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Abstract: Text mining for transla-
tional bioinformatics is a new field
with tremendous research poten-
tial. It is a subfield of biomedical
natural language processing that
concerns itself directly with the
problem of relating basic biomed-
ical research to clinical practice,
and vice versa. Applications of text
mining fall both into the category
of T1 translational research—trans-
lating basic science results into
new interventions—and T2 transla-
tional research, or translational
research for public health. Potential
use cases include better phenotyp-
ing of research subjects, and phar-
macogenomic research. A variety of
methods for evaluating text mining
applications exist, including corpo-
ra, structured test suites, and post
hoc judging. Two basic principles
of linguistic structure are relevant
for building text mining applica-
tions. One is that linguistic struc-
ture consists of multiple levels. The
other is that every level of linguistic
structure is characterized by ambi-
guity. There are two basic ap-
proaches to text mining: rule-
based, also known as knowledge-
based; and machine-learning-
based, also known as statistical.
Many systems are hybrids of the
two approaches. Shared tasks have
had a strong effect on the direction
of the field. Like all translational
bioinformatics software, text min-
ing software for translational bioin-
formatics can be considered
health-critical and should be sub-
ject to the strictest standards of
quality assurance and software
testing.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

Text mining for translational bioinfor-

matics is a new field with enormous

research potential. It is a subfield of

biomedical natural language processing

(BioNLP) that concerns itself directly with

the problem of relating basic biomedical

research to clinical practice, and vice

versa.

1.1 Use Cases
The foundational question in text min-

ing for translational bioinformatics is what

the use cases are. It is not immediately

obvious how the questions that text mining

for translational bioinformatics should try

to answer are different from the questions

that are approached in BioNLP in general.

The answer lies at least in part in the

nature of the specific kinds of information

that text mining should try to gather, and

in the uses to which that information is

intended to be put. However, these

probably only scratch the surface of the

domain of text mining for translational

bioinformatics, and the latter has yet to be

clearly defined.

One step in the direction of a definition

for use cases for text mining for transla-

tional bioinformatics is to determine

classes of information found in clinical

text that would be useful for basic

biological scientists, and classes of infor-

mation found in the basic science litera-

ture that would be of use to clinicians. This

in itself would be a step away from the

usual task definitions of BioNLP, which

tend to focus either on finding biological

information for biologists, or on finding

clinical information for clinicians. Howev-

er, it is likely that there is no single set of

data that would fit the needs of biological

scientists on the one hand or clinicians on

the other, and that information needs will

have to be defined on a bespoke basis for

any given translational bioinformatics task.

One potential application is better

phenotyping. Experimental experience in-

dicates that strict phenotyping of patients

improves the ability to find disease genes.

When phenotyping is too broad, the

genetic association may be obscured by

variability in the patient population. An

example of the advantage of strict pheno-

typing comes from the work of [1,2]. They

worked with patients with diagnoses of

pulmonary fibrosis. However, having a

diagnosis of pulmonary fibrosis in the

medical record was not, in itself, a strict

enough definition of the phenotype for

their work [1]. They defined strict criteria

for study inclusion and ensured that

patients met the criteria through a number

of methods, including manual review of

the medical record. With their sharpened

definition of the phenotype, they were able

to identify 102 genes that were up-

regulated and 89 genes that were down-

regulated in the study group. This includ-

ed Plunc (palate, lung and nasal epitheli-

um associated), a gene not previously

associated with pulmonary fibrosis. Auto-

mation of the step of manually reviewing

medical records would potentially allow

for the inclusion or exclusion of much

larger populations of patients in similar

studies.

Another use for text mining in transla-

tional bioinformatics is aiding in the

preparation of Cochrane reviews and

other meta-analyses of experimental stud-

ies. Again, text mining could be used to

identify cohorts that should be included in

the meta-analysis, as well as to determine

P-values and other indicators of signifi-

cance levels.
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Most of the applications discussed here

fall into the category of T1 translational

research—translating basic science results

into new interventions (http://grants.nih.

gov/grants/guide/notice-files/NOT-AG-

08-003.html). There are also applications

in translational research for public health,

also known as T2 translational research (op.

cit.). This is true both in the case of mining

information for public health experts and

for the general public. For public health

experts, there is a growing body of work

on various factors affecting disease moni-

toring in electronic medical records, such

as work by Chapman and colleagues on

biosurveillance and disease and syndrome

outbreak detection (e.g., [3,4], among

others). For the general public, simplifying

technical texts can be helpful. [5] describes

work in this area.

1.1.1 The pharmacogenomics

perspective. One area of research that

has made some steps towards defining a use

case for text mining is pharmacogenomics.

An example of this is the PharmGKB

database. Essential elements of their

definition of pharmacogenomics text

mining include finding relationships

between genotypes, phenotypes, and drugs.

As in the case of other applications that we

will examine in this chapter, mining this

information requires as a first step the ability

to find mentions of the semantic types of

interest when they are mentioned in text.

These will be of increasing utility if they can

be mapped to concepts in a controlled

vocabulary. Each semantic type presents

unique challenges. For example, finding

information about genotypes requires

finding mentions of genes (see Section 4.3

below), finding mentions of mutations and

alleles, and mapping these to each other;

finding mentions of drugs, which is more

difficult than it is often assumed to be [6];

and finding mentions of phenotypes. The

latter is especially difficult, since so many

things can fit within the definition of

‘‘phenotype.’’ A phenotype is the entirety

of observable characteristics of an organism

[7]. The wide range and rapidly changing

technologies for measuring observable

features of patient phenotypes require the

text mining user to be very specific about

what observables they want to capture. For

example, phenotypes can include any

behavior, ranging from duration of mating

dances in flies to alcohol-seeking in humans.

