC 12228, Pseudomonas
aeruginosa ATCC 27853, and Bacillus subtilis ATCC 6633. The microdilution method was used to
evaluate the minimum inhibitory concentration (MIC) of curcuminoids and their effects after the
microencapsulation process on both gram positive and gram negative bacteria. MIC determination
was performed as reported by Luseba et al. with some modification [27]. The colony of bacteria
(3–5 colonies) was sub-cultured in 5 mL of sterile Mueller Hinton Broth (MHB) and incubated (Incubator
shaker series PSE-T150, Stik® Instrument Equipment, Shanghai) for 16–20 h at 37 ◦C. For bacteria such
as P. aeruginosa, S. aureus, and S. epidermidis, the MHB was supplemented with 2% sodium chloride.
Then, 100 µL of the bacterial suspension was transferred to 10 mL of freshly prepared, sterile MHB
or MHB supplemented with sterile 2% NaCl according to the type of bacteria. The new bacterial
suspension was then incubated in an incubator shaker at 37 ◦C for 2–3 h. The turbidity of the inoculum
was checked using a spectrometer (Thermo Spectronic, model 4001/4, USA) at 600 nm to ensure that the
optical density (OD) obtained was 0.002. The stock solutions of the curcuminoids and curcuminoids
microcapsules were prepared in dimethyl sulfoxide (DMSO) with 5% DMSO as the final concentration
in the microplate. Gentamicin, tetracyclin, and chloramphenicol were used as positive controls. These
antibacterial agents were then transferred in volumes of 100 µL into a sterile 96-wells plate from
column A to G. Then, a 2-fold serial dilution was conducted using MHB, or MHB supplemented with
2% NaCl when bacteria P. aeruginosa, S. aureus, and S. epidermidis were the bacteria tested. The wells in
the last column of the plate (column H) served as a drug-free control that contained only the broth
without any drugs or microbes. Subsequently, 100 µL of bacterial inoculum was transferred into all of
the 96 wells, and the final concentration of the bacterial suspension was ~5 × 105 CFU/mL. The final
inoculum was used within 30 min as an increase of bacterial density occurs over time. Thereafter,
the plate was covered and incubated in an incubator at 37 ◦C for the next 16–20 h. Then, 50 µL of
0.2 mg/mL MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] was added to each of
the wells and the plate was incubated in the incubator at 37 ◦C for 30 min. The reduction in the purple
colour indicated bacterial growth inhibition, whereas clear wells indicated a lethal effect of the samples
on the bacteria. The substances were tested in triplicates to obtain the average.

2.3.5. Effects of Curcuminoids and their Encapsulated Form on HaCaT Cell

Cell Culture and Treatments

The human keratinocyte (HaCaT) cell line was obtained from the American Type Culture Collection
and cultured in Dulbecco’s Modified Eagle’s Medium supplemented with 10% fetal bovine serum (FBS),
penicillin (100 IU/mL), and streptomycin (100 µg/mL). The cell line was maintained in an incubator set
at 37 ◦C with a constant supply of 5% carbon dioxide.

HaCaT cells were then plated when the cells reached 70% confluency. After overnight incubation,
the cells were subsequently treated with varying concentrations (ranging from 0.1–100 µM) of either
curcuminoids or curcuminoids microcapsule. The test compounds were dissolved in DMSO and
diluted using the culture medium before being introduced to the cells.
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Cell Cytotoxicity/Viability Determination by 3-(4,5-dimethylthiazol-2-yl)-2,5 Diphenyltetrazolium
Bromide (MTT) Assay

For the determination of cell cytotoxicity, HaCaT cells were seeded into a 96-well plate at a density
of 3000 cells per well. Each well is filled with the test compounds to a final volume of 100 µL/well.
The cells were then incubated with various treatments for 24, 48, and 96 h. A total of 10 µL of 5 mg/mL
MTT were then added into each wells, making the final concentration 0.45 mg/mL and the plate was
incubated for 4 h. A total of 100 µL of dimethyl sulfoxide (DMSO) was added and mixed well, and
then the absorbance was read at 570 nm at different intervals. Viable cells with active metabolism will
cause a conversion of MTT into a purple-coloured formazan product with a maximum absorbance
near 570 nm. DMSO was then added to dissolve the formazan crystals formed. The percentage of cell
viability compared to the control was calculated in which the untreated cells served as the control.

Cell Proliferation Determination by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide
(MTT) Assay

For the determination of cell proliferation, HaCaT cells were seeded into a 24-well plate at a
density of 10,000 cells per well. A total of 500 µL of test compounds were then added to each of the
wells and the cells were cultured for 24–96 h at 37 ◦C with a constant supply of 5% CO2 in a humidified
incubator. A MTT assay was then performed and the absorbance was taken every day for 4 days to
monitor the rate of cell proliferation. A total of 50 µL of MTT (5 mg/mL) reagent was added to each of
the wells and incubated at 37 ◦C and 5% CO2 for 3–4 h until a purple precipitate was visibly formed.
Then, 500 µL of Detergent Reagent was added to each of the wells and the plate was left in the dark at
room temperature for 2 h to dissolve the formazan crystals. After that, the absorbance was read at
570 nm using the Infinite 200 PRO microplate reader (Tecan, Männedorf, Switzerland).

Cell Migration Determination by Wound Scratch Assay

HaCaT cells were seeded into a 6-well plate at a density of 2 × 105 cells per well. Scratch lines were
made using a 1000 µL pipette tip. Test samples of 1 mL was then added into each well. The scratch
lines were observed under an inverted microscope equipped with a camera (Nikon, Melville, NY,
USA) and the images were captured. The width of the lines was measured using the NIS-Elements D
Microscope Imaging Software (Nikon, USA) at 24, 48, and 96 h of treatment. The percentage of gap
closure was calculated using the following formula:

Gap closure (%) =
Average distance of gap at 0 h − Average distance of gap at x hour

Average distance of gap at 0 h
× 100

2.3.6. In Vivo Wound Healing Study of Curcuminoids Microcapsule-Incorporated Cream

Healthy Sprague Dawley rats were anaesthetised using pentobarbital (60 mg/kg, IP) and the fur
on the back and flanks on both the left and right sides were shaved with a sterile standard electrical
shaving machine. The shaved areas were then disinfected with 70% v/v ethanol. Following that,
a modified stainless steel stamp (20 mm in diameter) with an electronic temperature controller and
a thermocouple type feedback sensor that has been heated to 130 ◦C was applied on the skin of the
subjects between the twelfth rib and the horizontal upper limits of the sacroiliac joints for 5 s to produce
a second-degree burn [28,29]. The animals were then returned to their cages with the tether positioned
well out of reach of the animals.

