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Background: Glioblastoma multiforme (GBM) is extensively genetically and
transcriptionally heterogeneous, which poses challenges for classification and
management. Long noncoding RNAs (lncRNAs) play a critical role in the development
and progression of GBM, especially in tumor-associated immune processes. Therefore, it
is necessary to develop an immune-related lncRNAs (irlncRNAs) signature.

Methods: Univariate and multivariate Cox regression analyses were utilized to construct a
prognostic model. GBM-specific CeRNA and PPI network was constructed to predict
lncRNAs targets and evaluate the interactions of immune mRNAs translated proteins. GO
and KEGG pathway analyses were used to show the biological functions and pathways of
CeRNA network-related immunity genes. Consensus Cluster Plus analysis was used for
GBM gene clustering. Then, we evaluated GBM subtype-specific prognostic values,
clinical characteristics, genes and pathways, immune infiltration access single cell RNA-
seq data, and chemotherapeutics efficacy. The hub genes were finally validated.

Results: A total of 17 prognostically related irlncRNAs were screened to build a prognostic
model signature based on six key irlncRNAs. Based on GBM-specific CeRNAs and
enrichment analysis, PLAU was predicted as a target of lncRNA-H19 and mainly enriched
in the malignant related pathways. GBM subtype-A displayed the most favorable prognosis,
high proportion of genes (IDH1, ATRX, and EGFR) mutation, chemoradiotherapy, and low
risk and was characterized by low expression of four high-risk lncRNAs (H19, HOTAIRM1,
AGAP2-AS1, and AC002456.1) and one mRNA KRT8. GSs with poor survival were mainly
infiltrated by mesenchymal stem cells (MSCs) and astrocyte, and were more sensitive to
gefitinib and roscovitine. Among GSs, three hub genes KRT8, NGFR, and TCEA3, were
screened and validated to potentially play feasible oncogenic roles in GBM.
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Conclusion: Construction of lncRNAs risk model and identification of GBM subtypes
based on 17 irlncRNAs, which suggesting that irlncRNAs had the promising potential for
clinical immunotherapy of GBM.
Keywords: glioblastoma, immune-related lncRNAs, biomarker, prognostic signature, immune infiltration
INTRODUCTION

Glioblastoma multiforme (GBM) is the most frequent intracranial
primary malignancy in adults. Despite standard treatment, the
median survival of GBM patients is less than 14 months (1). In the
latest glioma classification, molecular features are considered as
classifiers in conjunction with histopathological appearance (2).
Emerging biosomics studies have improved the diagnosis and
treatment strategies for GBM to some extent but have not yet
achieved satisfactory results due to the complex pathogenesis and
molecular heterogeneity of GBM. Therefore, more studies are
urgently needed to explore the mechanisms involved and to
identify novel biomarkers to predict the prognosis and
therapeutic effects of GBM.

Long noncoding RNA (lncRNA) is a noncoding RNA with a
length of more than 200 nucleotides (3). The discovery of
lncRNAs has uncovered new horizons in the pathological
processes of multiple diseases, including cancer initiation and
progression (4). Recent studies have shown that lncRNAs can
influence the tumor immune microenvironment (TIM) by
regulating inflammation and participating in immune gene
expression (5, 6). For example, lncRNA nuclear-enriched
abundant transcript 1 (NEAT1) affects cytokine response and
induces IGs expression through the regulation of interleukin
(IL)-8 transcription (7). LncRNA-Cox2 participates in
inflammatory gene expression in macrophages via regulating
chromatin complex remodeling (8). Zhao et al. showed that the
lncRNA SNHG14/miR-5590-3p/ZEB1 positive feedback loop can
regulate the PD-1/PD-L1 checkpoint to promote diffuse large B
cell lymphoma progression and immune evasion (9). Increasing
studies reporting on the mechanism of irlncRNAs in multiple
cancers (10), the ambiguous relationship between lncRNAs, and
the tumor immune microenvironment have been gradually
unveiled. However, the relationship between lncRNAs and
tumor immune microenvironment is rarely studied in GBM.
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Therefore, identification of the irlncRNAs signature may provide
a new insight for predicting prognosis and individualized
treatment of GBM.

