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The aim of this study was to investigate the miRNA profiles of nanosized small extracellular vesicles (sEVs) from human retinal
pigment epithelial (RPE) cells under oxidative damage. ARPE-19 cells were cultured with ox-LDL (100mg/L) or serum-free
medium for 48 hours, sEVs were then extracted, and miRNA sequencing was conducted to identify the differentially expressed
genes (DEGs) between the 2 groups. RNA sequence results were validated using quantitative real-time PCR. The Gene Ontology
(GO) enrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and ingenuity pathway analyses (IPA) were performed
for the DEGs. Results revealed that oxidative stress inhibited RPE cell viability and promoted sEV secretion. A total of 877
DEGs from sEVs were identified, of which 272 were downregulated and 605 were upregulated. In total, 66 enriched GO terms
showed that the 3 most significant enrichment terms were cellular processes (biological processes), cell (cellular component),
and catalytic activity (molecular function). IPA were used to explore DEGs associated with oxidation damage and further
construct a miRNA-target regulatory network. This study identified several DEGs from oxidation-stimulated RPE cells, which
may act as potential RNA targets for prognosis and diagnosis of RPE degeneration.

1. Introduction

Oxidative damage is one of the major contributors to retinal
degenerative diseases such as age-related macular degenera-
tion (AMD) [1]. AMD is a multifactorial disease in which
oxidative stress serves as a key component. The retinal
pigment epithelium (RPE) is a highly specialized, polarized
epithelium, which is in intimate contact with the outer
segments of the photoreceptor and Bruch’s membrane [2].
PRE cells are particularly metabolically active, highly oxygen-
ated, and vulnerable to oxidative stress under exposure to
photosensitizers such as lipofuscin [3]. Oxidative stress
induces cell apoptosis through reactive oxygen species,
thereby leading to RPE dysfunction [4].

Exosome refers to one form of extracellular nanometer-
sized vesicle, which mediates multiple extra- and intercellular
activities, including cell-cell communication, immunemodula-
tion, extracellular matrix turnover, stem cell division/differen-

tiation, neovascularization, and cellular waste removal [5].
RPE cells secrete extracellular vesicles (EVs) in response to oxi-
dative stress, resulting in angiogenesis in endothelial cells [6].
Exosomal biological markers CD63 and LAMP2 have been
found in the drusen of AMD patients and stressed RPE cells,
which suggests that the drusen is initiated by intracellular pro-
teins fromRPE cells and becomes extracellular via the exosome
[7]. Small extracellular vesicles (sEVs) contain multiple func-
tional molecules such as mRNA, microRNA (miRNA), and
proteases. miRNAs are small noncoding RNA molecules,
which inhibit several targeting mRNA expressions. Genetic
mutations of miRNAs induce pathophysiological and immu-
nological dysfunction in RPE cells. A related study suggested
exosomal miRNA variations as predictive biomarkers in
AMD disease [8]. Here, we aimed to screen for differentially
expressed miRNA profiles in sEVs derived from oxidative
stress-stimulated RPE cells and identify potential functional
miRNAs, which may be associated with RPE oxidation.
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2. Materials and Methods

2.1. Cell Culture and Oxidative Stress Induction. The human
RPE cell line (ARPE-19) is transformed and maintained at
1 × 106 cells/mL culture in DMEM/F12 medium (Gibco Life
Technologies, Carlsbad, CA, USA) containing 10% fetal
bovine serum (FBS; HyClone, Shanghai, China), penicillin/-
streptomycin (1 : 100, Sigma, USA), 4mM glutamine, and
0.19% HEPES (Sigma), in a humidified incubator at 37°C
and 5% CO2. Cells were seeded and grown to 70-80% conflu-
ence before being placed in a serum-free medium (SFM) for

24 hours, then randomized into SFM or human oxidized
low-density lipoprotein (ox-LDL, 100mg/L, AppliChem,
Darmstadt, Germany) groups for 48 hours.

