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Abstract

Malaria is a global disease that clinically affects more than two hundred million

people annually. Despite the availability of effective antimalarials, mortality rates

associated with severe complications are high. Hepatopathy is frequently observed

in patients with severe malarial disease and its pathogenesis is poorly understood.

Previously, we observed high amounts of hemozoin or malaria pigment in livers

from infected mice. In this study, we investigated whether hemozoin is associated

with liver injury in different mouse malaria models. C57BL/6J mice infected with the

rodent parasites Plasmodium berghei ANKA, P. berghei NK65 or P. chabaudi AS

had elevated serum liver enzymes without severe histological changes in the liver,

in line with the observations in most patients. Furthermore, liver enzymes were

significantly higher in serum of P. chabaudi AS-infected mice compared to mice

infected with the P. berghei parasite strains and a strong positive correlation was

found between hepatic hemozoin levels, hepatocyte damage and inflammation in

the liver with P. chabaudi AS. The observed liver injury was only marginally

influenced by the genetic background of the host, since similar serum liver enzyme

levels were measured in infected C57BL/6J and BALB/c mice. Intravenous injection

of P. falciparum-derived hemozoin in malaria-free C57BL/6J mice induced

inflammatory gene transcription in the liver, suggesting that hemozoin may be

involved in the pathogenesis of malaria hepatopathy by inducing inflammation.
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Introduction

Malaria-associated hepatocellular dysfunction is commonly observed in combi-

nation with other organ involvement, both in adult and pediatric patients [1, 2]. It

is a heterogeneous pathology with variable severity, as symptoms range from mild

changes in liver function tests to severe liver failure, although the latter is

uncommon. Hepatomegaly, jaundice, elevated liver enzymes e.g. alanine

aminotransferase (ALT), and altered histopathological findings such as portal

mononuclear cell infiltration are observed in varying degrees. Minimal fatty

changes and liver cell necrosis are present, in line with low prevalence of steatosis

and cholestasis. The most generalized feature observed throughout the liver is

Kupffer cell hyperplasia with malaria pigment (hemozoin, Hz) deposition. Hz is

released into the circulation together with the newly formed merozoites upon

intraerythrocytic parasite replication and subsequent schizont rupture, and is

rapidly removed by phagocytosis. The liver significantly contributes to

phagocytosis of infected red blood cells (iRBC) and Hz, as evidenced by abundant

pigment deposition on liver sections from patients [1, 2]. In mouse malaria

models, the highest Hz levels are found in the liver compared to other organs

including the spleen, and total Hz levels increase with disease severity [3–5]. In

pediatric malaria infections, more Hz is found in the liver of patients deceased

from cerebral pathology compared to parasitemic, comatose patients who died

from non-malaria causes [1]. Furthermore, the incidence of hepatopathy is high

in patients with severe malaria, e.g. with cerebral pathology or with malaria-

associated acute respiratory distress syndrome (MA-ARDS) [6], and liver

dysfunction seems to be correlated with acute renal failure [7]. The precise

pathogenic mechanisms leading to jaundice and mild liver dysfunction are still

poorly understood. In murine malaria models, liver damage is partly due to an

imbalance in pro- and anti-inflammatory mediators in the liver, since restoring

this balance diminishes pathology [8–13].

In the present study, we used three different parasite strains, i.e. Plasmodium

berghei ANKA (PbANKA), P. berghei NK65 (PbNK65) and P. chabaudi AS (PcAS)

and two different mouse strains (C57BL/6J and BALB/c) to obtain insights into

the importance of parasite strain versus host genetics on liver pathology. In

C57BL/6 mice PbANKA induces lethal neuropathology and also lung injury,

whereas PbNK65-infection results in lethal MA-ARDS [14–16]. BALB/c mice

appear relatively resistant to both complications but succumb from hyperpar-

asitemia with both parasite strains. In contrast, C57BL/6 mice successfully clear

PcAS-infections after a significant primary parasitemia peak and smaller

recrudescences [17], whereas BALB/c mice are only partially resistant to PcAS

infection [18].

We have previously shown that P. berghei and PcAS parasites produce different

amounts of Hz, and that Hz is pathogenic in the lungs by inducing pulmonary

inflammation [19]. In view of the high and differential levels of Hz in the liver of

P. berghei or PcAS-infected mice, we investigated whether infection with these

parasites results in a similar type of hepatocellular dysfunction as observed in
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malaria patients. Furthermore, we determined the effect of Hz in such malaria-

associated hepatopathy and compared this between mice infected with malaria

parasites with a varying degree of virulence.

Materials and Methods

Ethics statement

All experiments were approved by the Animal Ethics Committee from the KU

Leuven (License LA121251, Belgium).

Mice and parasites

Male and female C57BL/6J and BALB/c mice (seven to eight weeks old; obtained

from Janvier, Le Genest-Saint-Isle, France) were infected with 104 iRBCs of the

following parasite strains: PbANKA (clone Cl15cy1, a kind gift of Prof. C.J. Jansse,

Leiden University Medical Center, The Netherlands), PbNK65 or PcAS (kind gifts

of the late Prof. D. Walliker, University of Edinburgh, Scotland, UK) as described

previously [19]. Peripheral parasitemia was determined by microscopic analysis

after Giemsa staining (Sigma-Aldrich, Bornem, Belgium). Mice were sacrificed at

the indicated time points after infection, blood was removed by cardiac puncture,

incubated at room temperature for one hour and stored at 4 C̊ until the next day

when serum was collected and stored at 280 C̊ until further analysis. Mice were

perfused with phosphate-buffered saline (PBS, BioWhittaker, Lonza, Verviers,

Belgium) and perfused livers were used to determine the Hz content by heme-

enhanced chemoluminescence as described before [3]. The right lobe of the liver

was embedded in Tissue-Tek O.C.T. Compound (Sakura Finetek Europe B.V.,

Alphen aan den Rijn, The Netherlands) and frozen for histological analysis.

Alternatively, the right lobe was fixed in 4% paraformaldehyde and embedded in

paraffin for histological analysis.

Assessment of liver pathology

Liver function was determined by measuring serum ALT, aspartate

aminotransferase (AST) (both obtained from Teco Diagnostics, California, USA)

and glutamate dehydrogenase (GLDH, Diasys Diagnostic Systems, Germany)

according to the manufacturers protocols. Liver histopathology was assessed by

hematoxylin-eosin staining on paraffin-sections and immunohistochemistry.