Following the burn infliction procedure, 96 animals were randomly divided into 4 groups with
18 rats in each group. Each group’s animals were evaluated at 4 different sampling times at 0, 7, 14, and
21 days (6 rats in each group for each sampling time). Each group of rats were tested using different
samples with Group 1 being treated with the cream base to act as the normal control group, while the
rats from Group 2 were treated with sterile normal saline as the negative control. Group 3 rats were
treated with 0.5 g Silfazine cream (silver sulphadiazine 1% w/w) as the positive control [30], and the rats
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from Group 4 were treated with 0.5 g of 2% curcuminoids microcapsule cream. The tropical treatments
were applied once daily up to 21 days post-burn induction. Throughout the entire period of treatment
introduction, the wound contraction rate was measured and represented as the reduction in wound size
on day 3, 6, 9, 12, 15, 18, and 21. The progressive decrease in the wound size was monitored periodically
by tracing the boundary of the wound using a digital calliper. For morphological analysis, the animals
were euthanised via carbon dioxide inhalation according to the “IACUC Guideline—Carbon Dioxide
Euthanasia of Rodents” [31] and fragments of the affected skin were collected from the subjects of each
group at 7, 14, and 21 days after burn induction for histopathological and hydroxyproline evaluations.

Measurement of Hydroxyproline

On day 21 post-burn induction, a piece of skin from the healed wound area was collected and
analysed for its hydroxyproline content. The assay was performed following the protocol published
by Woessner cited in Jorge et al. [32]. A total of 30 g of tissues were excised and dried in a hot air oven
at 60–70 ◦C to obtain their constant weight, and then the tissue were hydrolysed in 1 mL of 6 N HCl at
130 ◦C for 4 h in sealed glass tubes. The hydrolysate was neutralised with 1 mL of 2.5 N NaOH. Then,
20 µL of each of the hydrolyzed samples were added to the 96-well plate and incubated for 20 min at
room temperature with 50 µL/well of chloramines T solution (282 mg chloramines T, 2 mL n-propanol,
2 mL distilled water, and 16 mL citrate acetate buffer). Next, 50 µL/well of Erlich’s solution (2.5 g of
4-(dimethylamino)benzaldehyde, 9.3 mL of n-propanol, and 3.9 mL of 70% perchloric acid) was added
and incubated for 15 min at 65 ◦C. The absorbance was measured at 550 nm using a microplate reader
(Power Wave X340, USA). Hydroxyproline concentrations from 0 to 10 µg/mL were used to prepare a
standard curve, and the results were expressed as µg/mL of hydroxyproline.

Histopathologic Study

The fragments of skin collected from the animals of each group at 7, 14, and 21 days following
burn induction were investigated for histopathological evaluation. Sample tissues were fixed in
10% formalin and processed by the dehydration and clearing of the samples using an automatic
tissue processor (model Citadel 1000, Shandon, Cheshire, UK). After processing, the tissues were then
embedded in paraffin with a Histo-Center II-N (Barnstead/Thermolyne Corp., Dubuque, IA, USA) and
sectioned to a thickness of 5 µm using a Histocut 820 (Reichert-Jung, Nussloch, Germany). The tissues
were stained using haematoxylin and eosin, and later examined using a light microscope to observe
ulceration, necrosis, and epithelialisation of the skin tissues.

2.4. Statistical Analysis

The data were expressed as mean± S.D. or S.E.M. one-way analysis of variance (ANOVA) followed
by the Dunnett Multiple Comparison Test, were used to compare the treated groups with the control
group by SPSS (statistical package for social sciences) version 17.0.

3. Results

3.1. Antioxidant Activity

The total antioxidant activity was expressed as mM trolox equivalent. The higher the mM trolox
equivalent values, the more potent the samples are in terms of their antioxidant activities. The TEAC
and EC50 values of DPPH scavenging activity of the curcuminoids and curcuminoids microcapsule are
presented in Table 1. The results showed that microencapsulation does not influence the antioxidant
capacity of curcuminoids. This study also demonstrated that the antioxidant activity and DPPH
scavenging effect of curcuminoids and curcuminoids microcapsule were much higher compared to
BHT and BHA.
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Table 1. Antioxidant activity of curcuminoids, curcuminoids microcapsule, butylated hydroxyanisole,
and butylated hydroxytoluene.

Compounds
* TEAC (mM) of 1 mg/mL

Tested Compound
(mean ± S.D., n = 3)

DPPH Scavenging
EC50 (µg/mL)

(mean ± S.D., n = 3)

Native curcuminoids 10.49 ± 1.19 35.55 ± 0.36
Curcuminoids microcapsule 11.17 ± 1.12 35.14 ± 1.14

BHA 3.82 ± 2.30 44.30 ± 3.21
BHT 2.23 ± 0.40 59.77 ± 2.41

Notes. * The value is relative to the antioxidant activity of 1 mM Trolox. BHA: butylated hydroxyanisole, BHT:
butylated hydroxytoluene, TEAC: trolox equivalent antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl: DPPH.

3.2. Minimum Inhibitory Concentration

The minimum inhibitory concentrations of the samples are shown in Table 2. The results
demonstrated that the active ingredients being tested and the antibiotics exhibited varying degrees of
MIC values against the studied microorganisms. The MIC values of the curcuminoids microcapsule
range from 16 to 64 µg/mL. The results also indicated that the antibacterial activity of the
curcuminoids microcapsule was comparatively greater for S. aureus, E. coli, and S. epidermidis than its
un-encapsulated form.

Table 2. Minimum inhibitory concentrations of curcuminoids, microcapsule curcuminoids, and
antibiotics against the gram positive and gram negative bacteria.