2.2. CCK8 Assay for RPE Cell Viability. ARPE-19 cells were
seeded at a density of 1 × 104 cells/100μL/well in 96-well
plates. After the treatment mentioned above, 10μL of XTT
(BBI Life Sciences, China) solution was added into each well
for 1 hour at 37°C. Cell viability was determined by measur-
ing absorbance at 450nm using a microplate spectrophotom-
eter (Molecular Devices, Sunnyvale, CA, USA).
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Figure 1: ox-LDL reduced RPE cell viability. ARPE-19 cells were treated with control (serum-free medium) or ox-LDL (100mg/L) for 48
hours. Cell viability was tested by CCK8 assay. Data are expressed as mean ± SD (n = 3). Experiments were repeated 3 times. ∗∗∗p < 0:001
vs. the control group.
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Figure 2: Transmission electron microscopy images of exosome in the ox-LDL and control groups (a) and western blot results of exosomal
marker proteins (b).
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2.3. Exosome Isolation and Transmission Electron Microscopy
Imaging. Exosomes were isolated from ARPE-19 cells using
multistep differential centrifugation [9]. ARPE-19 cells were
centrifuged at 300 × g for 10minutes at 4°C. Subsequently,
the supernatant was subjected to the following centrifugation
steps: 2000 × g for 10minutes, 10,000 × g for 30minutes, and
100,000 × g for 70minutes. The resulting sEVs were finally
resuspended in PBS and centrifuged at 100,000 × g for
70minutes again. The morphology of sEVs was visualized

using the Hitachi transmission electron microscope operated
at 80 kV (Hitachi, Japan).

2.4. Western Blot Analysis. As described previously [10], after
incubating for 5min at 90°C with loading buffer (Life Tech-
nologies, Australia), 10μg of exosomes in each group was
electrophoresed on NuPAGE Novex 4–12% Bis-Tris Gels
(Life Technologies, USA). Gels were transferred onto PVDF
membranes using the Trans-Blot Turbo system. Membranes
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Figure 3: General RNA-Seq analysis of sEV-derived miRNAs and statistical analysis of differentially expressed genes between the ox-LDL
and control groups. (a) Histogram of DEGs between 2 groups. (b) Volcano plot of DEGs. p value < 0.05 was considered significant.

Table 1: List of the top 10 DEGs between the ox-LDL and control groups.

Gene ID log2Ratio (RPELDL/rpe) p value FDR Description Primer sequence (5′→ 3′)
hsa-miR-3184-3p 16.27193714 <0.001 <0.001 Up TCCTCTTCTCCCTCCTCCCA

hsa-let-7e-5p 15.46467337 <0.001 <0.001 Up AGCTGGTGTTGTGAATCAGG

hsa-miR-208a-5p 13.98992663 <0.001 <0.001 Up CGCATCCCCTAGGGCATTGG

hsa-miR-138-5p 13.57222651 <0.001 <0.001 Up TAGTGCAATATTGCTTATAG

hsa-miR-1228-3p 13.13089227 <0.001 <0.001 Up AAAGTCTCGCTCTCTGCCCC

hsa-miR-423-5p -14.52833201 <0.001 <0.001 Down GGAGCGAGATCCCTCCAAAAT

hsa-miR-1910-5p -13.02410078 <0.001 <0.001 Down GAGCTTTTGGCCCGGGTTAT

hsa-miR-197-3p -11.56985561 <0.001 <0.001 Down GGCTGTTGTCATACTTCTCATGG

hsa-miR-877-3p -10.27612441 <0.001 <0.001 Down TCACAGTGGCTAAGTTCTGC

hsa-miR-324-5p -9.409390936 <0.001 <0.001 Down TGAGGGGCAGAGAGCGAG

FDR: false discovery rate.
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were blocked in 2% BSA solution for 3 hours and then probed
overnight with primary exosomal marker protein antibodies:
anti-Hsp70 (ab134045, Abcam, Cambridge, UK), anti-CD63
(ab181606, Abcam), and anti-TSG101 (ab125011, Abcam)
at 4°C, followed by incubation with a secondary antibody for
3 hours. The ChemiDoc XRS gel documentation system
(Bio-Rad Laboratories, USA) was used to quantify the
immune-reactive proteins, and β-actin was used as a loading
control for each lane. Each indicated band was quantified
and normalized to β-actin through ImageJ software.