Immunohistochemistry was performed on cryosections with monoclonal anti-

mouse F4/80 IgG2b (Cl:A3-1, Abcam, Cambridge, UK; dilution 1/50) or on

paraffin-sections with anti-mouse Gr-1 (specific for Ly6G and Ly6C, clone RB6-

8C5, Abcam; dilution 1/3000). Visualization was obtained by reaction with 3-

amino-9-ethylcarbazole (AEC) chromogen (Dako, Heverlee, Belgium), which

produces a red color in the presence of peroxide. Transmitted light images were

taken through a 406/1.4 oil Plan-Apochromat objective of an Axiovert 200 M

microscope equipped with an AxioCamMRm camera (Zeiss, Göttingen,
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Germany). Image adjustments (Sigma and unsharp masking) were performed

with the AxioVision 4.6 software. Alternatively, transmitted light images were

taken through a 406/0.65 or a 1006/1.25 oil N Plan objective of a Leica DM2000

microscope.

Isolation of leukocytes from the liver

C57BL/6J mice were infected with PbANKA, PbNK65 or PcAS parasites or were

left uninfected. At the indicated time points (day 10 for PbNK65 and PcAS and

day 8 for PbANKA since these mice do not survive until day 10), mice were bled

by heart puncture to collect serum and were systemically perfused with PBS. The

caudate and quadrate lobes of the liver were stored at 280 C̊ for Hz

quantification, whereas the other parts of the liver were mechanically

homogenized with the gentleMACS Dissociator (Miltenyi Biotec B.V., Leiden, The

Netherlands) and passed through a 70 mm nylon cell strainer (BD Biosciences,

Erembodegem, Belgium). The resulting cell suspensions were centrifuged and the

pellets were resuspended in 40% Percoll solution (GE Healthcare, Uppsala,

Sweden) and layered on a 72% Percoll solution. After centrifugation at 5246g for

20 minutes (break switched off), leukocytes at the interphase between both Percoll

layers were collected. Subsequently, remaining RBCs were lysed and leukocytes

were washed, enumerated with a Bürker hemacytometer, and analyzed by flow

cytometry as described previously [19]. Leukocytes were stained with the

following antibody combinations (from eBiosciences, Vienna, Austria, unless

otherwise indicated): anti-mouse CD4 APC (clone GK1.5), anti-mouse CD8a PE

(clone 53-6.7) and anti-mouse CD69 FITC (clone H1.2F3) for the detection of

activated T cell subsets; anti-mouse CD11b APC (clone M1/70), anti-mouse F4/80

FITC (clone BM8), anti-mouse MHC-II PE (clone M5/114.15.2) and anti-mouse

CD80 PE (clone 16-10A1) to determine the activation status of macrophages; or

anti-mouse CD11b APC (clone M1/70), anti-mouse F4/80 FITC (clone BM8) and

anti-mouse Ly-6G (Gr-1) PE (clone RB6-8C5) for neutrophil detection. After two

additional wash steps, cells were analyzed with a FACScan flow cytometer with the

CellQuest software (BD Biosciences). To exclude dying cells from the analysis,

propidium iodide was added just before the samples were processed on the flow

cytometer.

Quantitative Reverse Transcription-Polymerase Chain Reaction

(RT-PCR)

Quantitative RT-PCR was performed as described before [19]. In brief, after

mechanical homogenization of perfused livers, total RNA was extracted and

quantified. For each sample, cDNA was synthesized and quantitative PCR was

performed on 25 ng and 12.5 ng cDNA with primer and probe sets from Applied

Biosystems (Foster City, CA) or Integrated DNA Technologies (Leuven, Belgium).

Data were normalized to 18S ribosomal RNA levels [20].
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Intravenous injection of P. falciparum-derived hemozoin

P. falciparum-derived Hz (PfHz) was prepared from cultured P. falciparum-iRBCs

and treated with DNase as described before [19]. Contamination with endotoxin

(lipopolysaccharide, LPS), was excluded with the E-Toxate assay (Limulus

Amebocyte Lysate, gel solidification assay, Sigma), sensitivity threshold at 0.05–

0.10 EU/mL. Different amounts of PfHz (100 to 900 nmol) in 200 mL of PBS or

PBS alone were injected intravenously into C57BL/6J mice. After 6 hours, mice

were sacrificed, livers were removed and the right lobe was used for PfHz

quantification and quantitative RT-PCR analysis.

Statistical analysis

P-values for the differences between 2 groups were calculated with the Mann-

Whitney U-test, with the use of GraphPad Prism Software (GraphPad Software,

San Diego, CA). The same software was used to calculate nonparametric

Spearman correlation coefficients. A p-value less than 0.05 (p,0.05) was

considered as statistically significant.

Results

Liver pathology is more severe in PcAS-infected mice

To investigate whether hepatic Hz levels correlate with liver pathology, parameters

of liver injury were investigated in C57BL/6J mice infected with three different

Plasmodium strains with a varying degree of virulence i.e. PbANKA, PbNK65 or

PcAS. Hepatomegaly was only observed in PcAS-infected mice, whereas liver

weights were slightly but not significantly decreased with P. berghei (Figure 1A).

This suggested that more severe liver pathology developed in PcAS-infected mice

than in P. berghei-infected mice, despite similar peripheral parasitemia levels

(Figure 1B).

Elevated serum liver enzymes like ALT and AST are an indication of possible

liver injury. Serum ALT and AST levels increased 6 days after infection with

PbANKA and PbNK65 and decreased slightly thereafter (Figure 1C–D). In PcAS-

infected mice ALT and AST levels progressively increased from day 8 onwards and

were significantly higher than in the serum of PbNK65-infected mice 10 days after

infection (p,0.0001 for ALT and p50.0073 for AST). The PbANKA mice

succumbed 7–8 days after infection from cerebral pathology. GLDH is an enzyme

found in the mitochondria of hepatocytes in the centrilobular areas of the liver

and is an indicator of severe hepatocyte damage. Serum GLDH levels followed the

same trend as the ALT and AST levels and started to increase significantly in the

serum 8 days after infection with all three parasite strains and continued to

increase at 10 days after infection in PcAS-infected mice but not in PbNK65-

infected mice (p50.0072 for PcAS versus PbNK65 at day 10) (Figure 1E). Elevated

serum levels of gamma glutamyl transpeptidase (c-GT) and alkaline phosphatase

(ALP) are indicative of bile duct damage and were also investigated, but these
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enzymes were undetectable (c-GT) or decreased (ALP) during infection (data not

shown).

Since host genetics are associated with differences in susceptibility to severe

malaria, we also investigated liver pathology in BALB/c mice, which are relatively

resistant to severe complications such as cerebral malaria and MA-ARDS ([16]

and data not shown). As illustrated in Figure S1, serum ALT and AST levels

(panels E, G) were similar or even lower in BALB/c mice upon PbNK65 infection

compared to C57BL/6J mice despite higher liver weights in BALB/c mice (panel

C). Furthermore, BALB/c and C57BL/6J mice were equally susceptible to PcAS-

induced changes in the liver (panels F, H). When PcAS parasitemia decreased after

day 10 (as a consequence of antimalarial immunity) serum ALT and AST levels

also decreased (Figure S1).

