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Abstract: Here, we introduced a novel thiourea-based rhodamine compound as a chromo-fluorogenic
indicator of nerve agent Soman and its simulant diethyl chlorophosphate (DCP). The synthesized
probe N-(rhodamine B)-lactam-2-(4-cyanophenyl) thiourea (RB-CT), which has a rhodamine core
linked by a cyanophenyl thiosemicarbazide group, enabled a rapidly and highly sensitive response
to DCP with clear fluorescence and color changes. The detection limit was as low as 2 × 10−6 M.
The sensing mechanism showed that opening of the spirolactam ring following the phosphorylation
of thiosemicarbazides group formed a seven-membered heterocycle adduct, according to MS
analysis and TD-DFT calculations. RB-CT exhibited high detecting selectivity for DCP, among
other organophosphorus compounds. Moreover, two test kits were employed and successfully used
to detect real nerve agent Soman in liquid and gas phase.

Keywords: Nerve agents; Soman; Rhodamine B; Thiosemicarbazide; Chromo-fluorogenic
probe; Detection

1. Introduction

Nerve agents are a class of highly toxic organophosphates, mainly including Tabun (GA), Sarin
(GB), Soman (GD), and VX [1] (Scheme 1). These compounds are extremely dangerous because
they are able to enter human body through respiration or penetration and inhibit the activity of the
acetylcholinesterase, then the accumulation of acetylcholine in the synapse causes neuromuscular
paralysis and eventually death [2]. Due to the easy production, high toxicity, being colorless and
odorless, and the possible use in terrorist attacks, the development of reliable and rapid detection
systems for nerve agents is highly desirable [3]. In addition, rapidly discriminating the distribution
of nerve agents in the contaminated areas can also provide effective guidance for subsequent
decontamination operations and further safety confirmation.
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imprinted polymers[12], nanoparticles[13], and chromo-fluorogenic probes[14-22]. Above all, 
chromo-fluorogenic probes have recently gained increasing interest due to their cost-effectiveness, 
simplicity, and “naked-eye” detection [23,24]. 

A typical chromo-fluorogenic probe is usually formed by two moieties: (1) a chromo-fluorogenic 
reporter group, which translates the binding event into the change of color and fluorescence, mainly 
containing rhodamine[22], fluorescein[15], boron dipyrromethene (BODIPY) [16,17], azo[14,20], and 
cyanine dye[18]; (2) a selective reactive group, which provides a reactive binding site for nucleophilic 
attack, mainly containing hydroxyl[15,25], oxime[19], and amino groups[26]. Recently, thiourea has 
been proved to be capable of reacting with nerve agents through hydrogen-bond interaction between 
N-H protons of thiourea and phosphonate oxygen or hydrolyzed products[27,28]. It has been also 
proven that the reaction of thiosemicarbazide group can induce opening of the spirolactam ring in 
rhodamine B accompanied with color change and enhanced fluorescence[29]. Thus, the 
thiosemicarbazide group is expected to become a reactive group bonding with rhodamine B core for 
chromo-fluorogenic detection of nerve agents and simulants. 

Herein, a rhodamine B based probe N-(rhodamine B)-lactam-2-(4-cyanophenyl) thiourea (RB-
CT) was designed and synthesized, and as shown in Scheme 2, the electron-withdrawing 
cyanophenyl group in the molecule could promote the intramolecular charge transfer (ICT) process 
to enhance activity of ring-opening reaction and strengthen the change of color. Spectra analysis and 
mechanism study confirmed the probe was capable of the rapid detection of diethyl chlorophosphate 
(DCP, a simulant of the Soman) with remarkable change of color and fluorescence through the 
phosphorylation of the thiosemicarbazide group. Finally, the probe was also successfully used in the 
detection of GD in both liquid and gas phase. 