2.5. miRNA Extraction and miRNA Sequencing. As reported
previously [11], RNA extraction was performed using the
Total Exosome RNA and Protein Isolation Kit (catalog #
4478545; Invitrogen, USA) according to the provided
instructions. 200 ng-1μg RNA in final volume of 30μL solu-
tion was collected for each sample. Total RNA quantity and
quality (260/280 absorbance ratio) were assessed using
NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA,
USA) and Agilent 2100 Bioanalyzer to test concentration
and inorganic ions or polycarbonate contamination. miRNA
sequence was isolated by BGI Company (China) based on
previous instructions [12]. cDNA libraries were constructed
using the Ion Total RNA-Seqv2 kit (Life Technologies,
USA) (n = 3 for each group) and purified using AMPure
beads (Beckman Coulter). Emulsion PCR and enrichment
of cDNA-conjugated particles were performed with an Ion
OneTouch 200 Template Kit v2 DL (Life Technologies).
The final cDNA samples were sequenced single end on the
HiSeq 2000 System with a 50 bp read length.

2.6. Bioinformatics Analysis of the Data. Raw data was filtered
to eliminate low-quality reads, primers, adaptors, and other
contaminants. Following this, we summarized the length
distribution and common and specific sequences between
samples. After filtering, the remaining tags were called clean
tags and stored in FASTQ format. Bowtie2 was used to map
clean reads to the reference genome and other sRNA
databases. To identify differentially expressed genes (DEGs),
differentially expressed miRNAs (DEMIs) were screened out
using the limma package through the thresholds of fold
change > 2 or <0.5 and adjusted p value of <0.05 [13].

To perform Gene Ontology (GO) enrichment analysis,
we mapped all genes to GO terms in the database, which
calculated the gene numbers for every term. The hypergeo-
metric test was then used to find significantly enriched GO
terms in the input gene list.

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway was used to perform pathway enrichment analysis.
This analysis identified significantly enriched metabolic or
signal transduction pathways from target genes of DEGs
when compared with the whole genome background. The p
value was corrected using the Bonferroni method; a corrected
p value < 0.05 was considered significant.

In this study, experimentally verified miRNA-mRNA
regulatory pairs were obtained using TargetScan and
miRanda and a miRNA-target regulatory network was
constructed by comparing the DEGs with obtained
miRNA-gene regulatory pairs.

2.7. Validation of miRNA Expression Using Quantitative
Real-Time PCR (RT-PCR). In order to validate initial miRNA
sequence results, the 10 most significant up- or downregu-
lated miRNAs were selected for further RT-PCR tests as
reported previously [14]. Total RNA was isolated using
TRIzol reagent and the quality and quantity of RNA was
measured using a NanoDrop 2000 spectrophotometer. Each
reverse transcription reaction mixture contained 10mL of
SYBR Green Master Mix, 0.5mL of miR-RT primers F
(10mM), 0.5mL of miR-RT primers R (10mM), and
RNase-free H2O. The RT-PCR reactions for the selected 10
miRNAs were performed using the ViiA 7 Real-Time PCR
System (ABI, USA) under the following conditions: 95°C
for 1min, followed by 40 PCR cycles (95°C for 10 s and then
60°C for 20 s). miRNA expression was normalized to the
endogenous reference gene GAPDH. Each sample was
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Figure 4: Validation of the top 10 selected DEGs screened from
miRNA sequence by qRT-PCR tests. ARPE-19 cells were treated
as before, and miRNAs were extracted from sEVs. Data was
expressed as mean ± SD (n = 6). Experiments were repeated three
times. ∗p < 0:05 vs. the control group. ns: no significance.
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analyzed in triplicate. Specific primers were produced by
BIOTNT Company (Shanghai, China). Relative quantifica-
tion was achieved by the comparative 2−ΔΔct method.

2.8. Statistics. The data were analyzed with a one-way analy-
sis of variance (ANOVA) using the statistical program SPSS
17.0. All data were presented as mean ± SD. p value < 0.05
was considered statistically significant.