Hepatic Hz levels correlate with elevated liver enzymes in

PcAS-infected mice

Hz levels in the liver were determined in C57BL/6J mice infected with the

abovementioned parasites. The amount of Hz/mg liver tissue increased

Figure 1. Liver pathology is more severe in PcAS-infected mice than in P. berghei-infected mice. C57BL/6J mice were infected with PbANKA,
PbNK65 or PcAS and sacrificed at different time points after infection. PbANKA-infected mice die around day 8, thus no data are available on day 10. (A)
Weights of perfused livers. Means are indicated ¡ SEM (n58–21 for each condition). (B) Peripheral parasitemia levels. Means are indicated ¡ SEM (n58–
21 for each group). (C–E) Serum levels of ALT (panel C), AST (panel D) and GLDH (panel E) levels. Data are pooled from two separate experiments with
similar results. Each dot represents the results from an individual mouse. Small horizontal stripes between individual data points represent group medians
and horizontal lines with asterisks on top indicate statistical differences between groups. Asterisks above individual data sets indicate statistical differences
with the uninfected control group as follows: * p,0.05, ** p,0.01 and *** p,0.001.

doi:10.1371/journal.pone.0113519.g001
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progressively during infection (Figure 2A), suggesting that when infection

progressed, more Hz was released into the circulation and trapped in the liver.

Furthermore, a positive correlation was found between Hz levels and peripheral

parasitemia levels with all three parasite strains (Figure 2D). At similar time

points after infection and at comparable peripheral parasitemia levels (see

Figure 1B) no major differences were found in the amount of Hz in livers from

PbANKA and PbNK65-infected mice, whereas livers from PcAS-infected mice

contained significantly less Hz. Also in BALB/c mice Hz levels progressively

increased, correlated with peripheral parasitemia (r50.78 and p,0.0001 for

PbNK65; r50.94 and p,0.0001 for PcAS), and were significantly higher with

PbNK65 compared to PcAS (p,0.05 for all time points) (Figure S1).

The amount of Hz/mg liver tissue strongly correlated with the level of liver

enzymes measured in the serum of PcAS-infected C57BL/6J mice, as shown in

Figure 2 panels B–D. No correlations were found in PbANKA-infected mice

(Figure 2D). In PbNK65-infected mice, a positive correlation was found between

hepatic Hz and AST levels, whereas the correlation between GLDH levels and Hz

had a low Spearman r coefficient. Together these data suggest that Hz is associated

with liver injury in PcAS infection but not in P. berghei-infected mice, although

Figure 2. Hepatic hemozoin levels correlate with serum liver enzymes in PcAS-infected mice. (A) Quantity of hemozoin (Hz)/mg liver tissue at different
time points after infection with PbANKA, PbNK65 or PcAS. Data are from two separate experiments. Each dot represents the result from an individual
C57BL/6J mouse. Horizontal bars between individual data points represent group medians and horizontal lines with asterisks on top indicate statistical
differences between groups. ** p,0.01 and *** p,0.001. (B–C) Spearman correlations between hepatic Hz levels and serum ALT (panel B) or AST levels
(panel C) in PcAS-infected mice. (D) Spearman r and p-values between hepatic Hz levels and serum ALT, AST and GLDH levels with the different parasite
strains.

doi:10.1371/journal.pone.0113519.g002
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the amounts of Hz in the liver are considerably higher with P. berghei compared to

PcAS. Since the liver pathology depends on the parasite strain and is only

marginally affected by the mouse strain, only C57BL/6J mice were used for the

subsequent experiments in this manuscript.

Marked inflammation in livers of PcAS-infected mice

To analyze the underlying mechanism of the increased liver enzyme levels detected

in peripheral blood, liver morphology was investigated on hematoxylin-eosin-

stained paraffin sections from perfused livers obtained from mice infected with

the different parasite strains. No major morphological changes were noticeable in

the liver architecture, since only minor single cell necrosis was detected, whereas

fibrosis, steatosis, hepatocyte enlargement, bile duct damage, obstruction of blood

vessels, sinuses or bile ducts, were not observed with this method. We did observe

massive perivenular, parenchymal and, to a lesser extent, periportal mononuclear

cell infiltration in livers from PcAS-infected C57BL/6J mice at day 10 after

infection (Figure 3). Such inflammatory infiltrates were strikingly less abundant

in livers from PbNK65 (day 10) or PbANKA-infected mice (day 8) and were

presumably the main cause of the hepatomegaly with PcAS.

Hz in the liver is clustered in macrophages

Since high quantities of Hz were detected in livers from infected mice and we

previously showed that Hz in lungs is derived from both infected erythrocytes

present in the microvasculature and from phagocytes that had ingested Hz [19],

we investigated the cells containing the Hz in the liver in more detail by histology.

Figure 3. Massive inflammatory infiltrates in livers of PcAS-infected mice. Paraffin-embedded sections
were prepared from livers of uninfected C57BL/6J mice (Con) and from mice infected with PbANKA (day 8),
PbNK65 (day 10) or PcAS (day 10), and stained with hematoxylin–eosin. Representative images are shown
(scale bars, 50 mm).

doi:10.1371/journal.pone.0113519.g003
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Livers from PbNK65-infected mice 10 days after infection contained large clusters

of Hz, which were larger and more abundant than those observed in PbANKA

(day 8) or PcAS-infected mice (Figure 4A), corroborating the Hz quantification

data (see Figure 2). These Hz clusters were mainly observed in sinusoidal

macrophages, whereas only limited numbers of Hz-containing neutrophils were

observed, which were exclusively found in the lumen of blood vessels (Figure 4A).

Some Hz was also visible in marginating phagocytes, whereas endothelial cells did

not contain any detectable Hz (Figure S2). Remarkably, hardly any iRBCs

containing Hz were detected in these sections, indicating that hepatic Hz at the

moment that these mice were sacrificed is almost exclusively located in the

phagocytic compartment.

To confirm that the Hz-containing cells are indeed macrophages, immuno-

histochemistry was performed with an anti-F4/80 antibody. Hz crystals (brown)

colocalized with F4/80 staining (red), indicating that Hz is mostly situated inside

macrophages (Figure 4B). Interestingly, hepatic F4/80-staining was more widely

distributed in PcAS-infected mice, suggesting that monocyte/macrophage

numbers are higher in PcAS livers than in P. berghei livers. Gr-1

immunohistochemical staining of a section from a PcAS-infected liver indicated

that the Hz-containing macrophages were also Gr-1+. Gr-1hi monocytes were also

detected in the liver, these contained only very limited or no Hz (Figure S3).