They can also include any measurable

physical characteristic, ranging from very

‘‘macro’’ characteristics such as hair color to

very granular ones such as specific values for

any of the myriad laboratory assays used in

modern clinical medicine.

There is some evidence from the

PharmGKB and the Comparative Tox-

icogenomics Database experiences that

text mining can scale up processing in

terms of the number of diseases studied

and the number of gene-disease, drug-

disease, and drug-gene associations dis-

covered [8]. Furthermore, experiments

with the PharmGKB database suggest

that pharmacogenomics is currently more

powerful than genomics for finding such

associations and has reached the point of

being ready for translation of research

results to clinical practice [9].

1.1.2 The i2b2 perspective. Informatics

for Integrating Biology and the Bedside (i2b2) is a

National Center for Biomedical Computing

devoted to translational bioinformatics. It has

included text mining within its scope of

research areas. Towards this end, it has

sponsored a number of shared tasks (see

Section 5 below) on the subject of text

mining. These give us some insight into

i2b2’s definition of use cases for text mining

for translational bioinformatics. i2b2’s focus

has been on extracting information from free

text in clinical records. Towards this end,

i2b2 has sponsored shared tasks on

deidentification of clinical documents,

determining smoking status, detecting

obesity and its comorbidities, medical

problems, treatments, and tests. Note that

there are no genomic components to this data.

1.2 Text Mining, Natural Language
Processing, and Computational
Linguistics

Text mining, natural language process-

ing, and computational linguistics are

often used more or less interchangeably,

and indeed one can find papers on text

mining and natural language processing at

the annual meeting of the Association for

Computational Linguistics, and papers

from any of these categories at meetings

for any of the other categories. However,

technically speaking, some differences exist

between them. Computational linguistics

strictly defined deals with building com-

putationally testable models of human

linguistic behavior. Natural language pro-

cessing has to do with building a wide

range of applications that take natural

language as their input. Text mining is

more narrow than natural language pro-

cessing, and deals with the construction of

applications that provide a solution to a

specific information need. For example, a

syntactic analyzer would be an example of

a natural language processing application;

a text mining application might use that

syntactic analyzer as part of the process for

filling the very specific information need of

finding information about protein-protein

interactions. This chapter will include

information about both natural language

processing and text mining [10–12].

1.3 Evaluation Techniques and
Evaluation Metrics in Text Mining

A variety of methods for evaluating text

mining applications exist. They typically

apply the same small family of metrics as

figures of merit.

1.3.1 Corpora. One paradigm of

evaluation in text mining is based on the

assumption that all evaluation should take

place on naturally occurring texts. These

texts are annotated with data or metadata

about what constitutes the right answers

for some task. For example, if the intended

application to be tested is designed to

locate mentions of gene names in free text,

then the occurrence of every gene name in

the text would be marked. The mark-up is

known as annotation. (Note that this is a

very different use of the word

‘‘annotation’’ from its use in the model

organism database construction

community.) The resulting set of

What to Learn in This Chapter

Text mining is an established field, but its application to translational
bioinformatics is quite new and it presents myriad research opportunities. It is
made difficult by the fact that natural (human) language, unlike computer
language, is characterized at all levels by rampant ambiguity and variability.
Important sub-tasks include gene name recognition, or finding mentions of gene
names in text; gene normalization, or mapping mentions of genes in text to
standard database identifiers; phenotype recognition, or finding mentions of
phenotypes in text; and phenotype normalization, or mapping mentions of
phenotypes to concepts in ontologies. Text mining for translational bioinfor-
matics can necessitate dealing with two widely varying genres of text—published
journal articles, and prose fields in electronic medical records. Research into the
latter has been impeded for years by lack of public availability of data sets, but
this has very recently changed and the field is poised for rapid advances. Like all
translational bioinformatics software, text mining software for translational
bioinformatics can be considered health-critical and should be subject to the
strictest standards of quality assurance and software testing.
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annotated documents is known as a corpus

(plural corpora). Given a corpus, an

application is judged by its ability to

replicate the set of annotations in the

corpus. Some types of corpora are best

built by linguists, e.g., those involving

syntactic analysis, but there is abundant

evidence that biomedical scientists can

build good corpora if they follow best

practices in corpus design (see e.g., [13]).

1.3.2 Structured test suites. Stru-

ctured test suites are built on the principles

of software testing. They contain groups of

inputs that are classified according to

aspects of the input. For example, a test

suite for applications that recognize gene

names might contain sentences with gene

names that end with numbers, that do not

end with numbers, that consist of common

English words, or that are identical to the

names of diseases. Unlike a standard

corpus, test suites may contain data that is

manufactured for the purposes of the test

suite. For example, a test suite for

recognizing Gene Ontology terms [14]

contains the term cell migration, but also the

manufactured variant migration of cells. (Note

that being manufactured does not imply

being unrealistic.) Structured test suites

have the major advantage of making it

much more straightforward to evaluate

both the strengths and the weaknesses of

an application. For example, application of

a structured test suite to an application for

recognizing Gene Ontology terms made it

clear that the application was incapable of

recognizing terms that contain the word in.