Drug/Antibiotic Minimum Inhibitory Concentration (µg/mL)

E. coli S. aureus K. pneumoniae S. epidermidis P. aeruginosa B. subtilis

Native curcuminoids 64 64 64 32 32 64
Microcapsule Curcuminoids 32 16 64 16 32 64

Gentamicin 0.63 2.5 >5 5 1.25 0.08
Tetracyclin 0.47 0.12 1.88 0.12 0.12 0.12

Chloramphenicol 2.19 4.38 8.75 2.19 2.19 2.19

3.3. Effects of Curcuminoids and the Curcuminoids Microcapsule on HaCaT Cell

3.3.1. Cell Cytotoxicity/Viability Determination by 3-(4,5-dimethylthiazol-2-yl)-2,5
Diphenyltetrazolium Bromide (MTT) Assay

The effects of native curcuminoids and curcuminoids microcapsules on cell viability was
determined using the MTT assay. Results showed that the curcuminoids and curcuminoids
microcapsules reduced cell viability in a dose-dependent manner. Generally, the compound was
not toxic to the cells when being introduced for a short duration, but exerted significant toxicity
when the incubation time was being prolonged. Significant reductions in cell viability was observed
when the cells were treated with these compounds for 48 and 96 h. The results also exhibited that
concentrations higher than 5 µM induce cell death at 48 h. Significant cell death was noted at 96 h
of incubation, even when the samples are at their lowest concentration (1 µM). In addition to that,
the curcuminoids microcapsule showed more toxicity against HaCaT cells at 1 and 5 µM compared to
the native curcuminoids (Figure 1).

3.3.2. Cell Proliferation Determination by 3-(4,5-dimethylthiazol-2-yl)-2,5 Diphenyltetrazolium
Bromide (MTT) Assay

The results showed increments in cell number of the control and treated groups over a 4 day
period. However, no significant differences were observed between the treated cells and those from
the untreated control (Figure 2).



Pharmaceutics 2019, 11, 205 9 of 18  

Pharmaceutics 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/pharmaceutics 
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on human keratinocyte (HaCaT) cell viability. Results were expressed as mean ± S.D. of three
independent tests. * indicates p < 0.05 compared to the untreated control, # indicates p < 0.05 compared
to curcuminoids group.
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3.3.3. Cell Migration Determination by Wound Scratch Assay

The wound scratch assay was used to measure the migration of cells. At hour 24, the group that
was treated showed lesser cell migration than the control group. At hour 48, the cells treated with
the curcuminoids microcapsule showed a better effect in improving cell migration at 0.1 and 1 µM,
compared to the control. On the other hand, native curcuminoids reduced cell migration at 0.1 and
1 µM compared to the control (Figure 3).
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3.4. Effects of Curcuminoids and Microcapsule Incorporated Creams as Controlled Drug Delivery on
Wound Healing

3.4.1. Wound Contraction

The size of the wound inflicted was measured on day 1, 3, 6, 9, 12, 15, 18, and 21 post-burn injury
in all of the groups (Figure 4). Generally, the closure of wounds for all the treated and control groups
gradually began from day 12 to day 21 post injury. The negative control group (treated with normal
saline) showed the least contraction of wound size amongst all groups. The curcuminoids microcapsule
cream treated group demonstrated significant wound closure starting from day 12 to day 21 post
injury. The silfazine cream group showed significant (p < 0.05) wound contraction starting from day 12
to day 15. On day 21, the percentage of wound contraction for the curcuminoids microcapsule and
silfazine cream treated groups were significantly different at p < 0.01, compared to the normal saline
negative control group. This indicated that the drug-treated groups displayed a positively improved
wound healing process.

3.4.2. Measurement of Hydroxyproline

Figure 5 demonstrates the effect of silfazine and the curcuminoids microcapsule cream on
the hydroxyproline synthesis of burn wounds. The results demonstrated that the curcuminoids
microcapsule cream significantly stimulated hydroxyproline synthesis (p < 0.01) in burn wounds.
On day 21, the group with the subjects treated with the curcuminoids microcapsule cream showed
124.4% more hydroxyproline in their wound tissues than those of the negative control group treated
with normal saline. On the other hand, the silfazine cream, and the cream base treated groups did not
show any significant increase in hydroxyproline synthesis.
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normal saline-treated group.

3.4.3. Histopathologic Study

The histological findings on day 0 (within 24 h post injury) in all five groups showed similar
characteristics in terms of skin damage (Figure 6). All the burns inflicted can be safely categorised
as second degree in all subjects as macroscopic analysis found that the upper third to half of the
dermis was damaged and injured during the burn wound induction. Most of the epidermal layers
and basement membrane were shown to be disrupted. On day 7 post injury, both groups treated
with the curcuminoids microcapsule cream and silfazine cream produced an accelerated degree
of epithelialisation on the wound sites, with the curcuminoids microcapsule cream-treated group
showcasing a more significant increase in terms of epithelialisation level, with an initiation of the
reestablishment of the basement membrane. There were also less inflammatory cells found in these
groups in contrast with the negative control (normal saline) and cream base groups which had a
moderate invasion of inflammatory cells in the damaged region and no observable epithelialisation.
On day 14 post injury, epithelialisation was similarly active in all groups, with the basement membrane
starting to develop in the curcuminoids microcapsule cream, silfazine cream, and cream base-treated
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groups. On the other hand, only the subjects receiving the curcuminoids microcapsule cream showed
a regenerated dermal-epidermal junction, with extensive formations of rete ridges and capillary loops.
However, no formations of basement membrane can be identified in the negative control group.
On day 21 post injury, complete epithelialisation was observed in all of the groups except for the
negative control.
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Figure 6. Hematoxylin and eosin stained sections of skin burn wound from: (a) Normal saline (negative
control), (b) cream base-treated, (c) silfazine cream-treated, and (d) curcuminoids microcapsule
cream-treated; (E) epidermis, (S) scab, (D) dermis, (EGT) early granulation tissue, (GT) granulation
tissue, (star) aggregation of inflammatory cells, (R) rete ridges, and (→) epithelialisation.

4. Discussion

The total antioxidant activity demonstrated by curcuminoids was due to its phenolic hydroxyl
group [33]. A higher TEAC value indicates greater antioxidant activity in the scavenging of the
free radical cation 2,2′-azino-bis (3-ehylbenzothiazoline-6-sulfonate) (ABTS·+). Antioxidants act as
hydrogen donors and terminate the oxidation process of free radicals by converting them to more
stable products [34].