More extensive mononuclear cell infiltration in PcAS-infected
livers

To investigate hepatic cell infiltrations in more detail, leukocytes were isolated

from the liver and analyzed by flow cytometry. With the three different parasite

strains, higher numbers of monocytes/macrophages (F4/80+CD11b+), CD4+ T

cells and CD8+ T cells were detected in infected versus uninfected control mice

(Fig. 5A). Livers from PcAS-infected mice contained significantly more

monocytes/macrophages, CD4+ T cells and CD8+ T cells compared to PbANKA

and PbNK65-infected livers, whereas neutrophil (F4/802CD11b+Gr-1+) numbers

were similarly increased with the three parasite strains. These data thereby

confirm our histological data stating that the inflammatory infiltrates in livers

from PcAS-infected mice are mainly due to mononuclear cells.

To analyze the activation phenotype of the different cell subsets, additional

surface markers were determined. The percentage of T cells expressing CD69 was

merely similar in the liver of uninfected and infected mice (Figure 5B–C).

Furthermore, almost all hepatic monocytes/macrophages from infected mice

expressed higher CD80 levels than those from uninfected mice, without significant

differences among the three parasite strains, indicating that monocytes/

macrophages are similarly activated by infection with the three parasites

(Figure 5D). However, whereas almost all monocytes/macrophages derived from

PcAS livers expressed major histocompatibility complex (MHC) class II

molecules, the percentages of cells expressing this marker was not very different

between P. berghei infected and uninfected livers (Figure 5E–F). Moreover, a
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Figure 4. Hepatic hemozoin is localized in macrophages. (A) Higher magnification of clusters of hemozoin
(Hz, brown crystals) in hematoxylin-eosin stained paraffin sections of livers from C57BL/6J mice mice infected
with PbANKA (day 8), PbNK65 (day 10) or PcAS (day 10). The red arrows indicate rare Hz-containing
neutrophils. Additional images are shown in Figure S2. Representative images are shown (scale bars,
20 mm). (B) Cryosections were stained with anti-F4/80 monoclonal antibodies (red color) to identify
monocytes/macrophages. Insets show clusters of Hz inside F4/80+ cells. Representative images are shown
(scale bars, 10 mm).

doi:10.1371/journal.pone.0113519.g004

Role of Hemozoin in Malaria Liver Pathology

PLOS ONE | DOI:10.1371/journal.pone.0113519 November 24, 2014 10 / 23



strong negative correlation was found between hepatic Hz levels and both the

number of MHC-II+ F4/80+CD11b+ cells (p50.0022 and r520.51) and the

percentage of F4/80+CD11b+ cells expressing MHC class II (p,0.0001 and

r520.69) (Figure 5G).

Figure 5. Inflammatory cell recruitment to the liver. C57BL/6J mice were left uninfected (Con) or were infected with PbANKA, PbNK65 or PcAS and
hepatic leukocytes were analyzed 8 (PbANKA) or 10 (PbNK65, PcAS) days after infection by flow cytometry. (A) Total numbers of monocytes/macrophages
(F4/80+CD11b+), neutrophils (F4/802CD11b+Gr-1+), CD4+ Tcells and CD8+ T cells in the liver. Proportion of CD8+ Tcells (B) or CD4+ Tcells (C) expressing
the early activation marker CD69. Proportion of monocytes/macrophages expressing CD80 (D) or MHC class II (E). Data are pooled from three separate
experiments with similar results. (F) Histogram showing the MHC-II expression on F4/80+CD11b+ cells from Con, PbANKA, PbNK65 or PcAS-infected mice.
(G) Spearman correlations between hepatic hemozoin (Hz) amounts and the proportion of monocytes/macrophages expressing MHC class II in infected
mice. Spearman r and p-values are indicated.

doi:10.1371/journal.pone.0113519.g005
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Hz, serum liver enzymes and hepatic inflammation are tightly

correlated in PcAS-infected mice

The expression levels of twenty different cytokines, chemokines, and other

inflammatory mediators was measured in the liver by quantitative RT-PCR

(Figure 6 and Table 1). Most mediators, e.g. tumor necrosis factor (TNF),

interferon gamma-induced protein-10 (IP-10/CXCL10), and monocyte

chemoattractant protein-1 (MCP-1/JE/CCL2) were similarly induced upon

infection with the three parasite strains, whereas the mRNAs of lymphotoxin-a

(LT-a) and interleukin (IL)-1b were only significantly increased in PcAS livers.

However, major differences were found between PcAS and both P. berghei strains

for e.g. transforming growth factor-b (TGF-b), inducible nitric oxide synthase

(iNOS) and MHC class II, of which the mRNA levels were highest in PcAS livers.

The association between Hz, hepatocyte damage and the induction of these

mediators was determined by Spearman correlation analysis (Table 2). In PcAS-

infected mice we found a positive correlation with both the amount of Hz/mg

liver tissue and ALT and AST levels and the mRNA expression levels of fourteen

mediators, including IL-1b, IL-10, TNF, TGF-b, MCP-1, keratinocyte chemotactic

protein (KC/CXCL1) and iNOS, whereas little or no correlation existed with

mRNA levels of IL-4, IL-12, LT-a, IFN-c, IP-10, and MHC class II. Strikingly,

little or no mutual correlations were observed between the mRNA expression of

inflammatory mediators and both Hz and liver enzymes in PbANKA or PbNK65-

infected mice.

Injection of malaria-free C57BL/6J mice with P. falciparum-derived

Hz mimics the inflammatory profile observed in the liver

To confirm the causal relation between Hz and inflammation in the liver, PfHz

was injected intravenously in malaria-free C57BL/6J mice. Mice were sacrificed

6 hours after injection and hepatic PfHz levels and the mRNA expression of

inflammatory mediators was determined. When stratifying the data according to

hepatic PfHz levels, we observed that PfHz dose-dependently induced the

expression of nine of these mediators, i.e. IL-6, TNF, interferon-c (IFN-c), MCP-

1, IP-10, KC, iNOS, intercellular adhesion molecule-1 (ICAM-1) and perforin in

the liver (Figure 7 and Table 3). IL-1b, heme oxygenase 1 (Hmox1), TGF-b, Fas

ligand (FasL), matrix metalloproteinase-9 (MMP-9)/gelatinase B and NADPH

oxidase 2 (NOX2) were also induced but the mRNA levels did not change

significantly with varying amounts of hepatic PfHz. IL-10, LT-a and MHC class II

mRNA levels were not significantly induced at this time point. These results

demonstrate that PfHz injection induces the expression of several cytokines,

chemokines and other inflammatory mediators in the liver that were associated

with hepatic Hz levels and serum ALT and AST levels in PcAS-infected mice.
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Figure 6. Transcription of inflammatory mediators in the liver of infected mice. C57BL/6J mice were left uninfected or were infected with PbANKA,
PbNK65 or PcAS and hepatic mRNA expression levels of 20 different cytokines and other inflammatory mediators were determined at different time points
after infection (6, 8 and 10 days) by quantitative RT-PCR and normalized to 18S ribosomal RNA levels. In this figure, data are shown for iNOS (A), IL-1b (B),
MHC class II (C), TGF-b (D), IP-10 (E) and TNF (F), the data of the other mediators are shown in table 1. Data are from two separate experiments. Each dot
represents the result from an individual mouse. Horizontal bars between individual data points represent group medians and horizontal lines with asterisks
on top indicate statistical differences between groups. Asterisks above individual data sets indicate statistical differences with the uninfected control group: *
p,0.05, ** p,0.01 and *** p,0.001.

doi:10.1371/journal.pone.0113519.g006
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Table 1. mRNA expression levels of inflammatory mediators in the liver from C57BL/6J mice infected with PbANKA, PbNK65 or PcAS.