 

Scheme 1. Chemical structures of nerve-agents Sarin, Soman, Tabun, and VX, their simulant DCP, 
and some organophosphorus compounds as potential interferences 

  

Scheme 1. Chemical structures of nerve-agents Sarin, Soman, Tabun, and VX, their simulant DCP, and
some organophosphorus compounds as potential interferences.

Several methodologies have been employed for the detection of nerve agents, including enzymatic
assays [4,5], interferometry [6], ion mobility spectroscopy [7], electrochemistry [8], micro-cantilevers [9,10],
and photonic crystals [11]. Nevertheless, these protocols usually have some drawbacks, such as
operation complexity, non-portability, difficulties in real-time monitoring, etc. As alternatives to these
procedures, some new approaches have been explored involving molecularly imprinted polymers [12],
nanoparticles [13], and chromo-fluorogenic probes [14–22]. Above all, chromo-fluorogenic probes
have recently gained increasing interest due to their cost-effectiveness, simplicity, and “naked-eye”
detection [23,24].

A typical chromo-fluorogenic probe is usually formed by two moieties: (1) a chromo-fluorogenic
reporter group, which translates the binding event into the change of color and fluorescence, mainly
containing rhodamine [22], fluorescein [15], boron dipyrromethene (BODIPY) [16,17], azo [14,20], and
cyanine dye [18]; (2) a selective reactive group, which provides a reactive binding site for nucleophilic
attack, mainly containing hydroxyl [15,25], oxime [19], and amino groups [26]. Recently, thiourea
has been proved to be capable of reacting with nerve agents through hydrogen-bond interaction
between N-H protons of thiourea and phosphonate oxygen or hydrolyzed products [27,28]. It has
been also proven that the reaction of thiosemicarbazide group can induce opening of the spirolactam
ring in rhodamine B accompanied with color change and enhanced fluorescence [29]. Thus, the
thiosemicarbazide group is expected to become a reactive group bonding with rhodamine B core for
chromo-fluorogenic detection of nerve agents and simulants.

Herein, a rhodamine B based probe N-(rhodamine B)-lactam-2-(4-cyanophenyl) thiourea (RB-CT)
was designed and synthesized, and as shown in Scheme 2, the electron-withdrawing cyanophenyl
group in the molecule could promote the intramolecular charge transfer (ICT) process to enhance
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activity of ring-opening reaction and strengthen the change of color. Spectra analysis and mechanism
study confirmed the probe was capable of the rapid detection of diethyl chlorophosphate (DCP, a
simulant of the Soman) with remarkable change of color and fluorescence through the phosphorylation
of the thiosemicarbazide group. Finally, the probe was also successfully used in the detection of GD in
both liquid and gas phase.
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Scheme 2. Proposed mechanism of RB-CT with DCP. 

 

Scheme 2. Proposed mechanism of RB-CT with DCP.

2. Results and Discussion

2.1. Spectroscopic Properties

To demonstrate the response of RB-CT to nerve agents, absorption and fluorescence spectra
were first studied. DCP was used as low-toxic simulant because of its similar chemical structure
and reactivity with nerve agents (Tabun, Sarin and Soman). Et3N (3 Vt%) was added in the CH3CN
solution of RB-CT to avoid the interference of proton. As shown in Figure 1a, an obvious absorption
band at 560 nm was observed after the addition of DCP in the RB-CT solution. The change in
color from colorless to pink implied the spirolactam ring-opening reaction of RB-CT caused by DCP
(Figure 1b). The thiosemicarbazide group of RB-CT is likely to react with DCP, resulting in a remarkable
enhancement of absorption intensity. The result highlights that RB-CT is of high potential as a
naked-eye probe for the detection of nerve agents.

Figure 1c presented the fluorescence spectra of RB-CT with increasing concentration of DCP; a
new fluorescent band at 583 nm appears and shows remarkable enhancement. The spectral changes
provided further evidence for the opening of the spirolactam ring, according to the changes in
absorption spectra. Moreover, the fluorescence intensity of RB-CT showed a good linear relationship
at the concentration of DCP in the range of 0.1 × 10−3–1.9 × 10−3 M (Figure 1d).