3. Results

3.1. ox-LDL Decreases ARPE-19 Cell Viability. We first
measured the cytotoxicity of ox-LDL to ARPE-19 cells after
48 hours. Figure 1 shows that cell viability in the ox-LDL
group was significantly lower than that in the control group

(p < 0:05), which indicated its cytotoxicity and aligned with
previous conclusions [15, 16].

3.2. Characterization of sEVs and Biological Marker Protein
Detection. Transmission electron microscopy images of sEVs
derived from both groups revealed the presence of distinct
vesicles with an average diameter of 106 ± 7:62 nm
(Figure 2(a)). The vesicles were also positive for exosomal
markers. CD63 is the general tetraspanin protein used as
the exosomal “star marker” [17]. TSG101 and Hsp70 are also
commonly used for exosome detection [18, 19]. As shown in
Figure 2(b), we found that the expression levels of TSG101
and Hsp70 were statistically higher in the ox-LDL group than
the control, but it did not reach a significant difference
(p > 0:05).
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Figure 5: Go enrichment analysis of DEGs between 2 groups. Blue, green, and red bars represent the enrichment and numbers of DEGs in the
biological process, cellular component, and molecular function, respectively.
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3.3. Differential Expression of miRNA Profiles in sEVs Isolated
from the Oxidative and Control RPE Cells. In order to identify
the influence of oxidation on miRNA profiles from sEVs of
RPE cells, miRNA sequence was sequenced after treatment
for 48 hours. Figure 3 shows that 877 significantly differen-
tially expressed miRNAs had been screened between the
ox-LDL and control groups, among which 272 were down-
regulated and 605 were upregulated. The top 10 differentially
expressed genes are listed in Table 1.

3.4. DEG Validation Using RT-PCR. The top 10 selected
DEGs were further validated using RT-PCR (Figure 4).
PCR tests revealed similar results of RNA sequence, except
that miR-138-5p showed insignificant differences between
the two groups (p > 0:05).

3.5. Gene Ontology Enrichment Analysis. The GO analysis
contains three ontologies: biological processes, molecular
function, and cellular components. We identified 66 enriched

GO terms, among which 26 belong to biological processes, 21
belong to molecular function, and 19 belong to cellular
components. The three most enriched biological process
terms were cellular processes, single-organism processes,
and metabolic processes. Meanwhile, cell, cell part, organelle,
catalytic activity, transporter activity, and transporter activity
were the most enriched GO terms of cellular components
and molecular function, respectively (Figure 5).

3.6. KEGG Pathway Enrichment Analysis. KEGG analysis
classified DEGs into 6 categories according to their biological
functions: cellular processes (4 pathways), environmental
information processing (3 pathways), genetic information pro-
cessing (4 pathways), human diseases (11 pathways), metabo-
lism (12 pathways), and organismal systems (10 pathways).
The 20 most enriched pathways are presented in Figure 6.

3.7. Functional Exploration with Ingenuity Pathway Analysis.
Based on the KEGG and Gene Ontology results, we further
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searched for related functional genes and associated
pathways by ingenuity pathway analysis (IPA) from DEGs.
We identified several pathways and genes which related to
AMD (6 pathways), lipid metabolism (4 pathways), oxidative
damage (5 GO terms), cellular inflammation (5 GO terms),
and choroidal neovascularization (GO:0045765) (Table 2).

3.8. miRNA-Target Regulatory Network Analysis. We used
TargetScan and miRanda software to predict possible
targeted mRNAs for DEGs and associated their intersections
with the IPA results; a total of 10 miRNAs and 43 targeted
mRNAs formed a miRNA-target regulatory network
(Figure 7).

Table 2: List of DEGs in IPA.