Con PbANKA d6
PbANKA
d7–8 PbNK65 d6 PbNK65 d8

PbNK65 d9–
10 PcAS d6 PcAS d8 PcAS d10

TNF 0.83
(0.62–
2.74)

25.57**
(3.65–26.71)

27.68***
(12.42–
44.99)

6.98**
(6.49–18.64)

9.05**
(7.46–42.55)

27.90***
(7.88–71.34)

12.10**
(2.37–
13.59)

20.73**
(14.46–28.08)

24.65***
(9.49–39.73)

IP-10 0.92
(0.72–
1.92)

60.96**
(3.24–
134.82)

17.88***
(8.55–39.35)

8.33**
(3.64–24.62)

34.98**
(6.79–73.71)

12.08***
(2.35–50.00)

21.81**
(4.73–
49.58)

13.07**
(10.90–21.46)

26.53***
(12.47–52.31)

MCP-1 0.80
(0.56–
1.92)

53.59
(1.29–62.20)

12.28***
(3.82–33.77)

3.91**
(2.03–13.03)

5.59**
(4.12–62.65)

13.13***
(3.32–79.16)

5.09*
(1.17–6.05)

4.89**
(2.62–5.13)

19.96***
(5.42–35.11)

KC 0.71
(0.42–
3.3)

26.08
(1.06–37.15)

5.34**
(1.24–58.06)

1.64
(0.54–6.31)

6.58*
(3.16–43.55)

24.02***
(1.50–99.38)

2.05
(1.06–2.48)

1.80
(1.40–2.38)

6.46***
(3.23–7.99)

IL-10 0.99
(0.55–
2.29)

25.50**
(3.55–33.05)

60.02***
(40.51–
101.01)

5.14**
(4.24–9.25)

121.80**
(3.60–
133.16)

49.03***
(8.38–
249.14)

4.70**
(1.64–
84.23)

19.04**{{

(9.27–25.55)
31.47***
(3.08–57.09)

iNOS 0.90
(0.53–
1.95)

140.53
(1.81–
184.80)

16.23***
(5.37–63.95)

5.47**
(3.63–11.15)

32.55**
(13.17–
360.27)

37.79***
(6.87–
281.55)

30.56**
(6.27–
53.29)

120.61**{{

(77.73–237.33)
976.86***{{

(37.50–
1961.29)

NOX2 1.01
(0.57–
2.25)

6.05*
(1.65–6.53)

8.11***
(5.57–9.30)

4.27**
(3.56–8.23)

6.82
(3.94–12.13)

8.05***
(3.84–10.67)

3.82**
(1.61–7.89)

10.04**{{

(8.55–14.08)
11.02***
(2.66–13.54)

Perforin 0.85
(0.48–
2.58)

28.09
(1.61–28.29)

28.68***
(26.63–
33.90)

7.57**
(4.94–12.91)

52.36**
(6.41–74.35)

32.45***
(14.63–
103.65)

6.98**
(1.85–
41.35)

29.27**
(23.53–36.49)

32.06***
(8.71–69.73)

Hmox1 0.99
(0.67–
1.60)

14.00**
(1.99–24.07)

21.00***
(15.61–
29.77)

3.13**
(2.40–5.94)

16.23**
(3.37–25.20)

13.17***
(5.21–37.00)

3.79*
(0.97–
27.15)

15.99**
(11.95–25.81)

30.07***
(5.19–72.20)

IL-12 0.98
(0.55–
1.90)

3.24**
(2.55–4.23)

13.14***
(4.46–19.86)

4.17**
(2.02–4.45)

11.03*
(1.82–11.76)

7.83***
(3.54–16.58)

4.24**
(2.65–
18.62)

10.57**
(7.28–15.37)

6.57***
(2.14–20.33)

ICAM-1 1.02
(0.54–
2.06)

9.39**
(1.58–12.71)

7.12***
(5.73–10.04)

3.39**
(2.21–8.52)

6.85**
(6.34–16.06)

8.34***
(3.07–15.95)

4.76**
(2.08–7.96)

8.14**
(6.41–8.79)

9.48***
(5.83–14.96)

FasL 1.02
(0.65–
2.14)

5.52
(1.15–5.87)

9.10***
(6.63–12.85)

3.19**
(2.75–5.48)

9.50**
(3.12–12.56)

8.46***
(3.28–12.35)

2.78*
(1.21–8.27)

10.32**
(9.28–11.73)

11.89***
(3.85–22.42)

IFN-c 0.88
(0.61–
2.00)

17.03*
(2.14–34.77)

50.59***
(24.92–
104.63)

4.93**
(3.87–17.77)

27.20*
(22.25–
71.28)

34.92***
(10.33–
128.79)

33.08**
(7.85–
43.27)

95.49**{

(86.26–246.59)
91.01***
(50.63–129.43)

MMP-9 0.83
(0.65–
2.19)

5.83**
(1.05–7.33)

1.70
(1.30–2.51)

1.65
(1.43–2.52)

7.86***
(1.00–16.58)

3.50
(2.21–9.58)

1.99
(0.79–3.40)

6.48**{{

(4.05–10.43)
4.31***
(1.67–49.41)

LT-a 1.08
(0.49–
1.15)

11.21
(0.98–13.64)

3.61
(0.76–13.51)

4.64
(3.80–4.67)

9.65
(4.28–14.39)

3.72
(0.74–5.67)

4.88
(0.39–5.94)

8.65*
(6.37–11.80)

3.55**
(1.28–8.23)

IL-6 0.98
(0.58–
2.13)

19.24
(1.00–24.13)

2.54**
(1.17–3.78)

1.72
(1.28–6.14)

1.42*
(1.41–17.05)

3.56
(0.58–10.59)

1.51
(0.41–2.40)

1.09{

(0.99–1.73)
7.50***
(0.66–25.69)

IL-1b 0.86
(0.54–
2.75)

4.35
(0.78–4.46)

1.41
(0.61–2.74)

1.34
(1.12–1.34)

1.71
(1.46 6.18)

2.08
(0.21–6.01)

1.21
(0.63–2.83)

2.97**{

(2.27–3.65)
3.99***{

(2.01–13.18)

IL-4 1.02
(0.40–
2.41)

6.64
(0.93–7.62)

1.73*
(1.04–2.47)

1.65
(0.60–2.03)

1.19
(1.02–3.57)

0.42
(0.22–4.77)

1.06
(0.65–1.42)

4.06**{{

(3.86–4.23)
5.78***{{{

(1.20–10.33)
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Discussion

We found no major morphological changes in livers of P. berghei or PcAS-infected

C57BL/6J mice, nor extensive necrosis, hepatocyte enlargement, steatosis, bile

duct damage, or obstruction of blood vessels, sinuses or bile ducts. This is in line

with previous observations with P. berghei [21], and is consistent with the type of

liver injury observed in the majority of patients with hepatic involvement [1, 2].