The limit of detection (LOD) was determined from the fluorescence spectral data, using the
equation K × Sb1/S, where K = 3, Sb1 is the standard deviation of blank measurements and S is
the slope of the calibration curve. The limit of detection was found to be 2 × 10−6 M, indicating
high sensitivity to detect DCP by RB-CT. The sensing ability for the naked eye was evaluated by
immobilizing RB-CT on silica plates. After the plates were dipped in the CH3CN solution of DCP
(2–2000 ppm), clear enhancement of the fluorescence was observed by the naked eye in the range
of 20 and 2000 ppm (Figure S1), which demonstrates the LOD for the naked eye is as low as the
value calculated.
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Figure 1. (a) Absorption spectra of RB-CT (1.0 × 10−5 M) upon the addition of DCP (0.5 × 10−4–8.0 ×
10−4 M) in CH3CN (3% Et3N). (b) The images of the RB-CT solution before and after the addition of
DCP under sun light (left) and UV light (right). (c) Fluorescence spectra of RB-CT (1.0 × 10−6 M) at
λex = 540 nm, upon the addition of DCP (0.1 × 10−3–1.9 × 10−3 M) in CH3CN (3% Et3N). (d) Plot of
emission intensity of RB-CT at 583 nm.

2.2. Reaction Kinetics Study

To investigate the reaction kinetics of RB-CT and DCP, time-dependent fluorescence change was
performed under different DCP concentrations at room temperature. As shown in Figure 2a, the
reaction was almost complete and the fluorescence intensity was saturated within 1200 s in all cases.
The kinetic constants were further examined following pseudo-first-order kinetic rate law as the clear
linear relationships between the change of fluorescence intensity and reaction time (Figure S2). The
observed rate constants kobs, half-life time t1/2, and the constant rates (k) were summarized in Table 1.
The average half-life time was about 280 s, less than 5 min. The short half-life times are the basis for
the rapid detection of nerve agents.
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2.3. Mechanism Study 
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via nucleophilic reaction between RB-CT and DCP. An ESI analysis was employed to investigate the 
possible products and a major peak at 708.3223 was observed, which indicated the phosphorylation 
of RB-CT (Figure S3). The new singlet observed (δ 0.32) in the 31P NMR spectrum of DCP after 
addition of RB-CT gives further evidence for the occurrence of phosphorylation reaction (Figure S4). 
As the formation of a heterocycle in RB-CT/DCP adduct is a reasonable mechanism [30,31], DFT and 

Figure 2. (a) Kinetic profiles of the fluorescence intensity at 583 nm of RB-CT ((1.0 × 10−6 M, CH3CN,
3% Et3N) after the addition of 4.0 × 10−4 M, 5.0 × 10−4 M, 6.0 × 10−4 M, and 1.2 × 10−3 M DCP.
(b)The correlation between kobs and the concentration of DCP.

Table 1. Observed reaction rates (kobs), half-life time (t1/2), and the constant rates (k) for the reaction of
RB-CT ((1.0 × 10−6 M, CH3CN, 3% Et3N) and DCP with different concentrations.