Function
Pathway or

GOID
Name (Homo sapiens (human)) Count Gene ID

AMD

hsa02010 ABC transporters 8
miR-345-5p, miR-210-5p, miR-34a-5p, miR-1908-5p, miR-485-

5p, miR-1343-3p, miR-423-5p, miR-4488

hsa03420 Nucleotide excision repair 5
miR-138-5p, miR-345-5p, miR-1908-5p, miR-1343-3p, miR-

485-5p

hsa04060
Cytokine-cytokine receptor

interaction
12

miR-138-5p, miR-345-5p, miR-210-5p, miR-378a-5p, miR-34a-
5p, miR-1908-5p, miR-1343-3p, miR-485-5p, miR-423-5p, miR-

4488, miR-210-5p, miR-423-5p

hsa04062 Chemokine signaling pathway 9
miR-138-5p, miR-345-5p, miR-210-5p, miR-378a-5p, miR-
1908-5p, miR-1343-3p, miR-485-5p, miR-423-5p, miR-4488

hsa04145 Phagosome 7
miR-138-5p, miR-210-5p, miR-1908-5p, miR-1343-3p, miR-

485-5p, miR-423-5p, miR-4488

hsa04620
Toll-like receptor signaling

pathway
6

miR-345-5p, miR-210-5p, miR-1908-5p, miR-1343-3p, miR-
485-5p, miR-4488

Lipid
metabolism

hsa00561 Glycerolipid metabolism 10
miR-138-5p, miR-345-5p, miR-378a-5p, miR-34a-5p, miR-
1908-5p, miR-1343-3p, miR-485-5p, miR-423-5p, miR-4488,

miR-210-5p

hsa00564 Glycerophospholipid metabolism 10
miR-138-5p, miR-345-5p, miR-210-5p, miR-378a-5p, miR-34a-
5p, miR-1908-5p, miR-1343-3p, miR-485-5p, miR-423-5p, miR-

4488

hsa00565 Ether lipid metabolism 3 miR-34a-5p, miR-423-5p, miR-4488

hsa00600 Sphingolipid metabolism 6
miR-34a-5p, miR-1908-5p, miR-1343-3p, miR-485-5p, miR-

423-5p, miR-4488

Oxidative
damage

GO:1902175
Regulation of oxidative stress-
induced intrinsic apoptotic

signaling pathway
0

GO:1900407
Regulation of cellular response to

oxidative stress
9

miR-138-5p, miR-345-5p, miR-210-5p, miR-34a-5p, miR-1908-
5p, miR-1343-3p, miR-485-5p, miR-423-5p, miR-4488

GO:0001306
Age-dependent response to

oxidative stress
9

miR-138-5p, miR-345-5p, miR-210-5p, miR-34a-5p, miR-1908-
5p, miR-1343-3p, miR-485-5p, miR-423-5p, miR-4488

GO:0036473
Cell death in response to oxidative

stress
4 miR-138-5p, miR-210-5p, miR-1343-3p, miR-4488

GO:1902882
Regulation of response to oxidative

stress
9

miR-138-5p, miR-345-5p, miR-210-5p, miR-34a-5p, miR-1908-
5p, miR-1343-3p, miR-485-5p, miR-423-5p, miR-4488

Cellular
inflammation

GO:0002532
Production of molecular mediator
involved in inflammatory response

8
miR-4488, miR-345-5p, miR-378a-5p, miR-34a-5p, miR-1908-

5p, miR-1343-3p, miR-485-5p, miR-423-5p

GO:0002534
Cytokine production involved in

inflammatory response
8

miR-4488, miR-345-5p, miR-378a-5p, miR-34a-5p, miR-1908-
5p, miR-1343-3p, miR-485-5p, miR-423-5p

GO:0002537
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4. Discussion

Oxidative stress has been recognized as a major influence
in AMD pathophysiology, and RPE appears to be the
main site of damage [2]. Oxidative damage of the RPE
layer originates from the digestion of photoreceptor outer
segments and other reactive oxygen species. RPE damage
occurs in multiple locations within the central part of
the eye and finally forms a region of atrophy by the
bystander effect, which is mediated via EVs [20]. In this
research, ox-LDL decreased ARPE-19 cell viability and
promoted sEV secretion. RNA sequences and RT-PCR
tests confirmed a downregulation of miR-1910-5p in sEVs
of the ox-LDL group, which is contrary to a similar study
that found that H2O2 increases miR-1910-5p concentra-
tions in ARPE-19 cells [21]. miR-324-5p was reported to
be expressed in plasma of wet AMD patients, and we