In this study, we identified six key irlncRNA signatures (H19,
ST3GAL6-AS1, AL162231.2, SOX21-AS1, AC006213.5, and
AC002456.1), which concluded that the risk model indeed had
a good predictive outcome. GBM-specific CeRNAs were
constructed to predict irlncRNAs targets. GO and KEGG
pathway enrichment analysis was used to explore target
functions. The PPI network was performed to identify the
interactions of proteins translated from mRNAs in the
CeRNA network. Furthermore, GS-A showed better
prognosis among the identified four GSs (A-D). GSs-specific
prognostic value, clinical characteristics, genes and pathways,
immune infiltration, and chemotherapeutic drug sensitivity
were evaluated. Three hub genes, KRT8, NGFR, and TCEA3,
were screened and validated among GSs. These results
suggested that the irlncRNAs had the promising potential for
clinical immunotherapy of GBM.
MATERIALS AND METHODS

Acquisition and Processing of GBM
Expression and Clinicopathological Data
RNA-seq transcriptome data of healthy samples were obtained
from the GTEx database (11) (http://commonfund.nih.gov/GTEx/).
The RNA-seq transcriptome data and clinicopathological data of
the GBM samples were downloaded from the TCGA database
(http://cancergenome.nih.gov/). Samples and patients with
incomplete clinical information were excluded, and conformers
are shown in Table S1. Two available matrices were merged,
normalized with the limma package of R software, and obtained
the differentially expressed (DE) genes. The input file is FPKM, and
the output file is log (x + 1). The scRNA-seq data of human GBM
samples, accession number GSE168004, were obtained from the
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo/) database. The cutoff criteria were set as | log2 fold change
(FC) | > 0.5 and p < 0.05.
Identification of Immune-Related
lncRNAs (irlncRNAs)
The immune genes (IGs) list was downloaded from the
IMMPORT shared database (12) (https://www.immport.org/)
and the Molecular Signatures Database v 7.0 (http://www.gsea-
msigdb.org/gsea/index.jsp/). The correlation between genes was
calculated to obtain irlncRNAs. Correlation coefficient >0.4
and p<0.001 were used as the threshold.
November 2021 | Volume 12 | Article 706936

http://commonfund.nih.gov/GTEx/
http://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.immport.org/
http://www.gsea-msigdb.org/gsea/index.jsp/
http://www.gsea-msigdb.org/gsea/index.jsp/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yu et al. A Multiomic Analysis
Establishment of the Immune-Related Risk
Prognostic Model
Univariate and multivariate Cox regression analyses were
performed to identify significant lncRNAs for construction of
the prognostic signature. A risk score was calculated based on
each patient’s lncRNAs expression level by the following
formula: Risk   score   (RS) = SN

i=1  Expi ∗ bi (N is the number
of relative lncRNAs, Expi represents the expression value of each
lncRNA, and bi is the regression coefficient of the multivariate
Cox analysis for the target lncRNA). By setting the median value
of the risk score as the cutoff value in the training set and the
whole set, GBM patients were divided into high- and low-risk
groups. Related files for constructing the immune-related risk
prognostic model are displayed in Table S2.

Evaluation and Validation of a Risk
Prognostic Model
The predictive ability of the prognostic model was evaluated by a
series of analyses: Kaplan-Meier survival analysis, time-dependent
ROC curve analyses, univariate Cox regression analysis, and
multivariate Cox regression analysis for comparison of the
survival between the high- and low-risk groups in the training,
testing, and whole cohorts using the R packages survival and
survivalROC. In addition, the signature derived from this study
was compared with these three other signature ROC curves (13–
15). We analyzed the ROC curve differences between prognostic
models and clinicopathological features.

Construction of a CeRNA Network and a
Protein–Protein Interaction (PPI) Network
The miRcode database (16) was performed to match
differentially expressed and prognostically related irlncRNAs
and miRNAs. Three databases, miRTarBase (17), miRDB (18),
and TargetScan (19), were used to predict miRNA target genes.
The interactions between miRNAs and lncRNAs or mRNAs
were integrated to construct a CeRNA regulatory network. The
mRNAs were enrolled in a PPI network through the STRING
database (https://string-db.org/) with a confidence score > 0.7.
Cytoscape (version 3.8.1) was used to visualize the CeRNA and
PPI networks.

Functional and Pathway
Enrichment Analyses
We used the “clusterProfiler” package to perform Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of CeRNA network-related IGs to explore
potential biological functions and pathways. The cutoff criterion
was set at p < 0.05. Additionally, KEGG pathway analysis of
KRT8 was performed using the Gene Set Enrichment Analysis
(GSEA) software (www.gsea-msigdb.org). The cutoff criterion
was set at p < 0.05.

Identification of GBM Subtypes in Risk
Prognostic Model
Unsupervised consensus clustering was conducted to identify a
novel immune classification of GBM based on the prognostic
Frontiers in Immunology | www.frontiersin.org 3
irlncRNAs using the ConsensusClusterPlus package (50
iterations, resample rate of 80%). The consensus cumulative
distribution function (CDF), consensus matrix (CM), and
consensus heatmap were performed to determine the optimal
number of clusters.