The Concentrations
of DCP 4 × 10−4 5 × 10−4 6 × 10−4 1.2 × 10−3

Kobs (s−1) 0.00244 0.00245 0.00246 0.00251
t1/2 (s) 284 283 282 276

k (M−2 S−1) 8.645 × 10−6

2.3. Mechanism Study

The absorption and fluorescence changes can be attributed to the opening of spirolactam ring
via nucleophilic reaction between RB-CT and DCP. An ESI analysis was employed to investigate the
possible products and a major peak at 708.3223 was observed, which indicated the phosphorylation
of RB-CT (Figure S3). The new singlet observed (δ 0.32) in the 31P NMR spectrum of DCP after
addition of RB-CT gives further evidence for the occurrence of phosphorylation reaction (Figure S4).
As the formation of a heterocycle in RB-CT/DCP adduct is a reasonable mechanism [30,31], DFT
and TD-DFT calculations were used to confirm the structure of the adduct through optimizing the
geometries formed by nucleophilic attack with different nitrogen sites in the thiosemicarbazide group.
The proposed mechanism was presented in Scheme 2; a seven-membered heterocycle was proved to
be a favorable adduct structure owing to its relatively lower energy, which also agreed well with the
mass spectrometry result (Figure S5). The optimized structures of RB-CT and RB-CT/DCP adducts
were shown in Figure 3. The HOMO–LUMO energy gap (2.651 eV) of the adduct is less than that of
RB-CT (3.885 eV) and the electron densities in LUMO are more concentrated in the thiourea group
after the reaction. The calculated main contributing electronic transitions for S0→S1 energy state are
HOMO→LUMO (2.14 eV/578 nm) and HOMO-1→LUMO+1 (2.34 eV/530 nm), which is consistent
with the absorption band at 560 nm obtained experimentally. The considerable difference in the energy
and electronic transition can shed light on the changes of absorption spectra and color.
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Figure 3. Energy optimized structures, HOMO-LUMO energy levels, and interfacial plots of the orbitals
of RB-CT and RB-CT/DCP adduct.

2.4. Interferents

As organophosphorus pesticides often act as interferences to render false positives during the
detection of nerve agents, several conventional organophosphorus compounds were chosen as target
species to study the selectivity of RB-CT. As shown in Figure 4, the interferences did not cause any
obvious color and fluorescence changes in DCP, which indicated the selective detection of DCP can
be achieved by RB-CT, among other conventional organophosphorus compounds. It is noted that
although proton can induce the spirolactam ring opening of the rhodamine molecule [32], RB-CT
exhibited little changes of color and fluorescence intensity in the presence of hydrochloric acid. Thus,
the false-positive caused by proton can be effectively avoided under the detection condition with the
addition of 3% Et3N, since the suitable detection pH range of the probe is 7.0 to 10.0 (Figure S6).
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Figure 4. (a) Relative fluorescence intensity of RB-CT (1 × 10−5 M, CH3CN, 3% Et3N) at 583 nm
after the addition of different organophosphorus compounds (1.0 × 10−3 M). Blank is the CH3CN
solution of RB-CT without Et3N. (b) Relative color change of RB-CT after the addition of different
organophosphorus compounds under sunlight and UV light.

2.5. Practical Application toward Real Nerve Agent

To confirm in situ and rapid sensing ability of RB-CT toward real nerve agents, we have
investigated the response characteristics of the probe to GD in both liquid and gas phase. Clear
color changes under sunlight and fluorescence enhancement irradiated by UV lamp were all observed
by the naked eye immediately in liquid and within 10 min in gas phase (40 ppm GD introduced in a
flask as an aerosol) (as shown in Figure 5). The remarkable visual differences did not fade or quench
after 24 h, which indicated the irreversible cyclization had occurred [33]. The above results illustrate
the potential application of RB-CT in the rapid and facile naked-eye detection of nerve agents in both
liquid and vapor phases.
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Figure 5. (a) Color change of filter paper treated with RB-CT solution (1.0 × 10−4 M in CH3CN, 3%
Et3N) and GD in liquid phase under sunlight (left) and UV light (right). (b) Color change of filter paper
treated with RB-CT solution (1.0× 10−4 M in CH3CN, 3% Et3N) and exposed to GD in gas phase under
sunlight (left) and UV light (right).