found a decreased expression in the ox-LDL group [22].
Desjarlais et al. [23] demonstrated an upregulation of let-
7g-5p (>570%) in oxygen-induced retinopathy models dur-
ing the neovascularization phase, which is consistent with
our result. Other authors reported significant changes of
miR-192, let-7c, miR-183, miR-27a, miR-27b, miR-361-5p,
miR-335, and miR-30c in experimental AMD models,
which were also observed in our study (see Table 3)
[24–26]. KEGG analysis suggested cytokine-cytokine
receptor interactions and phagosome and protein process-
ing in the endoplasmic reticulum to be the most signifi-
cant enrichment items. In agreement with other reports,
cancer-related pathways are also involved in DEGs of sEVs
in our study [15]. Further research is needed to explore
the specific roles of these pathways.

IPA screened out 6 key pathways related to AMD and 4
GO terms related to oxidative damage. miR-138-5p, miR-
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Figure 7: microRNA-target regulatory networks of differentially expressed genes (DEGs). Green triangles represent miRNAs; red circles
represent targeting genes.

Table 3: List of DEGs related to AMD in previous studies.

Gene ID log2Ratio (RPELDL/rpe) p value FDR Description

hsa-miR-192 [12] -10.98 <0.001 <0.001 Down

hsa-let-7c [25] 5.60 <0.001 <0.001 Up

hsa-miR-183 [24] 12.16 <0.001 <0.001 Up

hsa-miR-27a [25, 26] 12.10 <0.001 <0.001 Up

hsa-miR-27b [22] 4.99 <0.001 <0.001 Up

hsa-miR-361-5p [12] -11.94 <0.001 <0.001 Down

hsa-miR-335 [12, 22] -12.06 <0.001 <0.001 Down

hsa-miR-30c [25] 10.51 <0.001 <0.001 Up
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345-5p, miR-210-5p, miR-34a-5p, miR-1908-5p, miR-1343-
3p, miR-485-5p, miR-423-5p, and miR-4488 are associated
with oxidative stress and AMD.

The miRNA-target regulatory network consists of
several miRNAs and predicted targeting mRNAs. miR-
1343 was proved to be activated in response to stress in
epithelial cells and targets both TGF-β receptors, which in
turn contribute to the progression of angiogenesis in wet
AMD [27, 28]. miR-4488 was demonstrated to be involved
in sphingolipid signaling and to modulate endoplasmic reticu-
lum stress marker PERK in ARPE-19 cells [29]. miR-345-5p
was found to be downregulated in ARPE-19 cells undergoing
oxidative stress, which is also consistent with our findings
[21]. A miR-210-5p variant was demonstrated to affect CFB
expression in RPE cells and modulate the CFB level in AMD
patients [30].miR-423-5p is significantly increased in the pro-
liferative diabetic retinopathy eyes and believed to modulate
angiogenic signals [31]. In this study, it was downregulated
Iafter ox-LDL treatment (FC = −14:52, p < 0:05). miR-1908-
5p plays an important role in regulating lipid metabolism in
blood, and miR-378a-5p/138-5p/34a-5p are important miR-
NAs mediating lipid metabolism, tumor angiogenesis, and
oxidative stress [32–36]. According to the IPA results,
miRNA-target mRNA network, and previous references,
miR-138-5p, miR-345-5p, miR-210-5p, miR-34a-5p, miR-
1908-5p, miR-1343-3p, miR-485-5p, miR-423-5p, and miR-
4488 may serve as potential RNA targets for prognosis and
diagnosis of RPE degeneration.

Compared with previous attempts at this type of analysis,
a lower number of identified DEGs coincided with this study,
which is probably due to the use of different oxidative injury
models in RPE cells. Our research investigated acute
responses of RPE cells to oxidative stress, which could not
represent pathogenesis of AMD since it is a long-term effect.

5. Conclusion

n conclusion, exploring oxidative stress-induced miRNA
profiles has led us to potential prospects in evaluating RNA
variation in sEVs, which may be useful as prognostic and
diagnostic tools in the future.
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