This was immediately obvious because the

test suite contained sets of terms that

contain function words, including a set of

terms that all contain the word in. To

duplicate this insight with a corpus would

require assembling all errors, then hoping

that the fact that no terms containing the

word in were recognized jumped out at the

analyst. In general, structured test suites

should not be reflective of performance as

measured by the standard metrics using a

corpus, since the distribution of types of

inputs in the test suite does not reflect the

distribution of those types of inputs in

naturally occurring data. However, it has

been shown that structured test suites can be

used to predict values of metrics for specific

equivalence classes of data (inputs that should

all be expected to test the same condition and

produce the same result) [15]. We return to

the use of test suites in Section 6.

1.3.3 Post hoc judging. Sometimes

preparation of corpora is impractical. For

example, there may be too many inputs that

need to be annotated. In these cases, post hoc

judging is sometimes applied. That is, a

program produces outputs, and then a

human judges whether or not they are

correct. This is especially commonly used

when a large number of systems are being

evaluated. In this case, the outputs of the

systems can be pooled, and the most

common outputs (i.e., the ones produced

by the most systems) are selected for judging.

1.3.4 Metrics. A small family of

related metrics is usually used to evaluate

text mining systems. Accuracy, or the

number of correct answers divided by the

total number of answers, is rarely used.

Precision. Precision is defined as the

number of correct system outputs (‘‘true

positives,’’ or TP) divided by the total

number of system outputs (the count of TP

plus the ‘‘false positives’’ (FP) —erroneous

system outputs). It is often compared

loosely to specificity, but is actually more

analogous to positive predictive value.

Precision~
TP

TPzFP

Recall. Recall is defined as the number

of true positives divided by the total

number of potential system outputs, i.e.

true positives plus ‘‘false negatives’’ (FN)

—things that should have been output by

the system, but were not. This will differ

from task type to task type. For example,

in information retrieval (Section 4.1), it is

the number of documents judged relevant

divided by the total number of actual

relevant documents. In named entity

recognition of genes (Section 4.3), it is

defined as the total number of correct gene

names output by the system divided by the

total number of gene names in the corpus.

Recall~
TP

TPzFN

Balanced F-measure. The balanced F-

measure attempts to reduce precision and

recall to a single measure. It is calculated as

the harmonic mean of precision and recall.

It includes a parameter b that is usually set

to one, giving precision and recall equal

weight. Setting b greater than one weights

precision more heavily. Setting b less than

one weights recall more heavily.

F~
(b2z1)PR

b2PzR

2. Linguistic Fundamentals

Building applications for text mining for

translational bioinformatics is made easier

by some understanding of the nature of

linguistic structure. Two basic principles

are relevant. One is that linguistic struc-

ture consists of multiple layers. The other

is that every layer of linguistic structure is

characterized by ambiguity.

All linguistic analyses in text mining are

descriptive in nature. That is, they seek only

to describe the nature of human linguistic

productions, much as one might attempt

to describe the multi-dimensional structure

of a protein. Linguistic analyses are not

prescriptive—that is, they do not attempt

to prescribe or enforce standards for

language use.

2.1 Layers of Linguistic Structure
The layers of linguistic structure vary

somewhat between written and spoken

language (although many are shared). We

focus here on the layers that are relevant

to written language, focusing particularly

on scientific journal articles and on clinical

documents.

2.1.1 Document structure. The first

layer of the structure of written documents

that is relevant to text mining for

translational bioinformatics is the

structure of individual documents. In the

case of journal articles, this consists first of

all of the division of the document into

discrete sections, typically in what is

known as the IMRD model—an

abstract, introduction, methods section,

results section, discussion, and

bibliography. Acknowledgments may be

present, as well.

The ability to segment a document into

these sections is important because differ-

ent sections often require different pro-

cessing techniques and because different

sections should be focused on for different

types of information. For example, meth-

ods sections are frequent sources of false

positives for various semantic classes,

which led researchers to ignore them in

much early research. However, they are

also fruitful sections for finding informa-

tion about experimental methods, and as it

has become clear that mining information

about experimental methods is important

to biologists [16], it has become clear that

methods must be developed for dealing

with methods sections. Abstracts have

been shown to have different structural

and content characteristics from article

bodies [17]; most research to date has

focused on abstracts, and it is clear that

new approaches will be required to fully

exploit the information in article bodies.

Segmenting and labeling document

sections can be simple when documents

are provided in XML and a DTD is

available. However, this is often not the
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case; for instance, many documents are

available for processing only in HTML

format. In this situation, two topics exist:

finding the boundaries of the sections,

and labelling the sections. The latter is

made more complicated by the fact that

a surprising range of phrases are used to

label the different sections of a scientific

document. For example, the methods

section may be called Methods, Methods

and Materials, Materials and Methods, Exper-

imental Procedures, Patients and Methods,

Study Design, etc. Similar issues exist for

structured abstracts; in the case of

unstructured abstracts, it has been dem-

onstrated that they can be segmented

into sections using a generative tech-

nique [18].

Clinical documents present a far more

complex set of challenges than even

scientific journal articles. For one thing,

there is a much wider range of clinical

document types—admission notes, dis-

charge summaries, radiology reports, pa-

thology reports, office visit notes, etc.