Analysis of Clinical Characters and
Molecular Differences in GBM Subtypes
Survival analysis and valuable clinical information (Table S3)
were compared between the different subtypes. The Wilcoxon
rank test was used to identify differentially expressed molecules
among subtypes. The cutoff criteria were set as | log2FC | > 0.3
and p < 0.05.

Immune Microenvironment Exploration for
GBM Subtypes Access scRNA-seq Data
The Seurat package was performed for quality control, statistical
analysis, and exploration of the scRNA-seq data. The quality
control standards were genes detected in >3 cells; cells with >50
total detected genes and cells with ≤5% of mitochondria-
expressed genes were included. PCA was used to discriminate
available dimensions with a p value < 0.05. Then, dimensionality
reduction and cluster classification analysis were performed
using a t-distributed stochastic neighbor embedding (tSNE)
algorithm. The limma package was applied for differential
expression analysis to identify the marker genes of each cluster
with p value < 0.05 and | log2[fold change (FC)] | > 0.5. Based on
marker gene populations, different cell clusters were annotated
by the singleR package and then manually validated and
corrected with the CellMarker database. The corresponding
cell surface marker genes for the annotation of cell clusters are
listed in Table S4.

Exploration of Candidate Small
Molecule Agents
To evaluate the significance of this prognostic model in clinical
treatment, the IC50 of common administrating chemotherapeutic
agents in the GBM dataset TCGA project was calculated. The IC50

difference analysis was performed between the high-risk and low-
risk groups using the Wilcoxon signed-rank test. Box plots were
obtained using pRRophetic and ggplot2 to show the results.

Preparation for Human GBM Samples
GBM tissues and normal brain tissues were obtained from
patients treated at First Affiliated Hospital of Nanchang
University who provided informed consent. The study was
approved by the hospital’s institutional ethics committee. GBM
tissue was collected and immediately stored in an environment at
−80°C.

Quantitative Real-Time RT-PCR
(qRT-PCR) Analysis
Total RNA extracted from transfected cells was reverse-
transcribed with RT reagent Kit gDNA Eraser (TaKaRa) and
detected by SYBR-Green (TaKaRa). The PCR primers are listed
in Table S5.
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Western Blot Assays
Western blot (WB) assays were performed as described
previously (20). The antibodies used are listed in Table S6.

Statistical Analysis
All analysis was carried out by R version 3.6.1 and corresponding
packages. Kruskal–Wallis test was used to compare the
divergence between multiple groups. Chi-square test or Fisher
exact test was used for statistics on clinical information. A
Bonferroni test was used to correct the p-value. Kaplan–Meier
curves analysis was used to assess survival differences of the
subtype. The correlation was determined by Pearson correlation
analysis. p < 0.05 was regarded as statistically significant.
RESULTS

Selection of DElncRNAs, DEimmune
genes (DEIGs), and irlncRNAs in GBM
A filtering flow chart for the study is shown in Figure 1. The 1,520
DElncRNAs with 396 upregulated and 1,124 downregulated were
identified between normal and GBM tissues. Analogously, we also
identified 358 upregulated and 196 downregulated IGs. The
corresponding heatmaps are displayed in Figure S2. Based on
396 upregulated lncRNAs and 554 DEIGs, 224 irlncRNAs were
obtained by correlation analysis (Tables S7–S9).

Construction of irlncRNAs Model in GBM
The data of GBM patients were allocated randomly to the
training and validation cohort. The 224 irlncRNAs were
subjected to univariate Cox regression analysis (Table S10)
followed by Lasso regression (Table S11 and Figures 2A–D)
in the training set to obtain 17 PRirlncRNAs (p < 0.05; Table S12
and Figure 2E) and a risk score prognostic model constituted
based on 6 key irlncRNAs. The risk score for each sample was
calculated based on the expression levels of these six lncRNAs
(Figure 2F). The coefficient of each gene was calculated by
multivariate Cox regression analysis (Table 1).

Risk score   =   0:14*H19ð Þ +  −0:51*ST3GAL6 − AS1ð Þ + 

−0:32*AL162231:2ð Þ +  −1:09*SOX21 − AS1ð Þ + 

−0:39*AC006213:5ð Þ +  (0:50*AC002456:1) :