The effects of curcuminoids and quercetin on DPPH radical scavenging is due to their hydroxyl
groups which scavenge the free radicals via hydrogen donation. This causes a decrease in the
absorbance of the DPPH radical, which is a stable free radical that accepts an electron on its hydrogen
ion, thus converting into a stable diamagnetic molecule [35]. When this electron is paired off,
the absorption decreases stoichiometrically with respect to the number of electrons taken up [36].
Therefore, the reduction of DPPH is proportional to the decrease of absorbance at 517 nm.

The cytotoxic effect of curcuminoids and its microencapsulated form on keratinocytes, the HaCaT
cells, was investigated. There was negligible cell death when the HaCaT cells were exposed to the
compound for 24 h. However, when the incubation time was increased, the compounds showed
noticeable cell toxicity, in which a significant drop in cell viability was noted in almost all of the
concentrations of compounds tested even at the lowest concentration (1 µM). Previous literature
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appears to be inconsistent with the cytotoxic effect of curcumin shown in this study, particularly in the
cell culture assays. Banerjee et al. found that curcumin acted as an antioxidant at low concentrations
but the mode of mechanism of action changed to prooxidant at high concentrations (>10 µM) [37].
The cell-protecting properties of curcuminoids may come from their antioxidant effect, while their
prooxidant effect may have contributed to their cell cytotoxicity. This prooxidant property may be
the cause of the significant cell death that was observed in the current study, which is supported by a
number of studies discussing the toxic effect shown by curcuminoids on cells [37,38].

It is interesting to note that the microencapsulated form of the curcuminoids was more toxic than
its non-encapsulated counterpart. This may be due to the drug-release control features of encapsulation
(t50 for curcuminoids and curcuminoids microcapsule were 22.75 and 17.18 h, respectively) [39]. Cells
were continuously exposed to the compound at a steady rate, making the effect of the curcuminoids a
whole lot more enhanced and stronger than the non-encapsulated form. Based on current observations,
the curcuminoids were safe to use for a short duration on skin cells at low concentrations.

Re-epithelialisation of the skin is a process which is predominated by keratinocytes proliferation
and migration, an essential event in wound healing. The results showed that neither the curcuminoids
nor the microencapsulated curcuminoids improved HaCaT cell proliferation. On the other hand,
in the wound scratch study, the microencapsulated curcuminoids showed a better effect than the
non-encapsulated form in the induction of cell migration. However, the data was not statistically
significant, thus it was determined that curcuminoids did not increase cell proliferation and migration.
These findings are consistent with the observations from an earlier study, in which curcumin was
shown to have no effect on fibroblast motility [40]. Other researches have even exhibited that curcumin
inhibits cell proliferation and proposed that the inhibition is mediated through the regulation of
prohibitin (PHB) in the HaCaT cells [41–43].

In summary, there is no evidence supporting the effectiveness of curcuminoids and their
encapsulated form in terms of promoting wound healing in vitro in the present study. However, the
effect of the compounds should be tested in in vivo models as wound healing is a complex process,
involving interactions between the cells’ intracellular and extracellular matrix and is affected by various
systems within an organism [44]. The wound healing process involves inflammation, granulation
tissue formation, epithelialisation, and new tissue remodeling to reconstruct and restore damaged
tissues to theirs near normal and optimal state [45]. During the process, connective tissue repair,
re-epithelialisation, and angiogenesis is required. Various literature has shown that a number of
mechanisms influences the healing rate, such as the modulation of inflammatory mediators [37].

The microencapsulated curcuminoids showed slightly improved antioxidant and in vitro
antibacterial activities compared to their non-encapsulated forms, similar to the results from
Suwannateep et al. who had found comparable antioxidant activities between the encapsulated and
non-encapsulated versions of curcumin [46]. From our results, it was shown that the microencapsulated
curcuminoids exhibited controlled drug release (zero order kinetics), increased photo-stability (kept in a
desiccator at room temperature (28 ± 4 ◦C/75 ± 10% RH), and was allowed to receive sunlight exposure
for one month. The rate constants for the samples were obtained from their respective best-fitted kinetic
plots and used to calculate the half-life degradation (t1/2) of the studied samples and found that t1/2 of
microencapsulated curcuminoids up to 236 days as compared to free curcuminoids (t1/2 of 66.63 days),
non-staining, and extended shelf-life (kept in long-term storage condition (28 ± 4/75 ± 10% RH for
12 months, 40 ± 2 ◦C/75 ± 5% RH, and 5 ± 3 ◦C, for 6 months). CPM showed excellent chemical stability
during storage periods due to the curcuminoids being protected by the capsule shell from adverse
environment conditions. Suwannateep and colleagues reported in their studies that encapsulation
increased the photostability of curcumin nanoparticles and therefore prolonged the antioxidant activity
of curcumin compared to free curcumin in lotion formulations. This result parallels those discussed
regarding the stability of microencapsulated curcuminoids. Further supporting evidence of this theory
was shown in previous researches, in which findings portrayed how the free curcuminoids have a
tendency to become unstable after being exposed to light or heat, as well as losing their activity during
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storage [47–49]. This finding is especially important when the active ingredients are to be applied to
the skin using a cosmetic or pharmaceutical formulation. Therefore, encapsulated curcuminoids cream
is expected to exhibit greater activity due to its prolonged bioavailability after each topical application
and increased photo-stability compared to free curcuminoids. Thus, based on the above reasons,
the animal study of burn wounds was designed to focus on the microencapsulated curcuminoids in the
topical cream formulation and their effectiveness on wound healing was compared with the marketed
and typically recommended silver sulfadiazine cream.

Animal models are commonly used in wound healing research that is not feasible with human
models, such as burns, dehiscence, ulceration, infection, and scarring [50]. The use of an in vivo model
is inevitable in wound healing studies, and using animal models enable the induction of wounds that
are similar in consistency in terms of the size, shape, and severity of the injury, facilitating acceptable
comparisons of data between studies. Moreover, the wound healing process of animals is of an
accelerated period, making it possible to study the entire wound healing process in days rather than
the weeks as required by humans for the complete healing of a wound [51]. The wound healing study
was conducted for 21 days because this duration is crucial in obtaining the final results of wound
healing [28,52].