3. Materials and Methods

3.1. Materials

All of the solvents were obtained from Beijing Chemical Reagent Company and used without
further purification. Rhodamine B, 4-cyanophenyl isothiocyanate and anhydrous magnesium sulfate
(MgSO4) were purchased from Aladdin In. Co. (Los Angeles, CA, USA). Diethyl chlorophosphate
(DCP) was purchased from Sigma Co. (Louis, MO, USA). Nerve agent GD (the purity is 80 %) was
provided by the Research Institute of Chemical Defense of China.
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3.2. Measurements

The ESI mass analysis was performed using an Q Exactive HF-X Hybrid Quadrupole-Orbitrap
Mass Spectrometer (Thermo Scientific, Waltham, MA, USA). The 1H NMR spectra were recorded
on AV 400 spectrometer (Bruker, Karlsruhe, Germany). Chemical shifts were expressed in parts per
millions (δ) downfield from the internal standard tetramethyl silane and were reported as s (singlet),
d (doublet), bs (broad singlet), t (triplet), and m (multiplet). Absorbance and fluorescence spectra
were recorded at room temperature with a Hitachi U-3900 UV-Visible spectrophotometer and F-4500
fluorescence spectrophotometer, respectively, using a fluorescence cell of 10 mm path. The excitation
wavelength was set to 540 nm (slit width 5 nm), and emission was monitored from 560–700 nm (slit
width 5 nm). Column chromatography was conducted over silica gel (mesh 100–200).

3.3. Synthetic Procedures

As shown in Scheme 3, compound 1 was synthesized using the reported procedure [34].
Compound 2 was synthesized in a facile way.
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Synthesis of compound 1: In a 100 mL flask, 1 mL hydrazine hydrate was drop-wise added to a
solution of rhodamine B (1.67 mmol, 800 mg) in anhydrous CH3OH (30 mL), the mixed solution was
then stirred and heated to 80 °C, and refluxed for 6 h. Pure water (30 mL) was added and the solvent
was extracted with EtOAc (3 × 60 mL), after the organic phase was dried with anhydrous MgSO4

and evaporated, orange solid compound 1 (356 mg, 48.8% yield) was obtained, and used without
further purification.

The 1H NMR (400 MHz, DMSO-d6) δ 7.82 (d, J = 8.3 Hz, 1H), 7.58-7.48 (m, 2H), 7.04 (d, J = 8.0 Hz,
1H), 6.41 (d, J = 17.1 Hz, 6H), 4.32 (s, 2H), 3.36 (d, J = 7.0 Hz, 8H), 1.14 (t, J = 6.9 Hz, 12H) (Figure S7).

Synthesis of compound 2(RB-TU probe): To a solution of compound 1 (0.22 mmol, 100 mg) in
1.5 mL DMF, a solution of 4-cyanophenyl isothiocyanate (0.31 mmol,50 mg) in 1.5 mL DMF was added,
the reaction mixture was stirred for 12 h at room temperature. After the solution evaporated, the
residue was purified by flash chromatography (EtOAc: hexane = 1:10) to afford RB-TU probe (36 mg,
26.6% yield).

The 1H NMR (400 MHz, Chloroform-d) δ 8.01 (d, J = 7.6 Hz, 1H), 7.72 - 7.57 (m, 3H), 7.44 (d,
J = 8.4 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 7.6 Hz, 1H), 6.97 (s, 1H), 6.47 (d, J = 8.8 Hz, 2H), 6.42
(d, J = 2.5 Hz, 2H), 6.29 (d, J = 2.6 Hz, 1H), 6.27 (d, J = 2.6 Hz, 1H), 3.32 (qd, J = 7.2, 2.5 Hz, 8H), 1.15 (t,
J = 7.0 Hz, 12H) (Figure S8).

HR-MS (C36H36N6O2S): Calcd.: 616.2620; Found: 617.2681(9.9 ppm) (Figure S9).

3.4. Reaction Kinetics Study

The fluorescence spectra of RB-CT (1.0 × 10−6 M) were recorded after the addition of DCP in
the concentrations of 4.0 × 10−4 M, 5.0 × 10−4 M, 6.0 × 10−4 M, and 1.2 × 10−3 M over a 0–1200 s
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incubation period at room temperature. The observed rate constants kobs and corresponding half-life
time t1/2 were determined according to Equations (1) and (2).

ln[(Fmax-Ft)/Fmax] = −kobst (1)

t1/2 = ln2/kobs (2)

where Fmax and Ft are maximum fluorescence intensity obtained after the reaction was completed and
the fluorescence intensities at 583 nm at reaction time t.