Evaluation and Validation of irlncRNAs
Signature in GBM
The irlncRNAs signature is a robust prognostic tool for GBM. Risk
curves and scatter plots showed the risk score and survival status of
eachGBMpatient in the training (Figure2G), testing (FigureS3A),
and total sets (Figure S1A). The low-risk group had a lower risk
coefficient and mortality than the high-risk group. The heatmap
of the irlncRNAs signature in the training (Figure 2H; Table S13),
testing (Figure S3B; Table S14), and total sets (Figure S1B)
revealed that GBM with high prognostic scores expressed high-
risk irlncRNAs (H19, AL162231.2, AC002456.1), whereas GBM
Frontiers in Immunology | www.frontiersin.org 4
with low prognostic scores expressed protective irlncRNAs
(ST3GAL6-AS1, SOX21-AS1, AC006213.5). Based on the median
risk score in the training set, GBM patients were divided into high-
and low-risk cohorts. Survival curves indicated that patients in the
low-risk group had a longer median OS compared with the high-
risk group (Figure 2I); further examinations were performed in the
test (Figure S3C) and whole sets (Figure S1C) by the same
algorithmic cutoff in order to evaluate the accuracy of the
prognostic signature. Both groups yielded similar results,
suggesting that the prognostic signature was effective. In addition,
the promising predictive value for the GBM special model in the
training set was demonstrated by ROC curve analysis (Figure 2J 1-
year AUC = 0.792, 2-year AUC = 0.922, 3-year AUC = 0.981),
which validated the results of the model in the testing set (Figure
S3D ; 1-year AUC = 0.703, 2-year AUC = 0.657, 3-year
AUC = 0.669) and the whole set (Figure S1D ; 1-year
AUC = 0.744, 2-year AUC = 0.756, 3-year AUC = 0.838). The
multi-index ROC analysis revealed that the AUC of the
prognostic model was significantly better than those of other
clinicopathological indicators (Figure 2K) (such as age, gender,
therapy, molecular typing, etc.). Compared with three existing
lncRNA-related signatures (13–15) (Figure 2L), the excellent
predictive viability of our model is further demonstrated.
Together, these data illustrate the excellent identification of high-
risk patients using our model.

IrlncRNAs Prognostic Model Is an
Independent Prognostic Factor for GBM
Univariate and multivariate Cox regression analyses were
performed to verify that the irlncRNAs model was an
independent prognostic factor for GBM in the training set. The
univariate Cox analysis revealed that gender, radiotherapy,
MGMT status, and risk score were dramatically associated with
the OS (Figure S4A), while the multivariate analysis revealed
that gender, MGMT status, and risk score were identified as
independent prognostic factors (Figure S4B).

Construction of the CeRNA and PPI
Network and Functional Enrichment
Analysis in GBM
Of the 224 irlncRNAs, 17 lncRNAs were associated with prognosis.
Based on matching analysis of 17 PRirlncRNAs and 554 DEIGs, a
total of 5 irlncRNAs and 16 miRNAs paired into 31 irlncRNAs–
miRNA interactions, while 16 miRNAs and 27 DEIGs matched to
form 35 miRNA–DEIGs interactions. Finally, 5 irlncRNAs, 16
miRNAs, and 27 DEIGs were used to construct lncRNA–
miRNA–mRNA regulatory networks (Table S15 and Figure 3A).

Furthermore, the PPI network was constructed to identify the
interactions of proteins translated from mRNAs in the CeRNA
network (Figure 3B). We found that some genes with high
combined score including TGFBR1-TGFBR2, JAG2-NOTCH2,
ETS1-SP1, NRAS-PDGFRA, and BDNF-TRAF6 were mainly
enriched in the “Human T-cell leukemia virus 1 infection,” “IL-17
signaling pathway,” “TGF-beta signaling pathway,” and “PD-L1
expression and PD-1 checkpoint pathway in cancer pathway.”

GO (Table S16) and KEGG (Table S17) pathway enrichment
analyses demonstrated that the GBM-specific CeRNA network
November 2021 | Volume 12 | Article 706936

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yu et al. A Multiomic Analysis
might be involved in the neoplastic process by regulating these
biological functions and pathways. GO functional analysis showed
that DEIGs involved in the CeRNA network were enriched in BPs,
including regulation of vasculature development, response to
oxidative stress, and positive regulation of epithelial cell
proliferation. The enrichment of MF is mainly related to the
membrane signal, and CC is protein binding (Figures 3C, D).
CeRNA network-related IGs were significantly enriched in KEGG
Frontiers in Immunology | www.frontiersin.org 5
pathways, namely, MAPK signaling pathway, cytokine–cytokine
receptor interaction, PI3K-Akt signaling pathway, and multiple
cancers (Figures 3E–F).