However, there are significant anatomical and physiological differences between human and rat
skin that should be noted. Rats have loose skin and contraction is one of the major features of healing
in wounds inflicted on them [45]. Wound contraction is a fibroblast-dependant process and involves
the deposition and maturation of collagen, the predominant extracellular protein in the granulation
tissue of the wounds [53]. It is also a principal component of connective tissues, which plays a role in
the healing of wounds and providing a structural framework for regenerating tissues [44]. The role
of collagen in wound healing commences almost immediately upon wound formation as there is a
significant hike in the synthesis of collagen around the injury site. This synthesis does not stop for
months after the wound appears to be healed. Collagen plays a role in haemostasis and in providing
both strength and integrity to the wound matrix and epithelialisation. Since hydroxyproline is a major
component of the collagen protein, an estimation of hydroxyproline present is an accepted method to
biochemically evaluate the total collagen content of a sample. It is also used as a marker for collagen
synthesis [54]. Hence, an increase in collagen may be attributed to an increase in collagen synthesis or
an increase in the proliferation of fibroblasts that synthesise collagen. Several research articles have also
reported that the progress of wound healing correlates with the amount of hydroxyproline contained
within a wound [54].

Curcuminoid containing herbs have been used for the management of burns and skin wounds
in traditional medicinal practices. In the present study, the application of the microencapsulated
formulation as a delivery system for curcuminoids as a topical medication produces a significantly
enhanced rate of wound healing, as shown in the measurement of wound contraction and in histological
studies. The data revealed that the curcuminoids microcapsule cream significantly enhanced collagen
formation via the measuring of hydroxyproline (a marker of collagen synthesis) content in the wounds.
Additionally, the histological score demonstrated that the curcuminoids microcapsule cream-treated
group had a more rapid epithelialisation rate compared to the negative control group.

Wound healing is a complex process which involves various phases, namely, haemostasis,
inflammation, proliferation, and remodeling. Among these phases, inflammation is the most prominent
phase, where uncontrolled inflammatory responses will lead to the over-production of reactive oxygen
species (ROS) resulting in oxidative damage that inhibit the wound healing process. It has also
been reported that antioxidants with free radical scavenging activity can improve the wound healing
process [3]. The present study clearly provided evidence that curcuminoids acts as excellent antioxidants
with the relative antioxidant effect of curcuminoids microcapsule showing to be enhanced compared
to the non-encapsulated forms. This suggested that the antioxidant property of curcuminoids may
play an important role in the wound healing process.
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As mentioned above, the proliferative phase (which includes fibroblast proliferation and
epithelialisation) is also a crucial phase in wound healing. The infiltration of fibroblasts into wounds
will promote tissue formation, collagen production, and collagen deposition [55]. Studies have shown
that the migration and proliferation of fibroblast to the wound site ensured a good progression of the
wound healing process [56]. In the wound, fibroblast will differentiate into myofibroblasts to augment
the tissue matrix. Research have shown that there is also interaction of keratinocyte and fibroblast,
whereby keratinocytes initiates growth factors in fibroblasts, which themselves stimulate keratinocyte
proliferation. However, the in vitro study showed that the non-encapsulated curcuminoids, as well as
the microencapsulated curcuminoids had no significant effect on HaCaT cell proliferation and their
migration kinematic. These contradictory results indicated that in vitro wound healing models are still
inadequate at mimicking the truly complex nature of the wound healing process that occurs in the
in vivo settings [40]. These findings also agreed with previous studies in which curcuminoids caused
keratinocyte apoptosis in in vitro wound models [57]. Therefore, the in vitro test results should not
represent the in vivo test results as they may contradict each other.

5. Conclusions

The curcuminoids microcapsule incorporated cream demonstrated an increase in the rate of
wound contraction and lead to better epithelialisation rates. Hence, curcuminoids microcapsule
incorporated cream would be highly beneficial for the wound healing process and recommended for
effective topical wound healing therapy.

Author Contributions: L.F.A.: Data curation, Formal analysis, Investigation, Methodology, Validation,
Writing—original draft, Writing—review & editing. R.Y.K., K.V.G.L. and M.Y.Y., L.Y.P.: Methodology, Validation.
Y.D. and M.F.Y.: Conceptualisation, Funding acquisition, Project administration, Supervision, Writing—review
& editing.

Funding: The research work was financially supported by Universiti Sains Malaysia through Research University
Grant (1001/PFarmasi/811285).

Conflicts of Interest: The authors declare no conflict of interest. We wish to confirm that there are no known
conflicts of interest associated with this publication and there has been no significant financial support for this
work that could have influenced its outcome.

References

1. Wild, T.; Rahbarnia, A.; Kellner, M.; Sobotka, L.; Eberlein, T. Basics in nutrition and wound healing. Nutrition
2010, 26, 862–866. [CrossRef]

2. Enoch, S.; Leaper, D. Basic science of wound healing. Surgery 2005, 23, 37–42.
3. Martin, A. The use of antioxidants in healing. Dermatol. Surg. 1996, 22, 156–160. [CrossRef] [PubMed]
4. Upton, Z.; Fernandez, M. Wound care innovation for the tropics—An industry–facing Singaporean initiative

focussed on wounds and wound care in Asian populations. Int. Wound J. 2018, 15, 183–184. [CrossRef]
5. Cheppudira, B.; Fowler, M.; McGhee, L.; Greer, A.; Mares, A.; Petz, L.; Devore, D.; Loyd, D.R.; Clifford, J.