Hospitals frequently differ from each other

in the types of documents that they use, as

do individual physicians’ practices. Fur-

thermore, even within a given hospital,

different physicians may structure the

same document type differently. For

example, just in the case of emergency

room visit reports, one of the authors built

a classification system that determined, for

a given document, what specialty it would

belong to (e.g., cardiology or pediatrics) if

it had been generated by a specialist. He

found that not only did each hospital

require a different classification system,

but different doctors within the same

emergency room required different classi-

fiers. [19] describes an iterative procedure

for building a segmenter for a range of

clinical document types.

Once the document has been segment-

ed into sections, paragraphs must be

identified. Here the segmentation task is

typically easy, but ordering may present a

problem. For example, it may not be clear

where figure and table captions should be

placed.

2.1.2 Sentences. Once the document

has been segmented into paragraphs, the

paragraphs must be further segmented

into sentences. Sentence segmentation is a

surprisingly difficult task. Even for

newswire text, it is difficult enough to

constitute a substantial homework

problem. For biomedical text, it is

considerably more difficult. Two main

difficulties arise. One is the fact that the

function of periods is ambiguous—that is,

a period may serve more than one

function in a written text, such as

marking the end of an abbreviation (Dr.),

marking the individual letters of an

abbreviation (p.r.n.), indicating the

rational parts of real numbers (3.14), and

so on. A period may even serve two

functions, as for example when etc. is at the

end of a sentence, in which case the period

marks both the end of the abbreviation

and the end of the sentence. Furthermore,

some of the expected cues to sentence

boundaries are absent in biomedical text.

For example, in texts about molecular

biology, it is possible for a sentence to

begin with a lower-case letter when a

mutant form of a gene is being mentioned.

Various approaches have been taken to

the sentence segmentation task. The

KeX/PROPER system [20] uses a rule-

based approach. The LingPipe system

provides a popular machine-learning-

based approach through its LingPipe

API. Its model is built on PubMed/

MEDLINE documents and works well

for journal articles, but it is not likely to

work well for clinical text (although this

has not been evaluated). In clinical

documents, it is often difficult to define

any notion of ‘‘sentence’’ at all.

2.1.3 Tokens. Written sentences are

built up of tokens. Tokens include words,

but also punctuation marks, in cases where

those punctuation marks should be

separated from words that they are

attached to. The process of segmenting a

sentence into tokens is known as

tokenization. For example, consider the

simple case of periods. When a period

marks the end of a sentence, it should be

separated from the word that it is attached

to. regulation. will not be found in any

biomedical dictionary, but regulation will.

However, in many other instances, such as

when it is part of an abbreviation or a

number, it should not be separated. The

case of hyphens is even more difficult.

Hyphens may have several functions in

biomedical text. If they indicate the

absence of a symptom (e.g., -fever), they

should probably be separated, since they

have their own meaning, indicating the

absence of the symptom. On the other

hand, they should remain in place when

separating parts of a word, such as up-

regulate.

The status of tokenization in building

pipelines of text mining applications is

complicated. It may be the case that a

component early in the pipeline requires

tokenized text, while a component later in

the pipeline requires untokenized text.

Also, many applications have a built-in

tokenizer, and conflicts between different

tokenization strategies may cause conflicts

in later analytical strategies.

2.1.4 Stems and lemmata. For

some applications, it is advantageous to

reduce words to stems or lemmata. Stems

are normalized forms of words that reduce

all inflected forms to the same string. They

are not necessarily actual words

themselves—for example, the stem of city

and cities is citi, which is not a word in the

English language. Their utility comes in

applications that benefit from this kind of

normalization without needing to know

exactly which words are the roots—

primarily machine-learning-based

applications.

The term lemma (plural lemmata) is

overloaded. It can mean the root word

that represents a set of related words. For

example, the lemma of the set {phosophor-

ylate, phosphorylates, phosphorylated, phosphory-

lating} is phosphorylate. Note that in this case,

we have an actual word. Lemma can also

mean the set of words that can instantiate

a particular root word form; on this

meaning, the lemma of phosphorylate is

{phosphorylate, phosphorylates, phosphorylated,

phosphorylating}. Lemmas have a clear

advantage of stems for some applications.

However, while it is always possible to

determine the stem of a word (typically

using a rule-based approach, such as the

Porter stemmer [21], it is not always

possible to determine the lemma of a

word automatically. The BioLemmatizer

[22] is a recently released tool that shows

high performance on the lemmatization

task.

2.1.5 Part of speech. It is often

useful to know the part of speech,

technically known as lexical category, of the

tokens in a sentence. However, the notion

of part of speech is very different in

linguistic analysis than in the elementary

school conception, and text mining

systems typically make use of about

eighty parts of speech, rather than the

eight or so that are taught in school. We

go from eight to eighty primarily by

subdividing parts of speech further than

the traditional categories, but also by

adding new ones, such as parts of speech

of sentence-medial and sentence-final

punctuation. Parts of speech are typically

assigned to tokens by applications called

part of speech taggers. Part of speech tagging

is made difficult by the fact that many

words are ambiguous as to their part of

speech. For example, in medical text, the

word cold can be an adjective or it can be a

reference to a medical condition. A word

can have several parts of speech, e.g., still.

