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Chunking improves symbolic sequence processing
and relies on working memory gating mechanisms
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Chunking, namely the grouping of sequence elements in clusters, is ubiquitous during sequence processing, but its impact

on performance remains debated. Here, we found that participants who adopted a consistent chunking strategy during sym-

bolic sequence learning showed a greater improvement of their performance and a larger decrease in cognitive workload

over time. Stronger reliance on chunking was also associated with higher scores in a WM updating task, suggesting the con-

tribution of WM gating mechanisms to sequence chunking. Altogether, these results indicate that chunking is a cost-saving

strategy that enhances effectiveness of symbolic sequence learning.

[Supplemental material is available for this article.]

One very influential breakthrough in the study of working mem-
ory (WM) was achieved by Miller when he proposed, more than
half a century ago, that information clustering—or chunking—
is used to circumvent the limited capacity of WM (Miller 1956).
Since then, this process has been studied extensively, in particular
in the context of sequence learning (Terrace 1991; Verwey 1996;
Gobet and Simon 1998; Gobet et al. 2001; Sakai et al. 2003;
Miyapuram et al. 2006; Bor and Seth 2012; Mathy and Feldman
2012; Wymbs et al. 2012). In addition to increasing WM capacity
(Mathy and Feldman 2012; Li et al. 2013), efficient chunking strat-
egy, by hypothetically decreasing WM load and freeing more cog-
nitive resources (Lavie et al. 2004; Minamoto et al. 2015) should
also benefit sequence processing. However, so far, the impact of
chunking on sequence-learning performance strikingly lacks ex-
perimental support (Wymbs et al. 2012; Song and Cohen 2014),
since most measures of chunking have failed to correlate with in-
dexes of performance or learning rate.

Besides, the nature of the interactions between chunking and
WM mechanisms during sequence learning remains debated.
Computational models (O’Reilly and Frank 2006; Grossberg and
Kazerounian 2011) have posited that chunking relies on WM gat-
ing, i.e., the process that controls the access of new information to
WM (Gruber et al. 2006; O’Reilly and Frank 2006; Grossberg and
Kazerounian 2011; Chatham et al. 2014). Indeed, chunking in-
volves subprocesses thought to depend on WM gating: binding
sensory inputs to specific serial position in WM (O’Reilly and
Soto 2002; O’Reilly and Frank 2006) and filtering distractors
from task relevant information during encoding and retrieval in
WM (Gruber et al. 2006; D’Ardenne et al. 2012; Chatham et al.
2014), However, so far, the only experimental evidence support-
ing a possible interaction between chunking and WM gating
processes arises from functional magnetic resonance imaging
studies showing an overlap between the different brain structures
involved in these two processes. Indeed, WM updating tasks—
supposed to recruit WM gating processes—have been shown to
activate the midbrain, caudate, and prefrontal cortex (Lewis et
al. 2004; Murty et al. 2011; Badre 2012; D’Ardenne et al. 2012;
Chatham et al. 2014), and, similarly, the neural correlates of
chunking encompass both the prefrontal cortex (Bor et al. 2003;
Clerget et al. 2012; Wymbs et al. 2012; Alamia et al. 2016 [in

press]) and basal ganglia (Graybiel 1998; Jin and Costa 2010;
Wymbs et al. 2012; Jin et al. 2014; Zenon and Olivier 2014).