Curcumin: A novel therapeutic for burn pain and wound healing. Expert Opin. Investig. Drugs 2013, 22,
1295–1303. [CrossRef] [PubMed]

6. Kianvash, N.; Bahador, A.; Pourhajibagher, M.; Gafari, H.; Nikoui, V.; Rezayat, S.M.; Dehpour, A.R.;
Partoazar, A. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in
rat: Biocompatibility, wound healing, and anti-bacterial effects. Drug Deliv. Transl. Res. 2017, 7, 654–663.
[CrossRef]

7. Tejada, S.; Manayi, A.; Daglia, M.; Nabavi, S.F.; Sureda, A.; Hajheydari, Z.; Gortzi, O.; Pazoki-Toroudi, H.;
Nabavi, S.M. Wound Healing Effects of Curcumin: A Short Review. Curr. Pharm. Biotechnol. 2016, 17,
1002–1007. [CrossRef]

8. Jantarat, C. Bioavailability enhancement techniques of herbal medicine: A case example of curcumin. Int. J.
Pharm. Pharm. Sci. 2013, 5, 493–500.

http://dx.doi.org/10.1016/j.nut.2010.05.008
http://dx.doi.org/10.1111/j.1524-4725.1996.tb00499.x
http://www.ncbi.nlm.nih.gov/pubmed/8608378
http://dx.doi.org/10.1111/iwj.12919
http://dx.doi.org/10.1517/13543784.2013.825249
http://www.ncbi.nlm.nih.gov/pubmed/23902423
http://dx.doi.org/10.1007/s13346-017-0405-4
http://dx.doi.org/10.2174/1389201017666160721123109


Pharmaceutics 2019, 11, 205 16 of 18

9. Tomren, M.; Másson, M.; Loftsson, T.; Tønnesen, H. Studies on curcumin and curcuminoids: XXXI. Symmetric
and asymmetric curcuminoids: Stability activity and complexation with cyclodextrin. Int. J. Pharm. 2007,
338, 27–34. [CrossRef]

10. Prasad, S.; Tyagi, A.; Aggarwal, B. Recent developments in delivery, bioavailability, absorption and
metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat. 2014, 46, 2–18. [CrossRef]

11. Kumar, A.; Ahuja, A.; Ali, J.; Baboota, S. Curcumin loaded nano globules for solubility enhancement:
Preparation, characterization and ex vivo release study. J. Nanosci. Nanotechnol. 2012, 12, 8293–8302.
[CrossRef] [PubMed]

12. Guzman-Villanueva, D.; El-Sherbiny, I.; Herrera-Ruiz, D.; Smyth, H. Design and in vitro evaluation of a new
nanomicroparticulate system for enhanced aqueous-phase solubility of curcumin. Biomed. Res. Int. 2013,
2013, 724–763. [CrossRef]

13. Li, C.; Zhang, Y.; Su, T.; Feng, L.; Long, Y.; Chen, Z. Silica-coated flexible liposomes as a nanohybrid delivery
system for enhanced oral bioavailability of curcumin. Int. J. Nanomed. 2012, 7, 5995–6002. [CrossRef]
[PubMed]

14. Takahashi, M.; Uechi, S.; Takara, K.; Asikin, Y.; Wada, K. Evaluation of an oral carrier system in rats:
Bioavailability and antioxidant properties of liposome-encapsulated curcumin. J. Agric. Food Chem. 2009, 57,
9141–9146. [CrossRef] [PubMed]

15. Yadav, V.; Prasad, S.; Kannappan, R.; Ravindran, J.; Chaturvedi, M.; Vaahtera, L.; Parkkinen, J.; Aggarwal, B.
Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to
those of curcumin through higher cellular uptake. Biochem. Pharmacol. 2010, 80, 1021–1032. [CrossRef]
[PubMed]

16. Rachmawati, H.; Edityaningrum, C.; Mauludin, R. Molecular inclusion complex of curcumin-beta-cyclodextrin
nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech 2013, 14,
1303–1312. [CrossRef] [PubMed]

17. Anand, P.; Nair, H.; Sung, B.; Kunnumakkara, A.; Yadav, V.; Tekmal, R.; Aggarwal, B. Design of
curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity
in vitro and superior bioavailability in vivo. Biochem. Pharmacol. 2010, 79, 330–338. [CrossRef] [PubMed]

18. Khalil, N.; do Nascimento, T.; Casa, D.; Dalmolin, L.; de Mattos, A.; Hoss, I.; Romano, M.; Mainardes, R.
Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration
in rats. Colloids Surf. B Biointerfaces 2013, 101, 353–360. [CrossRef]

19. Mohanty, C.; Sahoo, S. Curcumin and its topical formulations for wound healing applications. Drug Discov.
Today 2017, 10, 1582–1592. [CrossRef]

20. Chereddy, K.; Coco, R.; Memvanga, P.; Ucakar, B.; des Rieux, A.; Vandermeulen, G.; Préat, V. Combined
effect of PLGA and curcumin on wound healing activity. J. Control. Release 2013, 171, 208–215. [CrossRef]

21. Castangia, I.; Nácher, A.; Caddeo, C.; Valenti, D.; Fadda, A.; Díez-Sales, O.; Ruiz-Saurí, A.; Manconi, M.
Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of
full-thickness skin defects on mice. Acta Biomater. 2014, 10, 1292–1300. [CrossRef]

22. Gong, C.; Wu, Q.; Wang, Y.; Zhang, D.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. A biodegradable hydrogel system
containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 2013, 34, 6377–6387.
[CrossRef] [PubMed]

23. Boriwanwattanarak, P.; Ingkaninan, K.; Khorana, N.; Viyoch, J. Development of curcuminoids hydrogel
patch using chitosan from various sources as controlled-release matrix. Int. J. Cosmet. Sci. 2008, 30, 205–218.
[CrossRef]

24. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an
improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [CrossRef]

25. Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia
terapotensis. J. Nat. Prod. 2001, 64, 892–895. [CrossRef] [PubMed]

26. Kumaran, A.; Karunakaran, J. In vitro antioxidant activities of methanol extracts of five Phyllanthus species
from India. LWT-Food Sci. Technol. 2006, 40, 344–352. [CrossRef]

27. Luseba, D.; Elgorashi, E.; Ntloedibe, D.; Staden, J. Antibacterial, anti-inflammatory and mutagenic effects of
some medicinal plants used in South Africa for the treatment of wounds and retained placenta in livestock.
S. Afr. J. Bot. 2007, 73, 378–383. [CrossRef]