Four Subtypes of GBM Were Identified and
Correlated With Prognosis
Based on 17 PRirlncRNAs, Consensus Cluster Plus was utilized
to identify the different subtypes (K = 2-9) among the risk model.
FIGURE 1 | Flow chart of study design.
November 2021 | Volume 12 | Article 706936
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A B C

G H I

J K L

E F
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FIGURE 2 | Construction, evaluation, and comparison of a risk signature. (A) LASSO coefficient profiles of the 17 irlncRNAs in the training set. (B) A coefficient
profile plot was generated against the log (lambda) sequence. Selection of the optimal parameter (lambda) in the LASSO model. (C, D) The AUC value and cutoff
point obtained in the training set. (E) Forest plot of 17 irlncRNAs selected by univariate Cox regression analysis associated with GBM survival in the training set.
(F) Forest plot of six irlncRNAs selected by multivariate Cox regression analysis associated with GBM survival and construction risk model. (G) Risk score and
survival status analysis of irlncRNAs prognostic signature. (H) The expression pattern of irlncRNAs prognostic signature in the low- and high-risk groups.
(I) Survival analysis of irlncRNAs prognostic signature. (J) ROC curve analysis within 1, 2, and 3 years. (K) Multivariate ROC curve analysis showing that the
superior prognostic performance of the irlncRNAs prognostic model compared to other clinical indicators. (L) AUCs of the ROCs for our and the three other
gene signatures.
Frontiers in Immunology | www.frontiersin.org November 2021 | Volume 12 | Article 7069366

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yu et al. A Multiomic Analysis
According to the cumulative distribution function (CDF) curves,
tracking pot, Delta area pot, and CM heatmap (Figures 4A–D),
when k=4, the sample cluster was stable and robust. As a result,
patients could be classified into four GSs (Table S18): A (n = 23,
27.4%), B (n = 24, 28.6%), C (n = 28, 33.3%), and D (n = 9,
10.7%). Kaplan-Meier survival analysis indicated that patients
with GS-A showed the best OS compared to patients with cluster
B, C, or D (p=0.007; Figure 4E).

Revelation of Clinical Characters,
Molecular Differences, and Pathway
Analysis for GBM Subtypes
Clinicopathological variables and molecular differences were
compared among the four subtypes. Heatmap of 17 irlncRNAs
illustrated the clinical features andmolecular differences among the
four subtypes (Figures 5A). The results revealed thatGS-A patients
are characterized by a high mutation rate of genes including IDH1,
ATRX, andEGFR, a high rate of chemoradiotherapy, andahigh rate
of the low-risk group (Figures 5B–G).

Subsequently, difference analysis identified 10 lncRNAs
(Table S19) and 14 mRNAs (Table S20) among the four
subtypes (Figures 6A, B). The results revealed that 6 of the 14
mRNAs were risk genes, and 4 (KRT8, NGFR, TCEA3, and
PTTG1) of the risk genes were highly expressed in GBM
compared with normal tissues. Thus, these four risk factors, as
hub genes, may play an important role in the malignant behavior
of GBM.

In addition, patients with GS-A patients are characterized by
low expression of four high-risk lncRNA (H19, HOTAIRM1,
AGAP2-AS1, AC002456.1) and one high-risk gene KRT8. GSEA
showed that functional pathways involved in RTK8 were mainly
immune cell and tumor-related signaling pathways, such as the T
cell receptor, apoptosis, or JAK/STATA signaling pathway
(Figures 6C–E).

GSVA enrichment analysis showed the activation states of
biological pathways including the regulation of autophagy, the
apoptosis, the Wnt signaling pathway, the NOTCH signaling
pathway, the ERBB signaling pathway, the RIG like receptor
signaling pathway, and the NOD-like receptor signaling pathway
in GS-A (Figures 6F–H).

Exploration of Immune Microenvironment
for GBM Subtypes Access scRNA-seq Data
Eight cell clusters with different annotations were identified by
scRNA-seq data, revealing cellular heterogeneity in GBM
tumors. A total of 4,210 cluster markers were identified from
Frontiers in Immunology | www.frontiersin.org 7
all 8 clusters by differential analysis (Table S21). Clusters 0 and 4,
containing 398 cells, were annotated as GBMMSCs; clusters 1, 2,
3, 5, 6, and 7, containing 792 cells, were annotated as the
astrocytes (Figures 7A–F and Table S22).

Among the six risk genes of GBM subtypes, two genes,
OLFM1 and TENM2, with low expression in GBM were
excluded. Searching of the remaining four hub genes (GS-A:
KRT8; GS-B: NGFR; GB-C: TCEA3; GB-D: PTTG1) in different
GSs with clustering markers revealed that GBM may infiltrate
immune cells. KRT8, belonging to Cluster 0, was annotated as
GBM MSCs; NGFR, belonging to Clusters 0 and 4, was
annotated as GBM MSCs; TCEA3, belonging to Clusters 0, 1,
2, 3, 4, and 5, was annotated as GBM MSCs and astrocyte;
PTTG1, belonging to Clusters 2, 3, 4, 5, 6, and 7, was annotated
as GBM MSCs and astrocyte (Figures 7G–J).