In order to address these issues experimentally, we correlated
individual estimates of chunking strategy in a sequence-learning
task with general task performance, cognitive workload (as in-
dexed by pupil size), and performance in a WM updating task
(Murty et al. 2011). Since motor sequence learning appears to
depend less on attentional and central executive resources than
nonmotor sequence learning (Hikosaka et al. 2002; Keele et al.
2003; Song et al. 2008), we opted in the present experiment for
a symbolic sequence-learning task. Twenty-five right-handed in-
dividuals (10 males, mean age+ SD ¼ 27.1+4.1 yr) participated
in the study after providing their informed consent. None of the
participants had any physical or mental disorder that could influ-
ence their performance. The task (Alamia et al. 2016 [in press])
consisted in learning explicitly a sequence of 16 symbolic items
(digits) by trial and error (Fig. 1A). In each display, the “target”
(the digit belonging to the sequence) and a distractor were shown
simultaneously on the computer screen and the participants had
to identify and to designate the “target” by clicking on the corre-
sponding—left or right—mouse button. The location—on the
right- or the left-hand side of the screen—of target digits was pseu-
dorandomized on every trial so that subjects could not anticipate
the position of the next target, and therefore no motor sequence
of responses could be learned. The sequence (3 2 3 2 2 3 2 3 4 1 4 1
1 4 1 4) was repeated six times per block and the task comprised of
eight block repetitions. The WM task (Murty et al. 2011; Podell
et al. 2012), administered prior to the sequence-learning task,
consisted of a WM updating (16 trials) and a WM maintenance
task (24 trials). Every trial started with the encoding phase, during
which subjects had to remember a set of digits, and ended with
the retrieval phase, during which they had to compare a currently
remembered set of digits to the one displayed on the screen.
Subjects pressed the left mouse button to indicate that the remem-
bered set matched the probe set, and the right button otherwise.
In the maintenance task, subjects were asked to remember, and
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retrieve after a 12-sec delay 4, 6, or 8 digits, while in the updating
trials, they had to remember a series of four digits and to update
constantly various items of this series before providing the re-
sponse (Fig. 1B). The subject’s performance was determined by
computing the proportion of correct responses in each of these
conditions. In nonmatching trials, a single digit was changed
from the correct digit combination (Murty et al. 2011). The tasks
were implemented using Psychtoolbox 3.0.9 (Brainard 1997) with
Matlab 7.5 (The MathWorks). Stimuli were presented on a 19 inch
CRT screen, running at 75 Hz, located at a distance of 58 cm. An
Eyelink 1000+ eye tracker (SR Research Ltd.) was used to monitor
eye movements, blinks, and pupil diameter at a sampling frequen-
cy of 500 Hz (see Zénon et al. 2014 for technical details).

The final analysis was performed on 19 subjects as six sub-
jects were discarded: five because they did not reach 80% accuracy
in at least two out of the eight blocks of the sequence-learning
task, and one subject because his average reaction times (RT)
in all blocks were larger than the mean + 6 SD of the group. As a
measure of sequence learning, we used RT computed as the time
difference between digit display and button press. We took into
account all button presses (correct and incorrect responses), but
included only the blocks in which the subjects’ accuracy was high-
er than 80% (average index of the first block satisfying the criteri-
on: 1.5+0.7, mean+ SD) in which the subjects were still learning
the sequence. We estimated the learning rate, i.e., the perfor-
mance improvement across block repetitions, by fitting RT data
with a power law (y ¼ axb), and we considered b, the exponent
of the power law, as an index of learning (Fig. 2A).

To characterize the chunking strategy, we used the “chunk
carryover” index (Ci) (Song and Cohen 2014) computed by aver-
aging the RT for each sequence element within each block, then
by computing pairwise Pearson correlations between item-wise
averaged RT in all the valid blocks and finally by averaging all
the obtained correlation coefficients (Fig. 2B,C). We also comput-
ed the mean chunk length for each subject (Bo and Seidler 2009).
To do so, we identified the first element of each chunk by using

the log-transformed RT for each sequence item computed for
the last block (Block 8); then we performed a one-tail paired
t-test to evaluate whether RT for each sequence item, n was sig-
nificantly longer than for the neighboring positions (n + 1 and
n 2 1). We excluded the first two elements of the sequence as
well as the last one from this analysis because the first and second
items were considered to always belong to the first chunk, whereas
the last sequence item always belonged to the last chunk (Bo and
Seidler 2009). Afterward, we computed the mean chunk length by
dividing total sequence length (16) by the number of chunks
identified (including the first chunk of items 1 and 2).

All participants showed an overall high performance in the
valid blocks (mean accuracy: 90%, SD: 0.08%), and exhibited a
relatively consistent chunking strategy between subjects (ANOVA
on average RT as a function of item position: F(15) ¼ 4.1345, P ¼
6.9981 × 10207; see Supplemental Fig. S1). Interestingly, we
found that the extent to which each individual relied on chunk-
ing, estimated by means of the Ci index (mean+ SD: 0.53+

0.14; see Fig. 2), correlated negatively with their learning rate
(rs ¼ 20.6193, P ¼ 0.0056, Spearman; see Supplemental Fig.
S2A), indicating that consistent chunking benefits performance
in terms of RT improvement. In contrast, we found that chunk
length (mean+SD: 5.34+2.21) did not correlate with the
sequence-learning rate (rs ¼ 20.0745, P ¼ 0.7618, Spearman).

Additionally, given that task-evoked increase of pupil diam-
eter is regarded as a marker of cognitive workload (Hess and Polt
1964; Kahneman and Beatty 1966; Beatty 1982), we investigated
whether large Ci were associated with stronger decreases in pupil
size over time. Indeed, we found that Ci correlated negatively with
the slopes of the change in phasic pupil response (see Fig. 3) across
sequence repetitions (rs ¼ 20.5070, P ¼ 0.0284, Spearman), sug-
gesting that chunking led to a decrease in cognitive workload
across sequence repetitions.