Mononuclear infiltrations were observed around the central veins and in the

parenchyma and were more pronounced in PcAS-infected livers. Furthermore,

high amounts of Hz were observed in hepatic macrophages and serum liver

enzymes were elevated, especially after infection with PcAS. Because considerable

volumes of blood flow through the liver sinusoids and come into close contact

with Kupffer cells, circulating particles may be efficiently removed [22]. Upon

activation, Kupffer cells may produce inflammatory mediators, e.g. IL-1b, TNF,

oxygen radicals and proteases necessary for optimal digestion of the infectious

agent upon phagocytosis. Such inflammatory mediators may cause activation of

and damage to the surrounding tissue, especially when produced in large

quantities. Also blood leukocytes infiltrate the liver and produce inflammatory

mediators thereby enhancing hepatic inflammation. A recent paper by Brugat

et al. confirmed the inflammatory etiology of liver pathology in PcAS-infected

C57BL/6 mice, as they found that the increase of serum ALT levels is abrogated in

rag2/2 and IFN-c receptor2/2 mice [23]. Furthermore, the liver also has an

important role in the induction of immune tolerance and it produces high

Table 1. Cont.

Con PbANKA d6
PbANKA
d7–8 PbNK65 d6 PbNK65 d8

PbNK65 d9–
10 PcAS d6 PcAS d8 PcAS d10

TGF-b 1.08
(0.64–
1.74)

3.49*
(1.24–3.68)

3.42***
(2.42–5.99)

2.07**
(1.37–4.43)

3.16**
(2.24–3.37)

4.00***
(3.02–6.50)

2.39*
(1.32–3.77)

6.54**{{

(5.79–8.47)
8.19***{

(2.43–16.78)

MHC-II 0.89
(0.51–
2.10)

4.31*
(1.85–4.31)

6.33**
(2.85–6.82)

2.45**
(1.70–3.67)

6.40**
(5.24–6.76)

2.46
(0.14–9.33)

3.92**
(2.28–
11.54)

29.86**{{

(21.96–31.51)
18.17***{{{

(3.01–31.28)

Median values are shown for each group (n53–10) and min-max values are indicated between parentheses. Statistically different from control (Con) mice:
* p,0.05;
** p,0.01;
*** p,0.001;
statistically different from PbNK65 at similar time points:
{p,0.05;
{{p,0.01;
{{{p,0.001;
statistically different from PbANKA at similar time points:
{p,0.05;
{{p,0.01;
FasL, Fas ligand; Hmox1, heme oxygenase 1; ICAM-1, intercellular adhesion molecule-1; IFN-c, interferon-gamma; IL-, interleukin-; iNOS, inducible nitric
oxide synthase; IP-10, interferon gamma inducible protein-10; KC, keratinocyte-derived chemokine; LT-a, lymphotoxin-alpha; MCP-1, monocyte
chemotactic protein-1; MHC-II, major histocompatibility complex class II; MMP-9, matrix metalloproteinase-9/gelatinase B; NOX2, NADPH oxidase 2; TGF-
b, transforming growth factor-beta; TNF, tumor necrosis factor.

doi:10.1371/journal.pone.0113519.t001
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amounts of anti-inflammatory molecules. Deficiencies in immunoregulatory

cytokines IL-22 [10] or IL-27 [11], blockade of cytotoxic T lymphocyte antigen 4

(CTLA-4) [12] or deficiency in Hmox1 [13] dramatically increase serum liver

enzymes and mortality upon malaria infection, illustrating the importance of

immunosuppression by these factors in the liver.

We found high mRNA levels of both pro- and anti-inflammatory mediators in

the liver of malaria-infected mice. These levels strongly correlated with hepatic Hz

amounts and with serum ALT and AST levels in PcAS-infected mice.

Furthermore, intravenous injection of PfHz into malaria-free C57BL/6J mice

induced the expression of a number of these mediators in the liver. The

inflammatory effect of PfHz in the liver corroborates findings obtained with

intravenous injections of synthetically produced Hz (sHz, b-hematin) in BALB/c

mice [24, 25]. PfHz and sHz share a similar structure, but differ in size and in the

presence of associated proteins and lipids, and sometimes produce opposing

Table 2. Spearman correlations between Hz, liver enzymes and mRNA expression levels of inflammation-associated proteins.

Hz/mg liver tissue ALT AST

PbANKA PbNK65 PcAS All PbANKA PbNK65 PcAS All PbANKA PbNK65 PcAS All

TNF 0.76 0,28 0,64** 0,44** 0,37 0,18 0,83**** 0,45** 0,50 0,21 0,83**** 0,44**

IP-10 0,25 20,24 0.08 0,11 0,41 0,27 0,11 0,32* 0,25 0,04 0,03 0,13

MCP-1 0,25 0,29 0,67** 0,47** 0,39 0,32 0,69** 0,49*** 0,30 0,30 0,67** 0,50***

KC 0.38 0,42 0.78*** 0,64**** 0,22 0,39 0,76*** 0,78* 0,22 0,42 0,76*** 0,60****

IL-10 0,59 0,36 0,72*** 0,60**** 0,45 0,11 0,58* 0,31* 0,45 0,17 0,64** 0,45**

iNOS 0,19 0.38 0,79*** 0,19 0,45 0,51* 0,90**** 0,69**** 0,28 0,50 0,90**** 0,50***

NOX2 0,08 0,15 0,52* 0,27 0,50 0,08 0,69** 0,53*** 0,30 0,08 0,65** 0,47**

Perforin 0,15 0,45 0,55* 0,43** 0,72* 0,21 0,57* 0,45** 0,55 0,29 0,63** 0,53***

Hmox1 20,06 0,38 0,79**** 0,41** 0,54 0,11 0,79*** 0,55*** 0,32 0,14 0,83**** 0,53***

IL-12 0,4 0.41 0,44 0,37* 0,32 20,13 0,40 0,22 0,31 0,14 0,44 0,31*

ICAM-1 0,34 0,007 0.69** 0,3* 0,43 0,25 0,84**** 0,53*** 0,30 0,18 0,82**** 0,47**

FasL 0,38 0,17 0,66*** 0,36* 0,28 0,11 0,78*** 0,58**** 0,47 0,09 0,79*** 0,54***