A variety of part of speech taggers that are

specialized for biomedical text exist,

including MedPOST [23], LingPipe, and

the GENIA tagger [24].
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2.1.6 Syntactic structure. The

syntactic structure of a sentence is the way

in which the phrases of the sentence relate

to each other. For example, in the article

title Visualization of bacterial glycocalyx with a

scanning electron microscope (PMID 9520897),

the phrase with a scanning electron microscope is

associated with visualization, not with

bacterial glycocalyx. Automatic syntactic

analysis is made difficult by the existence

of massive ambiguity. For example, while

one possible interpretation of that title is

that the visualization is done with a

scanning electron microscope, another

possible interpretation is that the

bacterial glycocalyx has a scanning

electron microscope. (Consider the

analogous famous example I saw the man

with the binoculars, where one possible

interpretation is that I used the

bionoculars to visualize the man, whereas

another possible interpretation is that I

saw a man and that man had some

binoculars.) It is very easy for humans to

determine which interpretation of the

article title is correct. However, it is very

difficult for computers to make this

determination. There are many varieties

of syntactic ambiguity, and it is likely that

any nontrivial sentence contains at least

one.

Syntactic analysis is known as parsing.

The traditional approach to automated

syntactic analysis attempts to discover the

phrasal structure of a sentence, as de-

scribed above. A new approach called

dependency parsing focuses instead on rela-

tionships between individual words. It is

thought to better reflect the semantics of a

sentence, and is currently popular in

BioNLP.

Along with determining the phrasal or

dependency structure of a sentence, some

parsers also make limited attempts to label

the syntactic functions, such as subject and

object, of parts of a sentence.

2.2 The Nature of Linguistic Rules
When we think of linguistic rules, we

are most likely to think of the rules that we

learn in school that impose arbitrary

norms on language usage, such as Say

‘‘you and I’’, not ‘‘you and me’’, or a preposition

is a bad thing with which to end a sentence.

These are known as prescriptive rules. Text

mining never deals with prescriptive rules.

Rather, it always deals with descriptive rules.

Descriptive rules describe the parts of the

language and the ways in which they can

combine, without any implied judgement

as to whether they are ‘‘good’’ or ‘‘bad.’’

For example, a linguistic rule might specify

that certain classes of verbs can be

converted to nouns by adding -tion to their

end, or that when a passive form of a verb

is used, the subject can be omitted.

3. The Two Families of
Approaches: Rule-Based and
Learning-Based

There are two basic approaches to text

mining: rule-based, also known as knowl-

edge-based, and machine-learning-based,

also known as statistical.

Rule-based approaches to text mining are

based on the application of rules, typically

manually constructed, to linguistic inputs.

For example, a rule-based approach to

syntactic analysis might postulate that

given a string like phosphorylation of MAPK

by MAPKK, the phrase that follows the

word by is the doer of the phosphorylation,

and the phrase that follows the word of is

the undergoer of the phosphorylation. Or,

a rule-based approach might specify that

in the pattern A X noun the X is an

adjective, while in the pattern The adjective

X verb the X is a noun, allowing us to

differentiate between the word cold as an

adjective in the former case and as a

medical condition in the latter case. Rule-

based solutions can be constructed for all

levels of linguistic analysis.

Machine-learning-based approaches to text

mining are based on an initial step of

feeding the system a set of data that is

labelled with the correct answers, be they

parts of speech for tokens or the locations

of gene names in text. The job of the

system is then to figure out cues that

indicate which of the ambiguous analyses

should be applied. For instance, a system

for document classification may learn that

if a document contains the word murine,

then it is likely to be of interest to

researchers who are interested in mice.

Many different algorithms for machine

learning exist, but the key to a successful

system is the set of features that are used to

perform the classification. For example, a

part of speech tagger may use the

apparent parts of speech of the two

preceding words as a feature for deciding

the part of speech of a third word.

It is often claimed that machine learn-

ing systems can be built more quickly than

rule-based systems due to the time that it

takes to build rules manually. However,

building feature extractors is time-con-

suming, and building the labelled ‘‘train-

ing’’ data with the right answers is much

more so. There is no empirical support for

the claim that learning-based systems can

be built more quickly than rule-based

systems. Furthermore, it is frequently the

case that putative learning-based systems

actually apply rules in pre- or post-

processing steps, making them hybrid

systems.

4. Text Mining Tasks

In Section 2.1, we discussed elements of

linguistic analysis. These analytical tasks

are carried out in support of some higher-

level text mining tasks. Many types of text

mining tasks exist. We will discuss only the

most common ones here, but a partial list

includes:

N Information retrieval

N Document classification

N Named entity recognition

N Named entity normalization

N Relation or information extraction

N Question-answering

N Summarization

4.1 Information Retrieval
Information retrieval is the task of, given an

information need and a set of documents,

finding the documents that are relevant to

filling that information need. PubMed/

MEDLINE is an example of a biomedical

information retrieval system for scientific

journal articles; Google is an information

retrieval system for web pages. Early

information retrieval assumed that all

documents were classified with some code

and typically required the assistance of a

librarian to determine the appropriate

code of interest. Keyword-based retrieval,

in which the user enters a set of words that

a relevant text would be expected to

contain and the content of the texts in

the set of documents are searched for those

words, was a revolution made possible by

the introduction of computers and elec-

tronic forms of documents in the hospital

or research environment. The naive ap-

proach to keyword-based retrieval simply

checks for the presence or absence of the

words in the query, known as boolean

search. Modern approaches use relatively

simple mathematical techniques to deter-

mine (a) the relative importance of words

in the query in deciding whether or not a

document is relevant—the assumption

here is that not all words are equally

important—and (b) how well a given word

reflects the actual relevance of a given

document to the query. For example, we

can determine, given a count of how often

the words hypoperfusion and kidney occur in

the set of documents as a whole, that if we

are looking for documents about kidney

hypoperfusion, we should give more

weight to the rarer of the two words;

given a count of how often the words kidney
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and hypoperfusion occur in two documents,

we can determine which of the two

documents is most relevant to the query.