Regarding the WM tasks, subjects performed better in the
WM maintenance (accuracy: 86%+11.7%, mean+ SD) than
the WM updating task (74.6%+15.6%, mean+SD). As expected,

A B

Figure 1. (A) Sequence-learning task. After the display of a fixation cross (2.0 sec) at the beginning of each sequence, two rectangles appeared on the
left and right parts of the screen, each containing either a target or distractor digit. The location (left or right) of all target digits was pseudorandomized on
every trial so that subjects could not predict the position of the next target digit, and therefore the motor response to be provided. The participants in-
dicated which rectangle they believed contained the digit belonging to the sequence by clicking on the corresponding mouse button (e.g., left mouse
button if the sequence element is shown on the left). If a correct response was provided, the next pair of digits was immediately presented. If the par-
ticipant selected the wrong digit, i.e., the distractor, a feedback sound was provided (0.3 sec), and the next pair of digits was displayed. If none of
the digits was selected after 5.0 sec, the next pair appeared automatically. The sequence was repeated six times per block and the entire experiment
was composed of eight blocks. (B) Working memory (WM) task. In the maintenance trials, subjects were given 4, 6, or 8 digits to remember during
the encoding phase. Afterward, six displays alternated every 2 sec, in which all digits were replaced by asterisks indicating that the participants had to
keep in memory the original set of digits, until the response display. In the updating trials, four digits were always presented during the encoding
phase. Then six displays alternated every 2 sec, all containing four characters, either two asterisks and two new digits or one asterisk and three new
digits (randomly interleaved). Subjects had to keep in memory the digit from the previous display where asterisks appeared, whereas the new digits
had to replace the digits previously displayed at their corresponding positions. In both conditions, the trial ended with the display of a series of digits
and the subjects had to evaluate whether it corresponded (left mouse button click) or not (right button) to the one they were holding in memory.
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in WM maintenance, performance significantly decreased as a
function of number of items (4, 6, or 8) in the series to be memo-
rized (F(2,54) ¼ 13.7, P , 0.0001, ANOVA), while performance in
the WM updating task was not significantly different between tri-
als in which two or three digits had to be updated (F(1,36) ¼ 2.39,
P ¼ 0.19, ANOVA). Additionally, we did not find a significant cor-
relation between performance in WM maintenance and updating
tasks (rs ¼ 0.268, P ¼ 0.267, Spearman).

Moreover, we correlated the performance in the WM tasks
and chunk parameters (Ci and chunk length). A significant posi-
tive correlation was found between the Ci and WM updating per-
formance (rs ¼ 0.6182, P ¼ 0.0048, Spearman; see Supplemental
Fig. S2B), indicating that better performance in the updating
task was associated with more reliable chunking. In contrast, we
did not find any significant correlation between Ci and WM main-
tenance performance (rs ¼ 0.2563, P ¼ 0.2896, Spearman).

Finally, the correlations between chunk length and WM
measurements failed to reach significance (WM maintenance:
rs ¼ 20.18, P ¼ 0.52, Spearman, WM updating: rs ¼ 20.14, P ¼
0.62, Spearman), in apparent contradiction with previous results
(Bo and Seidler 2009). This discrepancy could be explained by sev-
eral differences between experimental conditions: (1) sequence
modality (nonmotor versus motor sequence-learning task), (2)
amount of training (48 versus at least 120 sequence repetitions),

(3) task design (selection of sequence items displayed along with
distractors versus self-paced sequence recall).

An important contribution of the present study is the finding
that chunking improves performance in symbolic sequence pro-
cessing by reducing cognitive workload and decreasing RTs over
time. This finding is consequential because, although evidence
for chunking has been reported repeatedly during sequence exe-
cution (Gobet et al. 2001; Sakai et al. 2003; Boyd et al. 2009;
Perlman et al. 2010; Seidler et al. 2012; Lungu et al. 2014), previ-
ous attempts to determine its causal role in sequence processing
have failed. For instance, a recent study investigating the neural
correlates of chunking was unsuccessful in establishing a relation-
ship between learning rate and chunking, as quantified by com-
puting the network modularity (Wymbs et al. 2012). A potential
problem with this approach is the assumption that an efficient
chunking strategy progressively leads to chunks concatenation
over time. However, a recent study investigating this question
by measuring chunk formation, carryover and concatenation
over an extended period of training, found no evidence in favor
of chunk concatenation (Song and Cohen 2014), despite sig-
nificant chunk formation. In addition, none of the chunking