IFN-c 0,82 ** 0,39 0,32 0,17 0,43 0,3 0,5 * 0,53 *** 0,5 0,33 0,54 * 0,37 *

MMP-9 0 0,3 0,5* 0,22 0,59 0,17 0,60* 0,42** 0,62* 0,28 0,59* 0,46**

LT-a 20,54 20,13 20,04 20,13 20,04 20,17 0,18 0,19 20,25 20,13 0,05 0,05

IL-6 0,24 20,27 0,81**** 0,26 0,39 20,08 0,79*** 0,42** 0,36 20,22 0,78*** 0,42**

IL-1b 0,17 20,27 0,75*** 0,02 0,3 20,04 0,91**** 0,55*** 0,28 20,22 0,92**** 0,38*

IL-4 20,49 20,45 0,44 20,24 0,04 0,03 0,46 0,43** 20,02 20,20 0,43 0,06

TGF-b 0,33 0.37 0,74*** 0,24 0,71* 0,29 0,80*** 0,72**** 0,89*** 0,18 0,81**** 0,54***

MHC-II 20,03 0.13 0,29 20,17 0,81* 0,34 0,55* 0,64**** 0,45 0,32 0,53* 0,22

* p,0.05;
** p,0.01;
*** p,0.001;
**** p,0.0001;
FasL, Fas ligand; Hmox1, heme oxygenase 1; ICAM-1, intercellular adhesion molecule-1; IFN-c, interferon-gamma; IL-, interleukin-; iNOS, inducible nitric
oxide synthase; IP-10, interferon gamma inducible protein-10; KC, keratinocyte-derived chemokine; LT-a, lymphotoxin-alpha; MCP-1, monocyte
chemotactic protein-1; MHC-II, major histocompatibility complex class II; MMP-9, matrix metalloproteinase-9/gelatinase B; NOX2, NADPH oxidase 2; TGF-
b, transforming growth factor-beta; TNF, tumor necrosis factor.

doi:10.1371/journal.pone.0113519.t002
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effects when used in in vitro experiments (reviewed in [26–28]). Differences are

also found in the size of Hz crystals produced by different parasite species [29],

and we found also quantitative differences between the rodent-infecting P. berghei

and P. chabaudi parasites used in this study [19]. However, whether qualitative

differences exist between the properties of Hz released by the different species

remains to be determined. We used PfHz that was purified from the supernatant

of in vitro cultures after it was naturally expelled from rupturing schizonts instead

of sHz, since this type of preparation most closely mimics the Hz released during

natural infection (reviewed in [26]).

How Hz induces inflammation is not yet fully clarified, but different signaling

pathways are activated by Hz in vitro. Hz complexes with fibrinogen at their

surface are able to trigger the immediate release of reactive oxygen species, TNF

and MCP-1 upon Toll-like receptor 4 (TLR4) activation [30], and may thus

induce similar inflammatory signaling pathways as bacterial cell wall components

like LPS. Also other serum proteins can bind to sHz or to the digestive vacuole

containing the Hz, e.g. LPS-binding protein and complement fragments [31, 32],

Figure 7. Injection of PfHz induces the expression of inflammatory mediators in the liver. Naive malaria-free C57BL/6J mice were injected
intravenously with different amounts of PfHz and dissected 6 hours later. Hepatic mRNA expression levels are shown for iNOS (A), TNF (B), MCP-1 (C), IP-
10 (D), TGF-b (E) or MHC class II (F) as determined by quantitative RT-PCR and normalized to 18S ribosomal RNA levels. Data for other mediators are
shown in table 3. Data were stratified according to the total amount of PfHz measured in the liver. Horizontal bars between individual data points indicate
group medians. Horizontal lines with asterisks on top indicate statistical differences between groups. Asterisks above individual data sets indicate statistical
differences with the vehicle-injected control group. * p,0.05, ** p,0.01 and *** p,0.001.

doi:10.1371/journal.pone.0113519.g007
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which may further help in Hz recognition and immune activation. Hz also

activates the nucleotide-binding oligomerization domain-like receptor pyrin

domain containing 3 (NLRP3) inflammasome [33–35], whereas contradictory

data are found for TLR9 [25, 34, 36–39]. More downstream in the signaling

cascade, Hz activates several mitogen-activated protein kinases (MAPK)

[34, 35, 40–43] and nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB) [41, 42, 44], the latter of which is also activated in peripheral blood

mononuclear cells (PBMCs) of patients with uncomplicated malaria [45]. Aside

from Hz, also other parasite-derived factors may contribute to the inflammation

observed in the liver. For example, malarial glycosylphosphatidylinositols (GPIs)

are able to elicit pro-inflammatory responses in monocytes/macrophages [46],

and immunization with synthetically produced GPIs diminishes severe pathology

in mice [47]. Furthermore, sequestration in the liver may result in localized release

of these inflammatory parasite factors [23].

Table 3. Hepatic mRNA expression of inflammatory mediators 6 h after intravenous injection of PfHz.

PBS PfHz Li ,70 nmol PfHz Li .200 nmol

TNF 1.09 (0,56–1,46) 5.32*** (1,98–12,37) 28.76*{{ (28,05–43,18)

IP-10 1.01 (0,72–1,42) 7.59*** (2,91–18,77) 163.10*{ (107,49–253,59)

MCP-1 1.04 (0,59–1,52) 7.77*** (2,72–17,58) 125.98*{{ (70,95–136,76)

KC 1.01 (0,39–2,09) 1.85** (0,42–3,85) 5.46*{{ (4,06–6,30)

IL-10 1.07 (0,32–1,47) 1.35 (0,56–3,07) 0.73 (0,51–0,83)

iNOS 0.98 (0,40–1,48) 10.04*** (2,31–24,58) 116.68**{{ (54,09–160,30)

NOX2 1.01 (0,47–1,49) 1.42 (0,17–2,99) 1.95* (1,94–2,07)

Perforin 0.96 (0,54–1,37) 1.75** (0,81–3,30) 6.02*{{ (5,46–6,02)

Hmox1 1.02 (0,52–1,30) 1.74* (0,31–2,98) 2.25* (1,64–2,70)

ICAM-1 0.96 (0,76–1,44) 2.38*** (0,92–3,30) 16.20*{{ (7,89–17,77)

FasL 1.03 (0,30–1,70) 1.77 (0,25–2,35) 2.24* (2,12–2,83)

IFN-c 0.93 (0,22–2,24) 2.16** (1,08–6,72) 60.37*{{ (55,15–64,30)

MMP-9 0.95 (0,79–1,31) 1.18 (0,20–1,74) 1.55* (1,18–1,68)

LT-a 1.00 (0,19–2,31) 0.64 (0,20–2,52) 0.82 (0,78–0,86)