4.2 Document Classification
Document classification is the task of

classifying a document as a member of

one or more categories. In a typical

document classification workflow, one is

supplied with a stream of documents, and

each one requires classification. This

differs from the information retrieval

situation, in which information needs are

typically ad hoc. For example, curators of

a model organism database may require

journal articles to be classified as to

whether or not they are relevant for

further examination. Other classification

tasks motivated by curation have been

classifying journal articles as to whether or

not they are about embryogenesis. Docu-

ment classification typically uses very

simple feature sets, such as the presence

or absence of the words from the training

data. When this is the only feature, it is

known as a ‘‘bag of words’’ representation.

However, it has also been found useful to

use more abstract, conceptual features.

For example, [25] found the presence or

absence of mentions of mouse strains to be

a useful feature, regardless of the identity

of the particular strain.

4.3 Named Entity Recognition
Named entity recognition is the task of

finding mentions of specific semantic

classes in a text. In general language

processing, the most heavily studied se-

mantic classes have been persons, places,

and organizations—thus, the term

‘‘named entity.’’ In genomic BioNLP, the

most heavily studied semantic class has

been gene and protein names. However,

other semantic classes have been studied

as well, including cell lines and cell types.

In clinical NLP, the range of semantic

classes is wider, encompassing a large

number of types included in the Unified

Medical Language System [26]. The

UMLS includes a ‘‘Metathesaurus’’ which

combines a large number of clinically and

biologically relevant controlled vocabular-

ies, comprising many semantic classes. In

the clinical domain, there is an ‘‘industry

standard’’ tool for named entity recogni-

tion, called MetaMap [27,28]. Biological

named entity recognition remains a sub-

ject of current research. Machine learning

methods predominate. Feature sets gener-

ally include typographical features of a

token—e.g., having mixed-case letters or

not, containing a hyphen or not, ending

with a numeral or not, etc. —as well as

features of the surrounding tokens.

Early results in named entity recogni-

tion were consistent with the hypothesis

that this task could not be achieved by

simply starting with a ‘‘dictionary’’ of gene

names and looking for those gene names

in text. At least three problems were

immediately evident with this ap-

proach—the fact that new gene names

are coined constantly, the fact that a

number of gene names are homographs

of common English words, and the fact

that many genes have names or synonyms

that are unhelpful, such as putative oxidore-

ductase (Entrez Gene ID 6393330). How-

ever, recent evidence has suggested that

dictionary-based approaches can achieve

moderate success if the dictionary and the

data to be processed are subjected to

extensive preprocessing [29] or post-hoc

filtering, e.g., by the success or failure of a

subsequent gene normalization step (see

Section 4.4 [30]).

4.4 Named Entity Normalization
Named entity normalization is the process of

taking a mention of a named entity in

free text and returning a specific data-

base identifier that it refers to. In the

biological domain, this has been studied

most extensively in the case of genes and

proteins, and the corresponding task is

known as gene normalization. In the clinical

domain, it has been approached simul-

taneously with named entity recognition,

again using the MetaMap application

(see Section 4.3). There are two major

problems in gene normalization. The

first is that many species have genes with

the same name. For example, the

BRCA1 gene is found in an enormous

number of animals. Thus, finding the

appropriate gene identifier requires

knowing the species under discussion,

which is a research problem in itself. The

other problem is that a single species

may have multiple genes with the same

name. For example, humans have five

genes named TRP-1. Gene normaliza-

tion is often approached as a problem in

word sense disambiguation, the task of

deciding which dictionary entry a given

text string refers to (e.g., the cold example

referred to above). A popular approach

to this utilizes knowledge about the gene

and the context in which the gene is

mentioned. For example, the SUMMA-

RY fields of the candidate genes might

be used as a source of words that indicate

what we know about the gene. Then, if

we see the words cation and channel in the

text surrounding the gene name, we

should expect that we have an instance

of the TRP1 with Entrez Gene ID 7220,

while if we see the word proline, we should

suspect that we have an instance of the

TRP1 with Entrez Gene ID 189930.

Approaches might vary with respect to

what they use as the knowledge source

(e.g., Entrez Gene SUMMARY fields,

Entrez Gene PRODUCT fields, the

contents of publications linked to the

Entrez Gene entry), and what they

consider the context of the gene mention,

e.g., the sentence, the surrounding sen-

tences, the entire abstract, etc.

4.5 Relation or Information
Extraction

Information extraction, or more recently

relation extraction, is the process of mining

very specific types of facts from text.

Information extraction systems are by

definition restricted to a very specific

type of information. For example, a

typical genomic information extraction

system might extract assertions about

protein-protein interactions, or a clinical

information extraction system might

mine assertions about relationships be-

tween diseases and their treatments.