Screening of the Related Small Candidate
Drugs With irlncRNAs Signature
An attempt was made to screen out chemotherapeutic agents that
are sensitive to the high-risk group in theTCGAproject of theGBM
dataset. We found that the high-risk score correlated with a lower
half inhibitory concentration (IC50) of chemotherapeutic drugs
such as Gefitinib (p= 0.015) and Roscovitine (p= 0.035), whereas it
correlated with the higher IC50 of axitinib (p=0.039) and
thapsigargin (p=0.0041) (Figures S4A–D).

Validation of the Hub Genes in
Clinical Tissues
The K-M survival curve from the TCGA database was performed
to explore the potential role of the individual hub gene in OS.
Three of the four hub genes showed significant predictions of
poor OS (P < 0.05, Figures 8A–C). To further verify the
expression level of hub genes in GBM samples, we generated
RT-qPCR to calculate the mRNA levels of the three hub genes.
As illustrated in Figures 8D–F, the expressions of KRT8, NGFR,
and TCEA3 were significantly upregulated in GBM tissues
compared with normal tissues. Subsequently, WB was used to
evaluate the expression level of three proteins. As shown in
Figures 8G–I, the expression levels of three proteins in GBM
tissues were higher than those in normal brain tissues.
DISCUSSION

GBM cells form a complex tumor microenvironment that
supports malignant tumor progression and immune escape (21).
TABLE 1 | Coefficients based on a multivariate Cox regression analysis of the selected lncRNAs.

Gene Coef HR HR.95L HR.95H p-value

H19 0.143 1.153 1.031 1.291 0.013
ST3GAL6-AS1 -0.509 0.600 0.395 0.914 0.017
AL162231.2 0.319 1.375 0.942 2.009 0.099
SOX21-AS1 -1.087 0.337 0.193 0.591 0.000
AC006213.5 -0.392 0.675 0.401 1.138 0.140
AC002456.1 0.497 1.643 1.211 2.230 0.001
Novem
ber 2021 | Volume 12 | Article
HR, hazard ratio.
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Novel immunotherapy within the tumor microenvironment has
been uncovered that exerts antitumor immune response via
targeting immunoregulatory cells or immunosuppressive factors
(22). Accumulating evidence suggests that abnormal lncRNAs
servers as new markers contribute to antitumor immunoreactivity
(23, 24). It is of great significance to understand the tumor
Frontiers in Immunology | www.frontiersin.org 8
immune microenvironment driven by lncRNAs, to construct a
clinical prognosis model, and to screen new markers for providing
risk stratification and targets for immunotherapy.

In this study, 224 irlncRNAs were analyzed between tumor
and normal tissues, 17 PRirlncRNAs were obtained by using the
univariate Cox regression analysis, LASSO regression analysis
A B

C D

E F

FIGURE 3 | GBM-specific CeRNA network, PPI network, and functional enrichment analysis (A) A total of 31 irlncRNAs–miRNA interactions and 35 miRNA–DEIGs
interactions construct the lncRNA–miRNA–mRNA regulatory networks. (B) PPI network displayed the interactions of proteins translated from IGs in the CeRNA
network. (C, D) GO enrichment analysis (E, F) KEGG pathway enrichment analysis.
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was used to identify 6 key lncRNAs, and multivariate Cox
regression analysis was applied to calculate coefficients and
construct the risk model. We found that patients in the low-
risk group had longer survival than those in the high-risk group.
Subsequently, we established forest plots and ROC plots
including age, sex, radiotherapy, chemotherapy, gene (IDH,
MGMT, ATRX, and EGFR) mutation status, and risk scores.
By plotting risk heatmap, risk curve, ROC curve, and survival
curve, it was concluded that the risk model indeed had a good
predictive effect. Meanwhile, we obtained similar results in the
validation set.

The immune alterations driven by lncRNAs in GBM have
also been preliminarily investigated (20, 25). Among the six key
lncRNAs, H19, AL162231.2, and AC002456.1 were risk factors
for the prognosis of GBM, while ST3GAL6-AS1, SOX21-AS1, and
AC006213.5 were protective factors. LncRNA H19 as the first
discovered classical regulator lncRNA is involved in the
regulation of multiple cancers, including GBM (26, 27). H19 is
overexpressed in glioma tissues, negatively correlates with
patient survival, and promotes tumor growth by silencing
relevant microRNAs (27, 28). H19 has a potential reference
value for glioma remission and immunotherapy. ST3GAL6-AS1
Frontiers in Immunology | www.frontiersin.org 9
and SOX21-AS1 as protective factors have been reported in
cancers, lncRNA ST3GAL6-AS1 overexpression significantly
reduces colorectal cancer cell tumorigenesis and metastasis
(29), and lncRNA SOX21-AS1 significantly suppresses
tumorigenesis in cervical cancer (30), oral cancer (31), and
GBM (32). Relevant literature reports for AL162231.2,
AC002456.1, and AC006213.5 are sparse.