IL-6 0.91 (0,49–1,42) 2.28* (0,41–8,03) 8.62*{ (7,02–9,31)

IL-1b 0.87 (0,31–1,79) 1.53 (0,19–2,22) 2.25* (1,86–2,30)

TGF-b 1.04 (0,39–1,41) 1.52 (0,28–3,04) 1.80* (1,74–1,95)

MHC-II 1.04 (0,64–1,37) 1.15 (0,87–2,00) 1.30 (1,13–1,47)

Median values are shown for each group (n53–12) and min-max values are indicated between parentheses. Data were stratified according to the amount of
PfHz in the liver (Li): ,70 or .200 nmol PfHz; Statistically different from PBS administered mice:
* p,0.05;
** p,0.01;
*** p,0.001;
Statistically different from PfHz Li ,70:
{p,0.05;
{{p,0.01;
FasL, Fas ligand; Hmox1, heme oxygenase 1; ICAM-1, intercellular adhesion molecule-1; IFN-c, interferon-gamma; IL-, interleukin-; iNOS, inducible nitric
oxide synthase; IP-10, interferon gamma inducible protein-10; KC, keratinocyte-derived chemokine; LT-a, lymphotoxin-alpha; MCP-1, monocyte
chemotactic protein-1; MHC-II, major histocompatibility complex class II; MMP-9, matrix metalloproteinase-9/gelatinase B; NOX2, NADPH oxidase 2; TGF-
b, transforming growth factor-beta; TNF, tumor necrosis factor.

doi:10.1371/journal.pone.0113519.t003

Role of Hemozoin in Malaria Liver Pathology

PLOS ONE | DOI:10.1371/journal.pone.0113519 November 24, 2014 18 / 23



P. berghei-infection seems to cause less hepatocyte damage compared to PcAS-

infection, although larger amounts of Hz were observed in the livers of P. berghei-

infected mice regardless of the genetic background of the mouse strain used. The

higher hepatic Hz levels can be explained by the higher Hz production levels of P.

berghei parasites compared to PcAS parasites [19]. A possible explanation for the

lower amount of hepatocyte damage observed with P. berghei is that inflammatory

responses might be suppressed in the liver with P. berghei, as it was demonstrated

that large amounts of Hz may impair specific immune functions [48–52]. We

found a strong negative correlation between hepatic Hz levels and the expression

of MHC class II on monocytes/macrophages, as was also found in vitro with

human monocytes [53] and murine dendritic cells [50], indicating that antigen

presentation and subsequent T cell responses may be impaired and inflammatory

responses in the liver may be limited by Hz. Furthermore, no correlations were

found between Hz, pathology and inflammation in the liver of P. berghei-infected

mice, which is in striking contrast with the strong correlations found between

pulmonary Hz levels, MA-ARDS disease parameters and pulmonary inflammation

[19]. This might be due to the differential amounts of Hz found in both organs,

since Hz levels are about 25-fold higher in livers than in lungs [3]. Urban and

Todryk suggested that the activating versus toxic effects of Hz on the immune

system may depend on the timing and the amount of Hz ingested, with low

amounts of Hz early during infection leading to activation and high amounts of

Hz with increasing parasitemia leading to inactivation [52]. This biphasic

response of the immune system on differential amounts of Hz might also occur in

our model in which low to medium levels of Hz as found in e.g. lungs of P.

berghei-infected mice and livers of PcAS-infected mice correlated with

inflammation, whereas high Hz levels as e.g. in livers of P. berghei-infected mice

appeared to suppress the immune response. On the other hand, the high

inflammatory environment in livers of PcAS-infected mice might also indicate

that parasite killing takes place in the liver as was already suggested by Good et al.

[54] and Playfair et al. [55]. Even though we did not observe parasites in the liver

by histologic analysis, hepatic sequestration was observed by Brugat et al. [23].

This discrepancy may be due to time differences when the organs were harvested.

As a conclusion, PcAS induces liver pathology in mice to a similar degree as P.

falciparum in many patients. In PcAS-infected C57BL/6J mice striking correlations

were established between Hz levels, liver pathology, and the expression of

inflammatory mediators. The causative role of Hz was evidenced by intravenous

injection of PfHz indicating that Hz activates the transcription of inflammation-

inducible genes in the liver. As a result several chemokines, cytokines and

proteases are secreted that may contribute to hepatocyte damage and subsequent

leakage of liver enzymes into the circulation. In livers of P. berghei-infected mice

no correlations with inflammatory gene expression were documented despite

higher levels of Hz compared to livers from PcAS-infected mice.

Role of Hemozoin in Malaria Liver Pathology

PLOS ONE | DOI:10.1371/journal.pone.0113519 November 24, 2014 19 / 23



Supporting Information

Figure S1. Liver pathology depends on the parasite strain and is only

marginally influenced by host genetics. C57BL/6J and BALB/c mice were

infected with PbNK65 or PcAS and sacrificed at different time points after

infection. As C57BL/6J mice infected with PbNK65 die shortly after day 10, no

data were available for this group at day 13. (A, B) Peripheral parasitemia levels.

Means are indicated ¡ SEM (n58–10 for each group). (C, D) Weights of

perfused livers. Means are indicated ¡ SEM (n58–10 for each dot). (E–H) Serum

levels of ALT (panels E, F) and AST (panels G, H). Please notice the almost 10-

fold difference in ALT and AST levels on the Y-axis for PbNK65 and PcAS

infections. (I–J) Quantity of hemozoin (Hz)/mg liver tissue at different time

points after infection with PbNK65 (I) or PcAS (J). Data are pooled from two

separate experiments with similar results. Each dot represents the results from an

individual mouse. Horizontal bars between individual data points represent group

medians and horizontal lines with asterisks on top indicate statistical differences

between groups. * p,0.05, ** p,0.01 and *** p,0.001.Figure S2. Hz in

marginating cells but not in endothelial cells.

doi:10.1371/journal.pone.0113519.s001 (DOC)

Figure S2. Hz in marginating cells but not in endothelial cells. Higher

magnification of liver endothelium and marginating cells containing hemozoin

(Hz, brown crystals) in hematoxylin-eosin stained paraffin sections of livers from

C57BL/6J mice infected with PbANKA (day 8), PbNK65 (day 10) or PcAS (day

10).

doi:10.1371/journal.pone.0113519.s002 (DOC)

Figure S3. Immunohistochemistry for Gr-1 in mouse liver after PcAS-infection.

Paraffin-embedded sections were prepared from the liver of a mouse mouse

infected with PcAS (day 10), and stained for Gr-1. White arrow, Gr-1hi monocyte;

black arrow, Gr-1+ macrophage containing Hz (brown granules). Representative

images are shown (original magnification, 4006 and 10006; scale bars, 50 mm).

doi:10.1371/journal.pone.0113519.s003 (DOC)
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