Most systems target binary relations,

such as the ones just described. However,

more ambitious systems have extracted

relationships with as many as four

participants. One system [31] targeted

protein transport relations, with a four-

way relationship that included the trans-

porting protein, the transported protein,

the beginning location of the transported

protein, and the destination.

Rule-based approaches use typical sen-

tence patterns. These may consist of text

literals or may involve syntactic analyses

[32]. Learning-based approaches have

classically used bag-of-words representa-

tions (see Section 4.2), but more recent

approaches have had success using fea-

tures taken from syntactic analysis, partic-

ularly dependency parsing [33].

4.6 Question-Answering
Question-answering is the task of taking a

question and a source of information as

input and returning an answer. Early

approaches to question-answering as-

sumed that the source of information was

a database, but modern approaches as-

sume that the answer exists in some

PubMed/MEDLINE document or (for

non-biomedical applications) in some

web page. Question-answering differs

from information retrieval in that the goal

is to return a specific answer, not a

document containing the answer. It differs

from information extraction in that it is

meant to allow for ad hoc queries, while

information extraction focuses on very

specific information needs. Question-an-
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swering typically involves determining the

type of answer that is expected (a time? a

location? a person?), formulating a query

that will return documents containing the

answer, and then finding the answer

within the documents that are returned.

Various types of questions have varying

degrees of difficulty. The best results are

achieved for so-called ‘‘factoid’’ questions,

such as where are lipid rafts located?, while

‘‘why’’ questions are very difficult. In the

biomedical domain, definition questions

have been extensively studied [34–36].

The medical domain presents some

unique challenges. For example, questions

beginning with when might require times as

their answer (e.g., when does blastocyst

formation occur in humans?, but also may

require very different sorts of answers,

e.g.,when should antibiotics be given for a sore

throat? [37]. A shared task in 2005 involved

a variety of types of genomic questions

adhering to specific templates (and thus

overlapping with information extraction),

such as what is the biological impact of a

mutation in the gene X?.

4.7 Summarization
Summarization is the task of taking a

document or set of documents as input

and returning a shorter text that conveys

the information in the longer text(s). There

is a great need for this capability in the

biomedical domain—a search in

PubMed/MEDLINE for the gene p53

returns 56,464 publications as of the date

of writing.

In the medical domain, summarization

has been applied to clinical notes, journal

articles, and a variety of other input types.

For example, one system, MITRE’S

MiTAP, does multi-document summari-

zation of epidemiological reports, news-

wire feeds, email, online news, television

news, and radio news to detect disease

outbreaks.

In the genomics domain, there have

been three major areas of summarization

research. One has been the automatic

generation of GeneRIFs. GeneRIFs are

short text snippets, less than 255 charac-

ters in length, associated with specific

Entrez Gene entries. Typically they are

manually cut-and-pasted from article ab-

stracts. Lu et al. developed a method for

finding them automatically using a variant

of the Edmundsonian paradigm, a classic

approach to single-document summariza-

tion [38,39]. In the Edmundsonian para-

digm, sentences in a document are given

points according to a relatively simple set

of features, including position in the

document, presence of ‘‘cue words’’

(words that indicate that a document is a

good summary sentence), and absence of

‘‘stigma words’’ (words that indicate that a

sentence is not likely to be a good

summary sentence).

Another summarization problem is find-

ing the best sentence for asserting a protein-

protein interaction. This task was made

popular by the BioCreative shared task.

The idea is to boil down a set of articles to

the single sentence that best gives evidence

that the interaction occurs. Again, simple

features work well, such as looking for

references to figures or tables [40].

Finally, a small body of work on the

generation of SUMMARY fields has been

seen. More sophisticated measures have

been applied here, such as the PageRank

algorithm [41].

5. Shared Tasks

The natural language processing com-

munity has a long history of evaluating

applications through the shared task

paradigm. Similar to CASP, a shared task

involves agreeing on a task definition, a

data set, and a scoring mechanism. In

biomedical text mining, shared tasks have

had a strong effect on the direction of the

field. There have been both clinically

oriented and genomically oriented shared

tasks.

In the clinical domain, the 2007 NLP

Challenge [42] involved assigning ICD9-

CM codes to radiology reports of chest x-

rays and renal procedures. Also in the

clinical domain, i2b2 has sponsored a

number of shared tasks, described in

Section 1.1.2. (At the time of writing, the

National Institute of Standards and

Technology is preparing a shared task

involving electronic medical records un-

der the aegis of the annual Text Retriev-

al Conference. The task definition is not

yet defined.)

In the genomics domain, the predomi-

nant shared tasks have been the BioCrea-

tive shared tasks and a five-year series of

tasks in a special genomics track of the

Text Retrieval Conference [43]. Some of

the tasks were directly relevant to transla-

tional bioinformatics. The tasks varied

from year to year and included informa-

tion retrieval (Section 4.1), production of

GeneRIFs (Section 4.7), document classi-

fication (Section 4.2), and question-an-

swering (Section 4.6). A topic that was

frequently investigated by participants was

the contribution of controlled vocabularies

to performance on text mining tasks.

Results were equivocal; it was found that

Table 1. Some knowledge sources for biomedical natural language processing.