http://dx.doi.org/10.1016/j.ijpharm.2007.01.013
http://dx.doi.org/10.4143/crt.2014.46.1.2
http://dx.doi.org/10.1166/jnn.2012.6620
http://www.ncbi.nlm.nih.gov/pubmed/23421209
http://dx.doi.org/10.1155/2013/724763
http://dx.doi.org/10.2147/IJN.S38043
http://www.ncbi.nlm.nih.gov/pubmed/23233804
http://dx.doi.org/10.1021/jf9013923
http://www.ncbi.nlm.nih.gov/pubmed/19757811
http://dx.doi.org/10.1016/j.bcp.2010.06.022
http://www.ncbi.nlm.nih.gov/pubmed/20599780
http://dx.doi.org/10.1208/s12249-013-0023-5
http://www.ncbi.nlm.nih.gov/pubmed/23990077
http://dx.doi.org/10.1016/j.bcp.2009.09.003
http://www.ncbi.nlm.nih.gov/pubmed/19735646
http://dx.doi.org/10.1016/j.colsurfb.2012.06.024
http://dx.doi.org/10.1016/j.drudis.2017.07.001
http://dx.doi.org/10.1016/j.jconrel.2013.07.015
http://dx.doi.org/10.1016/j.actbio.2013.11.005
http://dx.doi.org/10.1016/j.biomaterials.2013.05.005
http://www.ncbi.nlm.nih.gov/pubmed/23726229
http://dx.doi.org/10.1111/j.1468-2494.2008.00437.x
http://dx.doi.org/10.1016/S0891-5849(98)00315-3
http://dx.doi.org/10.1021/np0100845
http://www.ncbi.nlm.nih.gov/pubmed/11473417
http://dx.doi.org/10.1016/j.lwt.2005.09.011
http://dx.doi.org/10.1016/j.sajb.2007.03.003


Pharmaceutics 2019, 11, 205 17 of 18

28. Pessolato, A.; Martins, D.; Ambrosio, C.; Mancanares, C.; Carvalho, A. Propolis and amnion reepithelialise
second-degree burns in rats. Burns 2011, 37, 1192–1201. [CrossRef]

29. Yam, M.; Zainol, J.; Pillay, A.; Yusof, N. Experimental evaluation of healing of burn-wound treated by
lyophilized Aloe vera dressing. Science 2002, 2, 1–6.

30. Chou, T.; Gibran, N.; Urdahl, K.; Lin, E.; Heimbach, D.; Engrav, L. Methemoglobinemia secondary to topical
silver nitrate therapy-A case report. Burns 1999, 25, 549–552. [CrossRef]

31. Leary, S.; Underwood, W.; Anthony, R.; Cartner, S.; Corey, D.; Grandin, T.; Greenacre, C.; Gwaltney-Brant, S.;
McGrackin, M.A.; Meyer, R.; et al. AVMA Guidelines for the Euthanasia of Animals; American Veterinary
Medical Association: Schaumburg, IL, USA, 2013.

32. Jorge, M.; Madjarof, C.; Ruiz, A.; Fernandes, A.; Rodrigues, R.F.; Sousa, I.; Foglio, M.; de Carvalho, J.
Evaluation of wound healing properties of Arrabidaea chica Verlot extract. J. Ethnopharmacol. 2008, 118,
361–366. [CrossRef] [PubMed]

33. Barclay, L.R.C.; Vinqvist, M.R. On the antioxidant mechanism of curcumin: Classical methods are needed to
determine antioxidant mechanism and activity. Org. Lett. 2000, 2, 2841–2843. [CrossRef] [PubMed]

34. Matanjun, P.; Mohamed, S.; Mustapha, N.; Muhammad, K.; Ming, C. Antioxidant activities and phenolics
content of eight species of seaweeds from north Borneo. J. Appl. Phycol. 2008, 20, 367–373. [CrossRef]

35. Biswas, M.; Haldar, P.; Ghosh, A. Antioxidant and free-radical-scavenging effects of fruits of Dregea volubilis.
J. Nat. Sci. Biol. Med. 2010, 29–34. [CrossRef] [PubMed]

36. Casagrande, R.; Geogetti, S.; Verri, W., Jr.; Borin, M.; Lopez, R.; Fonseca, M. In vitro evaluation of quercetin
cutaneous absorption from topical formulations and its functional stability by antioxidant activity. Int. J. Pharm.
2007, 328, 183–190. [CrossRef] [PubMed]

37. Banerjee, M.; Tripathi, L.; Srivastava, V.; Puri, A.; Shukla, R. Modulation of inflammatory mediators by
ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacol. Immunotoxicol.
2013, 25, 213–224. [CrossRef]

38. Mackenzie, G.; Queisser, N.; Wolfson, M.; Fraga, C.; Adamo, A.; Oteiza, P. Curcumin induces cell-arrest
and apoptosis in association with the inhibition of constitutively active NF-kappaB and STAT3 pathways in
Hodgkin’s lymphoma cells. Int. J. Cancer 2008, 115, 56–65. [CrossRef]

39. Ang, L.F. Complex Coacervated Microcapsules in Cream for Topical Delivery of the Curcuminoids and Quercetin;
Universiti Sains Malaysia: Penang, Malaysia, 2015.

40. Topman, G.; Lin, F.; Gefen, A. The natural medications for wound healing-curcumin, aloe vera and ginger–do
not include a significant effect on the migration kinematics of cultured fibroblasts. J. Biomech. 2013, 46,
170–174. [CrossRef]

41. Chen, Q.; Zheng, Y.; Jiao, D.; Chen, F.; Hu, H.; Wu, Y.; Song, J.; Yan, J.; Wu, L.J.; Lv, G. Curcumin inhibits lung
cancer cell migration and invasion through Rac1-dependent signaling pathway. J. Nutr. Biochem. 2014, 25,
177–185. [CrossRef] [PubMed]

42. Pal, A.; Sung, B.; Bhanu Prasad, B.A.; Schuber, P.T., Jr.; Prasad, S.; Aggarwal, B.B.; Bornmann, W.G. Curcumin
glucuronides: Assessing the proliferative activity against human cell lines. Bioorg. Med. Chem. 2014, 22,
435–439. [CrossRef]

43. Yang, H.; Song, W.; Chen, L.; Li, Q.; Shi, S.; Kong, H.; Chen, P. Differential expression and regulation of
prohibitin during curcumin-induced apoptosis of immortalized human epidermal HaCaT cells. Int. J.
Mol. Med. 2014, 33, 507–514. [CrossRef]

44. Cohen, I.; Mast, B. Models of wound healing. J. Trauma 1990, 30, S149–S155. [CrossRef]
45. Mogford, J.E.; Mustoe, T.A. Experimental models of wound healing. In Cutaneous Wound Healing; Falanga, V.,

Ed.; Martin Dunitz Ltd.: London, UK, 2001; pp. 109–122.
46. Suwannateep, N.; Wanichwecharungruang, S.; Haag, S.; Devahastin, S.; Groth, N.; Fluhr, J.; Lademann, J.;