A

B

Figure 3. Pupil diameter analysis. Prior to analyzing pupil diameter
data, blink-related artifacts were filtered out and substituted by means
of linear interpolation. Data were downsampled to 10 Hz and aligned
on stimulus onset. We fitted the pupil diameter changes across each se-
quence using nonlinear least squares fitting with an exponential function:
b1 2 b2 × e2b3 × X, where X refers to the preprocessed pupillometric data
and b1–3 are the parameters of the fit. We then computed the asymptote
of these functions (Zénon et al. 2014), for each sequence, which corre-
sponds to an estimate of the peak value of the pupil diameter during
the sequence (A). We then computed the change in phasic pupil response
across sequence repetitions (B), by means of a robust linear regression,
which is less sensitive to outliers than ordinary least squares fitting
method (function “robustfit”; Matlab, The MathWorks). A red point
marks the asymptote of pupil response function illustrated in the panel
above. Finally, we correlated the interindividual slope values with the cor-
responding chunking carryover indexes.

A

B

C

Figure 2. (A) Reaction times from one example participant in the
sequence-learning task. Trials in which an incorrect answer was given
are marked in red. (B) Reaction times of two example subjects averaged
for every block of the sequence-learning task. (C) Color matrix represent-
ing the coefficients of correlation between each pair of block-wise aver-
aged reaction times of the two example subjects. The average of these
coefficients provides the chunking carryover index (Ci), used as a
measure of chunking in the present study. Stochastic RT patterns lead
to low Ci (e.g., left part of the figure) whereas systematic RT patterns, re-
garded as signatures of chunking, lead to high Ci (right part of the figure).
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measures changed congruently with the improvement in RT oc-
curring during training, a finding interpreted as evidence that
chunking is not causally involved in sequence learning (Song
and Cohen 2014). Along the same line, another recent study re-
ported that Broca’s area disruption by means of transcranial mag-
netic stimulation impedes learning of a motor sequence but
without altering the chunking strategy, supporting also the lack
of connection between chunking and learning performance
(Clerget et al. 2012). The novelty of the present study lies in ac-
counting for between-subject variability of chunking features,
which allowed us to show that chunking is an effective strategy
to improve symbolic sequence-learning performance, supposedly
by alleviating cognitive workload.

Another goal of this study was to test how chunking relates to
WM mechanisms, such as WM maintenance and gating, during
symbolic sequence learning. While the overlap between the
neural correlates of chunking and WM gating (Graybiel 1998;
Bor et al. 2003; Gruber et al. 2006; Tremblay et al. 2010; Murty
et al. 2011; D’Ardenne et al. 2012; Wymbs et al. 2012; Jin et al.
2014) was considered as indirect evidence of their possible inter-
actions, in accordance with the computational models (O’Reilly
and Frank 2006; Grossberg and Kazerounian 2011), we provide
here, for the first time, behavioral evidence that chunking is
linked to WM gating processes. This suggests that, in accordance
with our prediction, chunking during sequence performance re-
lies on the same mechanisms as in WM updating tasks, i.e., pre-
sumably the capacity to gate the access of information to WM
while filtering irrelevant distractors (Gruber et al. 2006; O’Reilly
and Frank 2006; D’Ardenne et al. 2012).

One possible important drawback of the present study is that
the correlation between chunking strategy and WM updating
could be due to the fact that participants subvocalized the se-
quence. We believe that this is unlikely given that the correlation
between the measures of chunking and WM was specific to WM
updating, while subvocalization should have impacted also WM
maintenance performance, in accordance with the phonological
loop hypothesis (Baddeley 2000). Furthermore, we did not ob-
serve a significant correlation between WM maintenance and
updating, implying that the interindividual variability found in
WM updating performance, and which correlated with chunk-
ing carryover, did not arise from sequence subvocalization.
Therefore, even though the role of subvocalization strategies in se-
quence learning should be investigated further, we believe that
the relationship between chunking and WM gating reported
here cannot be simply explained by this confound.

Finally, the question arises as to whether chunking in sym-
bolic and motor sequence learning might rely on different cogni-
tive mechanisms, in accordance with the theoretical accounts of
sequence learning that propose separate cognitive systems for
symbolic and motor sequence processing (Seger 1997, 1998;
Gheysen and Fias 2012). However, evidence for chunking has
been reported in a large range of domains (e.g., low-level visual
processing (Green and Bavelier 2003; Orbán et al. 2008), spatial
memory (Sargent et al. 2010), etc.), arguing in favor of the exis-
tence of a domain-general mechanism, which would be common
to both motor and nonmotor chunking processes. This hypothe-
sis should be tested in further studies, for instance by means of
carefully designed neuroimaging paradigms.
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