Informatics for Integrating Biology and the Bedside
(i2b2 - https://www.i2b2.org/)

National Center for Biomedical Computing with focus on translational research that
facilitates and proves data sets for clinical natural language processing research

Gene Ontology (https://www.geneontology.org) Controlled vocabulary with relationships including partonymy and inheritance,
designed for describing gene functions, broadly construed

Entrez Gene (https://www.ncbi.nlm.nih.gov/gene) Source for gene names, symbols, and synonyms; also the source for GeneRIFs and
SUMMARY fields

PubMed/MEDLINE (https://www.ncbi.nlm.nih.gov/pubmed) The National Library of Medicine’s database of abstracts of biomedical publications
(MEDLINE) and search interface for accessing them (PubMed)

Unified Medical Language System (https://www.nlm.nih.gov/research/umls/) Large lexical and conceptual resource, including the UMLS Metathesaurus, which
aggregates a large number of biomedical and some genomic vocabularies

SWISSPROT (https://www.uniprot.org/) Database of information about proteins with literature references, useful as a gold
standard

PharmGKB (https://www.pharmgkb.org/) Database of relationships between a number of clinical, genomic, and other entities
with literature references, useful as a gold standard

Comparative Toxicogenomics Database (https://ctdbase.org/) Database of relationships between genes, diseases, and chemicals, with literature
references, useful as a gold standard

Various terminological resources, data sources, and gold-standard databases for biomedical natural language processing.
doi:10.1371/journal.pcbi.1003044.t001
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they could occasionally increase perfor-

mance, but only when used intelligently,

e.g., with appropriate preprocessing or

filtering of items in the terminologies—

blind use of vocabulary resources does not

improve performance.

The BioCreative series of shared tasks

has been oriented more towards model

organism database curation than towards

translational bioinformatics, but some of

the subtasks that were involved are of

utility in translational bioinformatics. Bio-

Creative tasks have included gene name

recognition in text (Section 4.3), mining

information about relationships between

genes and their functions (Section 4.5),

mining information about protein-protein

interactions (Section 4.5), information

retrieval (Section 4.1), and relating men-

tions of genes in text to database entries in

Entrez Gene and SWISSPROT (Section

4.4).

6. Software Engineering for
Text Mining

Like all translational bioinformatics

software, text mining software for transla-

tional bioinformatics can be considered

health-critical and should be subject to the

strictest standards of quality assurance and

software testing. General software testing

is covered in such standard books as [44].

The special requirements of software

testing for natural language processing

applications are not covered in the stan-

dard books on software testing, but a small

but growing body of literature discusses

the special issues that arise here. There are

two basic paradigms for evaluating text

mining applications. The standard para-

digm involves running large corpora

through the application and determining

the F-measure achieved. However, this

approach is not satisfactory for quality

assurance and software testing. It is good

for achieving overall estimates of perfor-

mance, but does a poor job of indicating

what the application is good at and what it

is bad at. For this task, structured test

suites and application of the general

principles of software testing are much

more appropriate. Structured test suites

are discussed in Section 1.3.2. It is helpful

to consult with a descriptive linguist when

designing test suites for assessing an

application’s ability to handle linguistic

phenomena. [15] and [14] describe basic

principles for constructing test suites for

linguistic phenomena by applying the

techniques of software testing and of

descriptive linguistics. The former includes

a methodology for the automatic genera-

tion of test suites of arbitrary size and

complexity. [45] presents a quantitative

examination of the effectiveness of corpora

versus structured test suites for software

testing, and demonstrates that structured

test suites achieve better code coverage

(percentage of code that is executed during

the test phase—bugs cannot be discovered

in code that is not executed) than corpora,

and also offer a significant advantage in

terms of time and efficiency. They found

that a structured test suite that achieved

higher code coverage than a 3.9 million

word corpus could be run in about

11 seconds, while it took about four and

a half hours to process the corpus. [46]

discusses the application of the software

engineering concept of the ‘‘fault model,’’

informed by insights from linguistics, to

discovering a serious error in their ontol-

ogy linking tool.

User interface assessment requires spe-

cial techniques not found in other areas of

software testing for natural language

processing. User interface testing has been

most heavily studied in the case of

literature search interfaces. Here the work

of [47,48] is most useful, and can serve as

a tutorial on interface evaluation.

7. Exercises

1. Obtain a copy of a patient record

collection from the i2b2 National

Center for Biomedical Computing

(see e.g., [49]). Download the Meta-

Map application or API and run it over

a set of ten discharge summaries. Use

Google to find the current links for the

i2b2 data sets and for downloading

MetaMap. Note that using the Meta-

Map application will require writing

code to extract results from the Meta-

Map output file, while using the API

will require writing your own applica-

tion. Which outputs might you consid-

er to identify phenotypes that could be

relevant for your research interests?

2. Obtain a collection of 1,000 PubMed

abstracts by querying with the terms

gene and mutation and downloading the

1,000 most recent. Run the EMU

mutation extractor (http://bioinf.

umbc.edu/EMU/ftp) or a similar tool

on them. What genotypes can you

identify in the output?

3. A researcher has a collection of 10,000

documents. She wants to retrieve all

documents relevant to pulmonary hy-

pertension. The collection contains 250

documents that are relevant to pulmo-

nary hypertension. An information

retrieval program written by a col-

league returns 100 documents. 80 of

these are actually relevant to pulmo-

nary hypertension. What is the preci-

sion, recall, and F-measure for this

system?

4. Explain the difference between descrip-

tive linguistic rules and prescriptive linguistic

rules. Be sure to say which type text

mining is concerned with.

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(DOCX)
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