Identifying the targets of lncRNAs is a key step in exploring
their functions. An immune-related CeRNA network was
constructed to predict lncRNAs targets, and a PPI network was
used to evaluate the interactions of translated proteins from
mRNAs in the CeRNA network. The CeRNA network enabled
not only a deeper understanding of the communication between
RNAs and a more comprehensive analysis of the complex gene
interactions underlying carcinogenesis but also the identification
of novel biomarkers. Among the prognostic biomarkers involved
in the GBM-specific CeRNA and PPI network, the most
significant difference gene was PLAU (encoding urokinase-type
plasminogen activator; uPA), which was overexpressed, was the
target of lncRNA H19, and was enriched in the KEGG pathway,
namely, MicroRNAs in cancer, NF-kappa B signaling pathway,
transcriptional misregulation in cancer, and proteoglycans in
A B

D E

C

FIGURE 4 | Identification of potential GBM subtypes (A–C) Cumulative distribution function curve, delta area, and tracking plot of immune-related lncRNA in GBM.
(D) Consensus clustering matrix for k = 4, which was the optimal cluster number in the TCGA training cohort. (E) Patients in the GBM subtype-A experienced a
longer survival time.
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cancer pathways. Moreover, the protein pair with the highest
combined score was TGFBR1–TGFBR2. PLAU is frequently
upregulated in GBM (33, 34) and promotes cell invasion by
PLAUR (PLAU receptor) binding and activation of extracellular
proteases (35). TGFBR1 and TGFBR2 have been identified in
GBM as a TGF‐b signaling upstream receptor (36), which has
been well known to be a key regulator of migration phenotype in
GBM cells (37). In our analysis, lncRNA H19 may exert
biological activity by targeting miR-193a-3p to regulate gene
PLAU expression. Therefore, it is meaningful to construct
immune-related CeRNA and PPI networks in GBM to mine
novel biomarkers, predict prognosis, and guide therapy.

In addition to identifying candidate biomarkers in GBM, GSs
are also the key to improve personalized treatment (38). Based on
17 PRirlncRNAs, we can classify GBM patients into 4 GSs (A-D).
Then, we assessed subtype-specific prognostic values, clinical
characteristics, genes and pathways, immune infiltration, and
chemotherapeutic drug sensitivity. Our results revealed that GS-
A patients displayed the most favorable prognosis, which were
characterized by a high mutation rate of genes including IDH1,
ATRX and EGFR. Previously published reports indicated that
IDH, ATRX and EGFR mutation status significantly influenced
the prognosis of glioma patients (39). Such as, IDHmutations are
frequent in infiltrating astrocytomas (grades II and III) and
secondary GBMs (1). Primary GBMs typically lack IDH
mutations and demonstrate EGFR, PDGFRA, TP53, PTEN,
NF1, and TERT promoter mutations (40). These classical
biomarkers have been integrated into multiple classification
schemes and applied to an accurate clinical decision-making
process. We observed that GBM with GS-A were characterized
Frontiers in Immunology | www.frontiersin.org 10
by four high-risk lncRNAs (H19, HOTAIRM1, AGAP2-AS1, and
AC002456.1) and one high-risk mRNA KRT8 with a low
expression level. Among these lncRNAs and mRNAs, lncRNA
HOXA transcript antisense RNA myeloid-specific 1
(HOTAIRM1) participates in the reprogramming of chromatin
organization and proliferation and metastasis of cancer (32),
which has been found to be highly expressed in a variety of
tumors including GBM (41). LncRNA AGAP2 antisense RNA 1
(AGAP2-AS1), transcribed from a gene located at 12q14.1, a
novel cancer-related lncRNA, was dysregulated in cancers (42).
In GBM, lncRNAHOTAIRM1 (43, 44) and AGAP2-AS1 (45, 46),
as oncogenic factors, promoted tumorigenesis, predicted a poor
clinical outcome, and were potential biomarkers and therapeutic
targets. Keratin 8 (KRT8), a major component of the
intermediate fi lament cytoskeleton, promotes tumor
progression and metastasis of various cancers (47–49). In our
analysis, GS-A was positively correlated with autophagy, the
apoptosis, the Wnt signaling pathway, the NOTCH signaling
pathway, the ERBB signaling pathway, the RIG like receptor
signaling pathway, and the NOD-like receptor signaling
pathway. KRT8 may exert its biological activity through
regulating the T cell receptor, apoptosis, or the JAK/STATA
signaling pathway.