3.5. Computational Methods

Quantum chemical calculations were carried out by Gaussian 09 package [35]. Geometry was
optimized using density functional theory (DFT) functional B3LYP [36–38] and 6–31G (d) basis
set [39,40]. Time-dependent density functional theory (TD-DFT) calculation [41] was also performed
at the same level of theory. Considering the effects of the environment on the calculated energies,
solvation effects were considered throughout geometry optimizations via the self-consistent reaction
field (SCRF) and conductor-like polarizable continuum model (CPCM) method [42].

3.6. Interferents

Selectivity and specificity tests were performed with different organophosphorus compounds
(OPs), i.e., dimethyl methylphosphonate (DMMP), triphenyl phosphate (TPP), trimethyl phosphate
(TMP), acephate, isocarbophos, and dimethoate (Scheme 1). To 2 mL reagent solution of the probe
molecule (1.0 × 10−5 M) in CH3CN containing 3% Et3N, 20 µL stock solution of OPs (1.0 × 10−1 M)
was added. The solutions were incubated at room temperature for 5 min and the fluorescence spectra
was recorded.

3.7. The Preparation of Test Kits of Real Nerve Agents in Liquid and Gas Phase

The test kits toward GD in liquid and gas phase were produced by the following steps. For liquid
phase, a waterman filter paper was soaked in the CH3CN solution of RB-CT (1.0 × 10−4 M, 3% Et3N),
after the solvent was air-dried, a “GD” logo was patterned by GD. For gas phase, a solution of RB-CT
in CH3CN (1.0 × 10−4 M, 3% Et3N) was sprayed onto a filter paper to spell out “GD” first, after the
solvent was air-dried, the paper was exposed to GD vapor in a flask (40 ppm introduced as an aerosol)
for 10 mins. The LCt50 and LD50 of Soman are estimated to be 100 mg min/m3 and 300 mg/individual,
respectively [43].

Safety Note: Only highly qualified and experienced personnel should work with CWAs employed
here, as described in the experimental part below. Due to the high volatility and toxicity of the CWAs,
all of the experiments in this part were carried out inside a safety fume hood and operated under
efficient ventilation systems. To avoid any risk of CWA inhalation, respiratory protection of involved
personnel was provided by protective breathing masks equipped with combined NBC filters.

4. Conclusions

In conclusion, we have designed and synthesized a novel probe N-(rhodamine
B)-lactam-2-(4-cyanophenyl) thiourea for chromogenic and fluorogenic detection of nerve agents.
The probe undergoes an irreversible opening-ring reaction following the form of a seven-membered
heterocycle adduct in the presence of DCP, accompanied by the obvious color change from colorless
to pink, which has been confirmed by MS analysis and TD-DFT calculations. The response is that
instantaneously half-life time is about 280 s at room temperature and the detection limit was found to
be 2 × 10−6 M. Furthermore, we have demonstrated that the probe is applicable for rapid and facile in
situ detection of GD with the naked eye in both liquid and vapor phase.
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Supplementary Materials: The following are available online. Figure S1: The limit of detection for naked eye.
Figure S2: Calibration plots by using fluorescence intensity of RB-CT (1 µM) as a function of reaction time t in
different DCP concentrations. Figure S3: ESI-MS spectrum of RB-CT/DCP adduct. Figure S4: 31P NMR spectra of
DCP and RB-CT with DCP in CD3CN. Figure S5: HOMO-LUMO energy levels of TD-DFT optimized geometries
of probe and predicted RB-CT/DCP adducts. Figure S6: The plot of pH versus fluorescence intensity of free
RB-CT and RB-CT+DCP. Figure S7: 1H NMR Spectrum of Compound 1. Figures S8 and S9: 1H NMR and ESI-MS
Spectra of RB-CT.
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