Meinke, M. Encapsulated curcumin results in prolonged curcumin activity in vitro and radical scavenging
activity ex vivo on skin after UVB-irradiation. Eur. J. Pharm. Biopharm. 2012, 82, 485–490. [CrossRef]

47. Dall’Acqua, S.; Miolo, G.; Innocenti, G.; Caffieri, S. The photodegradation of quercetin: Relation to oxidation.
Molecules 2012, 17, 8898–8907. [CrossRef] [PubMed]

48. Lee, W.; Loo, C.; Bebawy, M.; Luk, F.; Masan, R.; Rohanizadeh, R. Curcumin and its derivatives: Their
application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol. 2013, 11,
338–378. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.burns.2011.05.016
http://dx.doi.org/10.1016/S0305-4179(99)00031-5
http://dx.doi.org/10.1016/j.jep.2008.04.024
http://www.ncbi.nlm.nih.gov/pubmed/18573628
http://dx.doi.org/10.1021/ol000173t
http://www.ncbi.nlm.nih.gov/pubmed/10964379
http://dx.doi.org/10.1007/s10811-007-9264-6
http://dx.doi.org/10.4103/0976-9668.71670
http://www.ncbi.nlm.nih.gov/pubmed/22096333
http://dx.doi.org/10.1016/j.ijpharm.2006.08.006
http://www.ncbi.nlm.nih.gov/pubmed/16959452
http://dx.doi.org/10.1081/IPH-120020471
http://dx.doi.org/10.1002/ijc.23477
http://dx.doi.org/10.1016/j.jbiomech.2012.09.015
http://dx.doi.org/10.1016/j.jnutbio.2013.10.004
http://www.ncbi.nlm.nih.gov/pubmed/24445042
http://dx.doi.org/10.1016/j.bmc.2013.11.006
http://dx.doi.org/10.3892/ijmm.2014.1621
http://dx.doi.org/10.1097/00005373-199012001-00029
http://dx.doi.org/10.1016/j.ejpb.2012.08.010
http://dx.doi.org/10.3390/molecules17088898
http://www.ncbi.nlm.nih.gov/pubmed/22836209
http://dx.doi.org/10.2174/1570159X11311040002
http://www.ncbi.nlm.nih.gov/pubmed/24381528


Pharmaceutics 2019, 11, 205 18 of 18

49. Priyadarsini, K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014, 19,
20091–20112. [CrossRef]

50. Davidson, J. Animal models for wound repair. Arch. Dermatol. Res. 1998, 290, S1–S11. [CrossRef] [PubMed]
51. Cross, S.; Naylor, I.; Coleman, R.; Teo, T. An experimental model to investigate the dynamics of wound

contraction. Br. J. Plast. Surg. 1995, 48, 189–197. [CrossRef]
52. Cribbs, R.; Luquette, M.; Besner, G. A standardized model of partial thickness scald burns in mice. J. Surg. Res.

1998, 80, 69–74. [CrossRef]
53. Chithra, P.; Sajithlal, G.; Chandrakasan, G. Influence of Aloe vera on the glycosaminoglycans in the matrix of

healing dermal wounds in rats. J. Ethnopharmacol. 1998, 59, 179–186. [CrossRef]
54. Lin, Z.; Kondo, T.; Ishida, Y.; Takayasu, T.; Mukaida, N. Essential involvement of IL-6 in the skin wound-healing

process as evidenced by delayed wound healing. J. Leukoc. Biol. 2003, 73, 713–721. [CrossRef] [PubMed]
55. Loughlin, D.; Artlett, C. Modification of collagen by 3-deoxyglucosone alters wound healing through

differential regulation of p38 MAP kinase. PLoS ONE 2011, 6, e18676. [CrossRef] [PubMed]
56. Blakytny, R.; Jude, E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet. Medicat.

2006, 23, 594–608. [CrossRef]
57. Sun, J.; Han, J.; Zhao, Y.; Zhu, Q.; Hu, J. Curcumin induces apoptosis in tumor necrosisfactor-alpha-treated

HaCaT cells. Int. Immunopharmacol. 2012, 13, 170–174. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/molecules191220091
http://dx.doi.org/10.1007/PL00007448
http://www.ncbi.nlm.nih.gov/pubmed/9710378
http://dx.doi.org/10.1016/0007-1226(95)90001-2
http://dx.doi.org/10.1006/jsre.1998.5340
http://dx.doi.org/10.1016/S0378-8741(97)00112-8
http://dx.doi.org/10.1189/jlb.0802397
http://www.ncbi.nlm.nih.gov/pubmed/12773503
http://dx.doi.org/10.1371/journal.pone.0018676
http://www.ncbi.nlm.nih.gov/pubmed/21573155
http://dx.doi.org/10.1111/j.1464-5491.2006.01773.x
http://dx.doi.org/10.1016/j.intimp.2012.03.025
http://www.ncbi.nlm.nih.gov/pubmed/22498762
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Animal Models 
	Methods 
	Complex Coacervation Microencapsulation 
	Preparation of Curcuminoids Microcapsule-Incorporated Cream 
	Antioxidant Activity 
	Minimum Inhibitory Concentration 
	Effects of Curcuminoids and their Encapsulated Form on HaCaT Cell 
	In Vivo Wound Healing Study of Curcuminoids Microcapsule-Incorporated Cream 

	Statistical Analysis 

	Results 
	Antioxidant Activity 
	Minimum Inhibitory Concentration 
	Effects of Curcuminoids and the Curcuminoids Microcapsule on HaCaT Cell 
	Cell Cytotoxicity/Viability Determination by 3-(4,5-dimethylthiazol-2-yl)-2,5 Diphenyltetrazolium Bromide (MTT) Assay 
	Cell Proliferation Determination by 3-(4,5-dimethylthiazol-2-yl)-2,5 Diphenyltetrazolium Bromide (MTT) Assay 
	Cell Migration Determination by Wound Scratch Assay 

	Effects of Curcuminoids and Microcapsule Incorporated Creams as Controlled Drug Delivery on Wound Healing 
	Wound Contraction 
	Measurement of Hydroxyproline 
	Histopathologic Study 


	Discussion 
	Conclusions 
	References