The efficacy of immunotherapy strongly depends on
intertumoral tumor-infiltrating immune cells (50). Combining
the risk gene of GSs and scRNA-seq data reveals poor prognosis
GBM tumor-infiltrating immunoreactive cells. Park et al.
demonstrated that high expression on macrophage signatures
of GBM patients predicted suboptimal survival (51), which was
consistent with our analysis. We observed that the major tumor-
A B C

D E

F G

FIGURE 5 | Heatmap and clinicopathological features of four GBM subtypes (A) The heatmap and clinicopathological features of the 4 clusters based on the
expression patterns of the 17 irlncRNAs in the training set. (B–F) Distribution ratio of IDH/ATRX/EGFR status and chemotherapy and radiotherapy in GBM subtypes.
(G) Sankey diagram showing the prognosis of four GBM subtypes.
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infiltrating immune cells in GBM with poor prognosis were
MSCs and astrocyte. Radfar et al. demonstrated that nonspecific
activation of CD4+ T cells dramatically enhanced the cytotoxicity
of four chemotherapeutic agents including TMZ, paclitaxel
(Pax), Carbo, and 5-FU in cancers (52). Patients with more
infiltrated CD8+ T cells had a better response to pembrolizumab
treatment than those with less infiltrated cells (53). Our model
suggested that high risk was associated with sensitivity to
chemotherapeutics such as gefitinib and roscovitine, and GS-A
patients in low risk were more sensitive to axitinib
and thapsigargin.

Our survival analysis and in vitro study showed that three of
the four hub genes showed significant predictions of poor OS,
and the mRNA and protein levels of KRT8, NGFR, and TCEA3
were significantly upregulated in GBM tissues compared with
normal tissues. The above results indicated that these proteins
Frontiers in Immunology | www.frontiersin.org 11
encoded by the hub genes may play a feasible oncogenic role
in GBM.
CONCLUSION

In this study, based on 17 PRirlncRNAs, we not only constructed
a six-key irlncRNAs prognostic signature but also identified four
subtypes of GBM, which had a potential prognostic value. In
GBM, lncRNA H19 may exert biological activity by targeting
miR-193a-3p to regulate gene PLAU expression; KRT8, NGFR,
and TCEA3 may stimulate novel strategies for immunotherapy
of GBM patients. Interestingly, KRT8 may exert its biological
activity through regulating the T cell receptor, apoptosis, or the
JAK/STATA signaling pathway.
A B

C D E

F G H

FIGURE 6 | Molecular difference analysis of four GBM subtypes (A, B) Heatmaps of 10 differentially expressed irlncRNAs (A) and 14 mRNAs (B) between the 4
GBM subtypes. (C–E) GSEA showing that the functional pathways involved in RKT8 were mainly immune cell- and tumor-related signaling pathways. (F–H) GSVA
enrichment analysis showing the activation states of biological pathways in GSs.
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A B

C D E

F G

H I J

FIGURE 7 | Estimation of tumor-infiltrating cells for GBM subtypes based on scRNA-seq data (A) After quality control of the 3,483 cells from the tumor cores of 4
human GBM samples, 1,190 cells were included in the analysis. (B) The variance diagram shows 13,859 corresponding genes throughout all cells from GBMs. The
red dots represent highly variable genes, and the black dots represent nonvariable genes. The top 10 most variable genes are marked in the plot. (C) PCA identified
the 15 PCs with an estimated p value < 0.05. (D) All eight clusters of cells in GBMs were annotated by singleR and CellMarker according to the composition of the
marker genes. (E) The tSNE algorithm was applied for dimensionality reduction with the 20 PCs, and 8 cell clusters were successfully classified. (F) The differential
analysis identified 4,210 marker genes. The top 20 marker genes of each cell cluster are displayed in the heatmap. A total of 68 genes are listed beside of the
heatmap after omitting the same top marker genes among clusters. The colors from purple to yellow indicate the gene expression levels from low to high.
(G–J) Expression profiles of the four risk genes in eight cell clusters.
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Highlights

1. Transcriptome and clinical information from 168 GBM
samples was employed to screen 17 immune related
lncRNAs (irlncRNAs) associated with prognosis.

2. 17 PRirlncRNAs were screen to construct a signature of 6 key
irlncRNAs, which showing a good predictive effect, and
similar results in the validation set.

3. GBM-specific immune CeRNA and PPI networks were
constructed to predict lncRNAs targets and evaluate the
interactions and functions of immune mRNAs translated
proteins based on 17 PRirlncRNAs.

4. Four GBM subtypes (A–D) were identified based on 17
PRirlncRNAs, and we evaluated subtype-specific prognostic
values, clinical characteristics, genes and pathways, immune
infiltration, and chemotherapeutics efficacy.

5. Construction of the lncRNAs risk model and identification of
GBM subtypes under immune environment, suggesting that
KRT8, NGFR, TCEA3, and irlncRNAs had promising
potential for clinical immunotherapy of GBM.
Frontiers in Immunology | www.frontiersin.org 13
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